js紫外线
中国数学家 在中国,数学的起源也可追溯到远古。到西周时期(公元前11世纪~前八世纪),“数”作为贵族弟子必习的“六艺”(礼、乐、射、御、书、数)之一,已形成专门的学问,有些知识后成为中国最早的两部传世数学著作——《周捭算经》与《九章算术》的部分内容。 《周捭算经》同时也是一部天文著述,作者不详,成书年代据考当不晚于公元前2世纪。《周捭算经》在数学方面最主要的有勾股定理、分数运算及测量术等。 《周捭算经》本文没有给出勾股定理的证明,但《周捭算经》赵爽注中的“勾股圆方图”说,却蕴涵了迄今所知中国古代最早的勾股定理证明。赵爽,字君卿,生平不详,大约生活于后汉三国时期(公元三世纪前期)。“勾股圆方图”说短短五百余字,概括了整个汉代勾股算术的主要成就。 《九章算术》是中国古代最重要的数学经典,对中国古代数学的发展有深远影响。刘徽《九章算术注序》称《九章》是由周代“九数”发展而来,并由西汉张苍、耿寿昌等人删补。近年发现的湖北张家山汉初古墓竹简《算数书》(1984年出土),有些内容与《九章算术》类似。可以认为,《九章算术》是从先秦开始在长时期里经众多学者编纂、修改,约于西汉中叶(公元前一世纪)最后成书。 《九章算术》采用术文统率例题形式,全书共收246个数学问题,分成九章(①方田,②粟米,③衰分,④少广,⑤商功,⑥均输,⑦盈不足,⑧方程,⑨勾股)。《九章算术》所包含的数学成就是丰富的和多方面的,最著名的如分数运算法则、双设法(“盈不足”术)、开方法、线性方程组消元解法(“方程术”)及负数的引进(“正负术”)等,都具有世界意义。 《孙子算经》中国是世界上最早采用十进位值制记数的国家,春秋战国之际已普遍应用的筹算,即严格遵循了十进位值制。关于算筹记数法现在仅见的资料载于《孙子算经》。《孙子算经》三卷,作者名不详,成书年代约为公元4世纪,该书上卷是关于筹算法则的系统介绍,下卷则有著名的“物不知数”题,亦称“孙子问题”。 《张丘建算经》——百鸡术 《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。 贾宪:〈〈黄帝九章算经细草〉〉 中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。 贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。 秦九韶:〈〈数书九章〉〉 秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶:《测圆海镜》——开元术 随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。 李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。 朱世杰:《四元玉鉴》 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法) 华罗庚 “数学,如音乐一样,以奇才辈出而著称,这些人即便没有受过正规的教育也才华横溢。虽然华罗庚谦虚地避免使用奇才这个词,但它却恰当地描述了这位杰出的中国数学家。” --G·B·Kolata 华罗庚是一个传奇式的人物,是一个自学成才的数学家。 他1910年11月12日出生于江苏省金坛县一个城市贫民的家庭,1985年6月12日,中国数学届陨灭一颗巨星-华罗庚在日本讲学时不幸因心肌梗塞逝世了。 华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于1957年荣获我国科学一等奖。他研究的成果被国际数学界命名为“华氏定理”,“布劳威尔-加当-华定理”。华罗庚一生精勤不倦,奋斗不息,著作很多,研究领域很广。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。 名师与高徒——陈省生和丘成桐 当今世界数坛,设有两项奖励,可谓举世瞩目,堪于诺贝尔奖相比.一项是在国际数学家大会颁发的菲尔兹(Fields)奖,这项奖只授予不超过40岁的年轻数学家;一项是由以色列沃尔夫基金会于1978年颁发的沃尔夫奖;每奖10万美元(数目最初于诺贝尔奖接近),授予当代最大的数学家. 1983年,旅美中国年轻数学家丘成桐教授荣获沃尔夫大奖,而他的老师美籍中国数学家陈省身教授则获沃尔夫大奖. 陈省身教授是美国科学院院士,1975年美国国家科学奖获得者,当代世界最有影响的数学家之一,现代微分几何的奠基人. 陈省身1911年10月26日出生于浙江省嘉兴县,陈省身教授是国际数学届整体微分几何研究的领导人物. 他1931年在清华大学研究发表的第一篇研究论文,其题材就是有关"投影微分几何"的. 他写的积分几何,把希拉克学派的积分几何工作推到了更高的阶段. 陈省身对当时数学界知之甚少的示性类理论很感兴趣.1945年他发现复流上有反映复结构特征的不变量,后来被命名为陈省身示性类是微分几何学、代数几何学、复解析几何学中最重要的不变量。“它的应用及于整个数学及理论物理”。(沃尔夫奖评语)魏伊说:“示性类的概念被陈的工作整个地改观了。”陈省身因建立代数拓补与微分几何的联系,推进了整体几何的发展彪炳于数学史册。 在将近半个世纪里,陈省身教授在微分几何研究中,取得了一系列丰硕的成果,其最突出的有:(1)关于卡勒(Kahleian)G结构的同调和形式的分解定理:(2)欧几里得空间中闭子流的全曲率和紧嵌入的理论;(3)满足几何条件的子流形成唯一性定理;(4)积分几何中的运动公式。(5)他同格里菲恩()关于网上几何(Web geometry)的工作使这方面获得新生命,最近的发展();(6)他同莫泽()关于CR-流形的工作最近多复变函数论进展的基础;(7)他同西蒙斯()的特征式是量子力学异常(anomaly)现象的基本数学工具;(8)他同沃尔夫森()关于调和映射的工作是整体微分几何的一个问题,在理论物理有重要应用.1959年他在芝加哥大学所撰写的《微分几何》是一部经典名著。 丘成桐1949年4月4日出生在广东省,不久他们全家移居香港,1976年,年仅27岁的丘成桐就解决了微分几何中的一个著名难题-“卡拉比猜想”。卡拉比猜想的解决,使丘成桐成为数学天空新升起的一颗名星,他除解决了卡拉比猜想外,他还解决了许多停多年毫无进展的问题,例如:(1)正质猜想,(2)实与复的蒙日-安培方程。(3)丘成桐的一系列文章对某些紧流形(或有边界的流型)上的拉普拉斯算子的第一特征值,以及其它的特征值都作了深刻的估计。(4)丘成桐和肖荫堂合作,利用极小曲面对弗兰克尔猜想给出一个漂亮的证明,也就是证明了完备的单连通的、具有正的全纯截面曲率的恺勒流形与一个复射空间双全纯等价;(5)丘成桐和米斯克利用三维流形的拓补方法解决极小曲面的经典理论中一些老问题。反过来,他们利用极小曲面理论得出三维拓补学的一些结果:得恩引理和等变环圈定理及等球定理等。 由于丘成桐的出色成就,他1981年获美国数学颁发的维布伦奖,1983年,他在华沙举行的国际数学家大会上荣获菲尔兹奖是当之无愧的. 吴文俊 数学家。1919年5月12日生于上海市。1940年毕业于上海交通大学。1947年赴法国留学。在巴黎法国国家科学研究中心进行数学研究,1949年获法国国家科学博士学位。1951年回国。1957年被聘选为中国科学院院士(学部委员)。历任北京大学数学系教授,中国科学院数学研究所研究员及副所长,中国科学院系统科学研究所研究员及副所长、名誉所长、数学机械化研究中心主任。曾任中国数学会理事长、名誉理事长,中国科学院数学物理学部副主任、主任等职。 吴文俊主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人,为中国数学研究和科学事业的发展作出了重要贡献。1952年刊印出版的博士论文《球纤维示性类》是对球纤维理论基本问题的重要贡献。从40年代起示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这方面成果曾获1956年度国家自然科学奖(中国科学院自然科学奖金)一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为“吴方法”),实现了初等几何与微分几何定理的机器证明,居于世界领先地位。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获1978年全国数学大会重大成果奖和1980年中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面,以及代数几何、中国数学史、对策论等研究中也作出了重要贡献。 杨乐 数学家。1939年11月10日生于江苏南通。1956年考入北京大学数学系,1962年毕业,同年考取中国科学院数学研究所研究生,1966年研究生毕业后留所工作。曾任中国科学院数学研究所所长、中国数学会秘书长、理事长。现任中国科学院数学研究所研究员、学术委员会主任。1980年当选为中国科学院院士(学部委员)。 杨乐在函数模分布论、辐角分布论、正规族等领域,以其众多极富创造性的重要贡献,20年来一直站在世界最前列,是国际上的领头数学家之一。 一、对整函数、亚纯函数的亏值、亏量函数进行了深入研究 与张广厚合作在亚纯函数的亏值数目与Borel方向数目间首次建立了密切联系;在引进亏函数后,给出有穷下级亚纯函数总亏量的估计,从而证明了其亏函数是可数的;给出亚纯函数结合于导数的总亏量的估计,彻底解决了著名学者年代提出的3个问题。 二、对正规族作了系统研究,获得了一些新的重要的正规定则 杨乐建立了正规族与不动点之间的联系正规族与微分多项式之间的联系,解决了著名学者提出的一个正规族问题等。 三、对整函数和亚纯函数的辐角分布进行了系统、深入的研究 杨乐研究在亚纯函数涉及的导数的辐角分布时,获得了一种新型的奇异方向;对辐角分布与重值间的关系得到了深入的结果;完全刻划了亚纯函数Borel方向的分布规律;与Hayman合作解决了Littlewood的一个猜想。 杨乐的上述各项重要研究成果受到国内外同行的高度评价与许多引用,他所得到的亏量关系,被国外学者称为“杨乐亏量关系‘等。
瞳言無忌
祖冲之,第一个把圆周率算到小数点后7(在与之间)位数字的中国人,比西方早几千年 在中国,数学的起源也可追溯到远古。到西周时期(公元前11世纪~前八世纪),“数”作为贵族弟子必习的“六艺”(礼、乐、射、御、书、数)之一,已形成专门的学问,有些知识后成为中国最早的两部传世数学著作——《周捭算经》与《九章算术》的部分内容。 《周捭算经》同时也是一部天文著述,作者不详,成书年代据考当不晚于公元前2世纪。《周捭算经》在数学方面最主要的有勾股定理、分数运算及测量术等。 《周捭算经》本文没有给出勾股定理的证明,但《周捭算经》赵爽注中的“勾股圆方图”说,却蕴涵了迄今所知中国古代最早的勾股定理证明。赵爽,字君卿,生平不详,大约生活于后汉三国时期(公元三世纪前期)。“勾股圆方图”说短短五百余字,概括了整个汉代勾股算术的主要成就。 《九章算术》是中国古代最重要的数学经典,对中国古代数学的发展有深远影响。刘徽《九章算术注序》称《九章》是由周代“九数”发展而来,并由西汉张苍、耿寿昌等人删补。近年发现的湖北张家山汉初古墓竹简《算数书》(1984年出土),有些内容与《九章算术》类似。可以认为,《九章算术》是从先秦开始在长时期里经众多学者编纂、修改,约于西汉中叶(公元前一世纪)最后成书。 《九章算术》采用术文统率例题形式,全书共收246个数学问题,分成九章(①方田,②粟米,③衰分,④少广,⑤商功,⑥均输,⑦盈不足,⑧方程,⑨勾股)。《九章算术》所包含的数学成就是丰富的和多方面的,最著名的如分数运算法则、双设法(“盈不足”术)、开方法、线性方程组消元解法(“方程术”)及负数的引进(“正负术”)等,都具有世界意义。 《孙子算经》中国是世界上最早采用十进位值制记数的国家,春秋战国之际已普遍应用的筹算,即严格遵循了十进位值制。关于算筹记数法现在仅见的资料载于《孙子算经》。《孙子算经》三卷,作者名不详,成书年代约为公元4世纪,该书上卷是关于筹算法则的系统介绍,下卷则有著名的“物不知数”题,亦称“孙子问题”。 《张丘建算经》——百鸡术 《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。 贾宪:〈〈黄帝九章算经细草〉〉 中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。 贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。 秦九韶:〈〈数书九章〉〉 秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 李冶:《测圆海镜》——开元术 随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。 李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。 朱世杰:《四元玉鉴》 朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法) 华罗庚 “数学,如音乐一样,以奇才辈出而著称,这些人即便没有受过正规的教育也才华横溢。虽然华罗庚谦虚地避免使用奇才这个词,但它却恰当地描述了这位杰出的中国数学家。” --G·B·Kolata 华罗庚是一个传奇式的人物,是一个自学成才的数学家。 他1910年11月12日出生于江苏省金坛县一个城市贫民的家庭,1985年6月12日,中国数学届陨灭一颗巨星-华罗庚在日本讲学时不幸因心肌梗塞逝世了。 华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于1957年荣获我国科学一等奖。他研究的成果被国际数学界命名为“华氏定理”,“布劳威尔-加当-华定理”。华罗庚一生精勤不倦,奋斗不息,著作很多,研究领域很广。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。 名师与高徒——陈省生和丘成桐 当今世界数坛,设有两项奖励,可谓举世瞩目,堪于诺贝尔奖相比.一项是在国际数学家大会颁发的菲尔兹(Fields)奖,这项奖只授予不超过40岁的年轻数学家;一项是由以色列沃尔夫基金会于1978年颁发的沃尔夫奖;每奖10万美元(数目最初于诺贝尔奖接近),授予当代最大的数学家. 1983年,旅美中国年轻数学家丘成桐教授荣获沃尔夫大奖,而他的老师美籍中国数学家陈省身教授则获沃尔夫大奖. 陈省身教授是美国科学院院士,1975年美国国家科学奖获得者,当代世界最有影响的数学家之一,现代微分几何的奠基人. 陈省身1911年10月26日出生于浙江省嘉兴县,陈省身教授是国际数学届整体微分几何研究的领导人物. 他1931年在清华大学研究发表的第一篇研究论文,其题材就是有关"投影微分几何"的. 他写的积分几何,把希拉克学派的积分几何工作推到了更高的阶段. 陈省身对当时数学界知之甚少的示性类理论很感兴趣.1945年他发现复流上有反映复结构特征的不变量,后来被命名为陈省身示性类是微分几何学、代数几何学、复解析几何学中最重要的不变量。“它的应用及于整个数学及理论物理”。(沃尔夫奖评语)魏伊说:“示性类的概念被陈的工作整个地改观了。”陈省身因建立代数拓补与微分几何的联系,推进了整体几何的发展彪炳于数学史册。 在将近半个世纪里,陈省身教授在微分几何研究中,取得了一系列丰硕的成果,其最突出的有:(1)关于卡勒(Kahleian)G结构的同调和形式的分解定理:(2)欧几里得空间中闭子流的全曲率和紧嵌入的理论;(3)满足几何条件的子流形成唯一性定理;(4)积分几何中的运动公式。(5)他同格里菲恩()关于网上几何(Web geometry)的工作使这方面获得新生命,最近的发展();(6)他同莫泽()关于CR-流形的工作最近多复变函数论进展的基础;(7)他同西蒙斯()的特征式是量子力学异常(anomaly)现象的基本数学工具;(8)他同沃尔夫森()关于调和映射的工作是整体微分几何的一个问题,在理论物理有重要应用.1959年他在芝加哥大学所撰写的《微分几何》是一部经典名著。 丘成桐1949年4月4日出生在广东省,不久他们全家移居香港,1976年,年仅27岁的丘成桐就解决了微分几何中的一个著名难题-“卡拉比猜想”。卡拉比猜想的解决,使丘成桐成为数学天空新升起的一颗名星,他除解决了卡拉比猜想外,他还解决了许多停多年毫无进展的问题,例如:(1)正质猜想,(2)实与复的蒙日-安培方程。(3)丘成桐的一系列文章对某些紧流形(或有边界的流型)上的拉普拉斯算子的第一特征值,以及其它的特征值都作了深刻的估计。(4)丘成桐和肖荫堂合作,利用极小曲面对弗兰克尔猜想给出一个漂亮的证明,也就是证明了完备的单连通的、具有正的全纯截面曲率的恺勒流形与一个复射空间双全纯等价;(5)丘成桐和米斯克利用三维流形的拓补方法解决极小曲面的经典理论中一些老问题。反过来,他们利用极小曲面理论得出三维拓补学的一些结果:得恩引理和等变环圈定理及等球定理等。 由于丘成桐的出色成就,他1981年获美国数学颁发的维布伦奖,1983年,他在华沙举行的国际数学家大会上荣获菲尔兹奖是当之无愧的. 吴文俊 数学家。1919年5月12日生于上海市。1940年毕业于上海交通大学。1947年赴法国留学。在巴黎法国国家科学研究中心进行数学研究,1949年获法国国家科学博士学位。1951年回国。1957年被聘选为中国科学院院士(学部委员)。历任北京大学数学系教授,中国科学院数学研究所研究员及副所长,中国科学院系统科学研究所研究员及副所长、名誉所长、数学机械化研究中心主任。曾任中国数学会理事长、名誉理事长,中国科学院数学物理学部副主任、主任等职。 吴文俊主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人,为中国数学研究和科学事业的发展作出了重要贡献。1952年刊印出版的博士论文《球纤维示性类》是对球纤维理论基本问题的重要贡献。从40年代起示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这方面成果曾获1956年度国家自然科学奖(中国科学院自然科学奖金)一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为“吴方法”),实现了初等几何与微分几何定理的机器证明,居于世界领先地位。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获1978年全国数学大会重大成果奖和1980年中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面,以及代数几何、中国数学史、对策论等研究中也作出了重要贡献。 杨乐 数学家。1939年11月10日生于江苏南通。1956年考入北京大学数学系,1962年毕业,同年考取中国科学院数学研究所研究生,1966年研究生毕业后留所工作。曾任中国科学院数学研究所所长、中国数学会秘书长、理事长。现任中国科学院数学研究所研究员、学术委员会主任。1980年当选为中国科学院院士(学部委员)。 杨乐在函数模分布论、辐角分布论、正规族等领域,以其众多极富创造性的重要贡献,20年来一直站在世界最前列,是国际上的领头数学家之一。 一、对整函数、亚纯函数的亏值、亏量函数进行了深入研究 与张广厚合作在亚纯函数的亏值数目与Borel方向数目间首次建立了密切联系;在引进亏函数后,给出有穷下级亚纯函数总亏量的估计,从而证明了其亏函数是可数的;给出亚纯函数结合于导数的总亏量的估计,彻底解决了著名学者年代提出的3个问题。 二、对正规族作了系统研究,获得了一些新的重要的正规定则 杨乐建立了正规族与不动点之间的联系正规族与微分多项式之间的联系,解决了著名学者提出的一个正规族问题等。 三、对整函数和亚纯函数的辐角分布进行了系统、深入的研究 杨乐研究在亚纯函数涉及的导数的辐角分布时,获得了一种新型的奇异方向;对辐角分布与重值间的关系得到了深入的结果;完全刻划了亚纯函数Borel方向的分布规律;与Hayman合作解决了Littlewood的一个猜想。 杨乐的上述各项重要研究成果受到国内外同行的高度评价与许多引用,他所得到的亏量关系,被国外学者称为“杨乐亏量关系‘等。
1982吃货一枚
在平平淡淡的日常中,大家最不陌生的就是论文了吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。你知道论文怎样才能写的好吗?以下是我为大家收集的做最好的自己议论文,希望能够帮助到大家。
在美丽的花园里,每个人都开着一朵叫做“自己”的花。
就像同一枝玫瑰,株上有的开出红玫瑰,有的开出白玫瑰一样,我们每个人也有着自己的特色,那种特色是“自己”所独具的,是独一无二的。
不用去理会他人对你的评价,不用去介意同伴是否比你开得艳、开得美,你更不用在乎别人怎么说。只要你自己努力了,只要你自己尽力去开得最美、最艳,只要你尽力去做最好的自己就够了。
也许在经历了严寒酷暑之后,你仍然矮小丑陋,很不起眼,但请不要放弃,你必须勇敢地面对一切,坚强地成长,不用在乎别人怎么说,只要你做到最好的自己,你就是最棒的。走自己的路,让别人说去吧!
曾经屡屡失败的李娜如果介意了别人的劝谏,放弃或改行,那如今,就不会有为中国赢得法网大满贯的网球女王。她的经历告诉我们,造就自己的人生,就是不用在乎别人怎么说,你只需把每一件小事做到最好,把每一次失败踩在脚下,把每一次成功抛在脑后,做最好的自己!
做最好的自己,并不是我行我素,盲目追求,也不是因理想没有实现而一蹶不振,灰心丧气,而是不用在乎他人怎么说。只要你自己努力了,真的付出了全力,就足够了。即便是没有成功,相信成功就在不远处等候着你。
美国脱口秀女王奥普拉不仅是一位成功的主持人,她更是一位感动成千上万人的成功女性。她的至理名言就是做最好的自己,她真的做到了,她成功地成为了脱口秀主持人,成功地占有了美国最抢眼的频道,并以一个黑人的身份受到全民的喜爱。她说,这一切都不算什么,她只是做到了最好的自己。她没有因为家境贫寒、他人嘲讽而放弃学业;她没有因为是黑人、总被别人瞧不起而抬不起头;她没有因为自己长相丑陋、别人的挖苦而不敢登上舞台……她没有在乎别人怎么说,而是做到把自己最好的一面展现给世人。
没有蓝天的深邃,可以有白云的飘逸;没有大海的壮阔,可以有小溪的优雅。每个人都有自己的长处或短处,不用在乎别人对你的缺点的嘲讽或对你优点的赞扬。记住,做最好的自己就足够了。
有位哲人说:如果你不能成为大道,那你就当一条小路;如果你不能成为太阳,那就当一颗星星。意思是说,如果你不能成为伟大的人,那就当好一个平凡的人。我却要说,无论你身处怎样的岗位,从事怎样的事业,肩负怎样的使命,都要有执着的精神,做一个最好的自己。
做最好的自己,就是不管遇到怎样的困难,都要始终如一搞好自己的本职工作。
20xx年“感动中国年度人物”王顺友是一名普普通通的邮递员,他朴实得像一块石头。他担负的马班邮路,山高路险,气候恶劣;他一年中有330天左右的时间在大山中度过。但是,他一个人,一匹马,在这漫漫邮路上一跑就是20年,20年来步行26万公里,足可以重走长征路21回,环绕地球六圈半。20年来,没延误一个班期,没丢失一封邮件;他过滩涉水,越岭翻山,用一个人的长征传邮万里,用20年的跋涉,在一个平凡的岗位上创造了世界邮政史上的传奇。“搞好本职工作是我的责任,再大的苦也要忍了,不能给党丢脸。”王顺友那朴实的话让我们明白了一个生活真谛:不管你处在怎样的条件下,只要你执着于自己的本职工作,尽心尽责做好它,你就是一个最好的自己。
做最好的自己,就是不管遇到怎样的命运挫折,都要全力以赴从事自己的事业。
我们都知道霍金的名字,命运带给霍金的是残酷和不幸:正在读研究生的他被确诊患上了“卢伽雷氏症”,接着,中枢神经残废,肌肉严重衰退,失去了行动能力,手不能写字,嘴说不清话语,终身要靠轮椅生活。然而,就是这样一个不幸的生命,克服了常人难以想象的困难,全身心扑进他的研究事业,靠唯一能够活动的手指,极其艰难地写出了著名的《时间简史》,在天文学的尖端领域——黑洞爆炸理论的研究中,获得了震动天文界的重大成就。“生活是不公平的,不管你的境遇如何,你只能全力以赴。”“当你面临着夭折的可能性,你就会意识到,生命是宝贵的,你有大量的事情要做。”霍金的话告诉我们:不管你遇到怎样的挫折与不幸,只要你坦然面对,执着于自己的事业和追求,你就是一个最好的自己。
做最好的自己,就是不管面对怎样复杂的形势,都要坚定不移地完成自己的使命。
我们都曾经被中原大地上的女英雄任长霞的事迹感动过。任长霞一踏上登封的土地任公安局局长,面对的是治安极差的登封:斜黑势力横行霸道,百姓群众敢怒不敢言。但任长霞明白自己肩负的神圣使命,明白自己是百姓的保护神,因此,她坚定不移,擒大要犯,抓小贼,破丢失耕牛案,铲除“砍刀帮”……雷鸣电闪、手脚生风地连破了一堆大案后,登封的社会治安立竿见影地好转,老百姓的摩托车不锁就敢放在街上过夜,任长霞在登封人心里变成了雷震嵩岳的女神警和“任青天”。与她扫恶打黑的如雷、如火不同,她对百姓如水、如霞,嘘寒问暖,扶危济困,赢得百姓的爱戴。专为任长霞刻的石碑上写着:“有为而威邪恶畏,为民得民万民颂”。石碑上话诠释了一条真理:不管面对怎样复杂的形势,只要你爱憎分明,执着于自己的使命,你就是一个最好的自己。
当然,执着不等于固执。固执是不管自身能力,不问是否可行,埋头蛮干。执着是对自己岗位、事业和使命的热爱和责任感,是充分挖掘自己的潜能,用毅力、勇气和才智来创造奇迹。
其实,我们每一个人,都应当成为最好的自己,也都可以成为最好的自己,只要你认准自己的目标与信念,执着地追求和奋斗。让我们为成为一个最好的自己努力吧!
因为有了花儿,世界才变得芬芳;因为有了鸟儿,天空才学会歌唱;因为有了风儿,柳枝才学会舞蹈;因为有了树儿,炎夏才有了荫凉。每一件事物,在世界上都有着不同的位置,在不同的位置上,它们发挥着自己不同的作用。人,不也是这样吗?李白说过:天生我材必有用。是的,或许你不曾拥有出众的外表,但是你可能拥有最纯真的心灵;或许你不曾拥有敏捷的头脑,但是你可能拥有踏实肯干的品质;或许你不曾拥有惊人的智慧,但是你可能拥有谨慎小心的性格。世界上并没有两片完全相同的叶子,你就是你,独一无二,谁也无法取代,你在这一个世界上,发挥着你独特的作用,要相信,你的存在,就是一个奇迹。
如果你只是一颗小小的石头,不用羡慕大山的巍峨,因为一颗小小的雨花石,也能铺成星光大道;如果你只是一株柔弱的小草,不用羡慕大树的繁茂,因为一株小小的青草,也能遍及天涯海角。你很重要。没有人能替代你,就像你不能替代别人。只有明白了自己的重要性,才会有信心做最好的自己。在每个人人生的杠杆上,都生长着不尽如人意的一隅,挫折和困难犹如孪生姐妹,我们不能向它们低头,相反的,我们只能仰首天空,就这样的仰首才能使你看到更辽阔的天空,更辽远的广博,让我们拥有超越困难的勇气,永远不屈从于命运。
是的,我很重要。我们每一个人都应该有勇气这样说。我们的地位可能很卑微,我们的身份可能很渺小,但这丝毫不意味着我们不重要。因为我们重要,所以我们要努力做最好的自己来印证。每一个人最大的敌人就是自己,当我一次次地战胜了曾经的我,当我一次次破除挫折取得成功,我,就是最好的自己。不能改变的,是你人生前进路上的困难;而能够改变的,就是在任何困难来的生活勇敢站立,在困难中收获幸福!
所以,在你不如意的时候,一定学会在困难中站立,你就能做最好的你自己!
“冯唐易老,李广难封”,这是王勃对冯.李两人难受重用的感慨;“十年心血毁于一旦”,这是鹏举面对金牌的无奈。
人的一生难免有挫折、有无奈。人们常会想如果他是别人多好呀。但是幻想与羡慕是没有用的,人们总会忘记自已是最棒的。霍金是可怜的,因为他的残疾;霍金更是可敬的,固为他没有向命运低头。他懂得为自己鼓掌,在一次次努力之后,他作到常人都无法做到的事。西此,无论有什么挫折有什么困难,我们都必须做好自己、相信自己,为自己鼓掌。
为自己鼓掌才能勇于面对人生。世道无常,人的一生常是坎坷的。一代豪雄曹盂德最终没能统一四海,一代诗仙李太白最终无法施展抱负,一代名将番武穆最终饮恨采仙镇下。他们都没能无法自己心愿,然而无人可以否认他们的一生是完美的。虽然一路坎坷,但他们都没有放弃,虽然袍妒的壮志都难以实现,但他们相信自己,为自己的人生写下了美丽的篇章。
为自己鼓掌方能笑对挫折坎坷。人们对田难通常是抱怨。但知道为自己鼓掌的人卸不会如此。毛主席青年之时,正是国家处于水深必热之时。他没有去感叹剐的圆家的人民多么幸稿,而是毅然扛起振兴中华这一重任,经历千辛万苦终于把中国建成一个美好的国謇。诚然,他遇到过各种挫折,但他依然保持自信,依然能写出“数风流人物,还看今朝”。正是这样,他是胜利者,他的伟大、不朽将永远载入史册,
为自己鼓掌最终可以收获成功。当刘邦一次次被打败时,他并不畏惧西楚霸王,他依然想要东山再起。当人们认为科比会圆为一件案子而沉论时,他在不断努力,不断训练。当德国在二战后成为一片废墟以后,世界都认为德国完了,但是德国人却一点一滴地在重建自己的祖国。在困难前,他们没有抱怨.没有幻想,取而代之的是自信、努力。他们努力的结果是什么呢?刘邦一战击溃项羽,项羽乌江自到。科比豪取八十一分,湖人逐渐强大;德国经济迅速发展,德国依然世界强国之一。
相信自己,做好自己,成功会离你越采越近。为自已鼓掌,相信自己是最捧的。当你学会为自己鼓掌,你就会明白羡慕别人的自己有多幺傻,多么傻……
我们一出生就被定下了外貌,有些人美丽,有些人却有缺陷。
他们很自卑,他们总活在别人的嘲讽中,就因为有缺陷而受到他人排挤,甚至被一些人罗列到“排行榜”之中,他们该有多伤心啊;因为某方面不足,被别人起许多外号。
总低着头走路,不想看见别人的指指点点;不与人沟通,害怕别人嘲笑自己……我们不能改变容貌,但可以展现笑容!不管我们有多少不足,我们都可以拥有美丽的内心,用乐观、积极向上的态度去对待生活。
要让别人尊重自己,先要自己尊重自己。
我们可以昂首挺胸,可以让别人刮目相看。
也许你不是最美丽的那一个,但你可以对别人微笑,笑出最自信的自己。
遇见一些困难的事,我们总会说:“没事,明天再做。
”我们总是放松自己,对自己宽容,可最后吃苦的还是自己。
为什么我们不能吸取教训?我们总说:“明天……”可是我们有多少明天呢,总把事情向后推,总找许多借口。
等到了明天不一定会去做。
我们不能预知明天,但我们可以把握今天!我们不需要把所有事情都安排在某一天做,那天该做什么就把该做的的事完成。
我们可以让每一天都有它的意义。
我们的人生不会一帆风顺,总会有些困难、挫折。
就像一条路,路上可能有花花草草,也可能会有荆棘丛林,我们不知道前方会是什么样,更不知道所谓的终点在何方。
越到障碍物,我们可以跨过去,可以绕道走,但不能原路返回。
在人生的道路上总会遇到荆棘。
我们不能样样顺利,但可以事事尽力!我们可以用自己的努力,开拓自己的路。
中途回过头时才不会惋惜,才不会后悔当初的决定。
临近终点时,不会埋怨以前,不会后悔从前的选择,就算没有想象中那样美好,也会感叹:“我,尽力了。
”有人说,每个人出生后,上帝都给他定好了人生。
想一想,我们不总喜欢算命么?伸出手看看生命线,才回过神来。
命运,掌握在自己的手里……
我们不求有辉煌的人生,不求和科学家一样伟大,只求尽自己所能,做最真的自己,活出最精彩的人生!
人们常说,有梦想才能有作为,有行动才能有成功。文学大师林语堂曾经说过:“梦无论怎样模糊,总潜伏在我们的心底,使我们的心境永远得不到宁静,直到这些梦想成为现实。”但想要使“这些梦想变为现实”,行动才是唯一的手段的保证。
我看到过许多名人的故事,他们小时侯都有自己的目标,我也知道,他们把目标分成一小段一小段来实现,最终,达到了梦想的高峰。但是,我始终没有找到梦想,直到今天,我读了《面对自己——有梦想才能有作为》这篇文章中的一个故事后,我才找到了自己的梦想。
一条小毛虫朝着太阳升起的地方,慢慢爬行着。它在路上遇到一只蝗虫,蝗虫问它:“你要到哪里去?”毛毛虫边爬边回答:“我昨天晚上做了一个梦,梦见我在大山顶上看见了整个山谷。我喜欢梦中看到的情景,我要把它变为现实。”蝗虫很惊讶地说:“你烧糊涂了?还是脑子进水了?你怎么可能达到那个地方。你只是一条小毛虫耶!对你来说,一块石头就是高山,一个水坑就是无法逾越的障碍。”但小毛虫已经爬远了,根本没有理会蝗虫的话,继续前进。后来,蜘蛛、鼹鼠、青蛙和花朵都以同样的口吻劝小毛虫放弃这个打算。但小毛虫始终坚持向前爬行。终于,小毛虫精疲力尽,用最后的力气建成一个可以休息的小窝——蛹,就“死”了,动物们都来瞻仰这它,等到它们第二次来的时候,小毛虫贝壳状的蛹开始破裂,一只美丽的蝴蝶出现了!随着轻风吹拂,美丽的蝴蝶翩翩飞到了大山顶上。
这个美丽的传说,告诉我们一个人生哲理:人活在世界上,不能没有梦想;为了自己的梦想,要付出艰辛和努力。我找到了梦想——成为一名记者。我要努力,争取做最好的自己!
奥斯特洛夫斯基这样说:"人生最宝贵的是生命,生命每个人只有一次。一个人的生命应当这样度过:当他回忆往事的时候,他不会因虚度年华而悔恨,也不会因碌碌无为而羞愧。"因此我们应当抓紧地、毫不拖延地、充分地生活,要选择去做最好的自己。
做最好的自己,就不能放松对自己的要求,而要珍惜每分每秒。毛主席曾云:“多少事,从来急;天地转,光阴迫。一万年太久,只争朝夕。”在学习生活中,若我们不能严格要求自己,争取并珍惜时间,就会碌碌无为。《你的坚持,终将美好》这本书曾这样说道:“自律对我而言,是我贴切我最想成为的样子的手段,所以我越自律越幸福。”自律才是最大的自由,当你勤奋努力,约束自己,才能把握住属于自己的机会,才最有可能在未来成就最好的自己。
做最好的自己,就要坚定前行的脚步,不断地完善自我。革命的先行者孙中山先生曾云:“君志所向,一往无前,愈挫愈奋,再接再厉。”约翰·卡尔·弗里德里希·高斯,德国著名数学家、物理学家,那个小时候就能独立发现等差数列求和问题解决方式的天资聪慧的他,却出身贫寒。他的父亲并不认为学问有什么实际用处,也不打算让他继续接受教育。可他没有放弃,最后在别人的资助下,他坚持学习,埋头于研究,一生勤奋而朴实。在平行线理论的几何研究过程中,当时已63岁的他为了阅读有关书籍,坚持学习俄语,并最终掌握了这门语言。最终高斯成为和微分几何的始祖中最重要的一人。高斯曾说:“给我最大快乐的,不是已懂得知识,而是不断地学习;不是已有的东西,而是不断地获取;不是已达到的高度,而是不断地攀登。”正是由于其不断地坚持,才能最终完善自我,成为最好的自己。
做最好的自己,便要如同海燕一般无惧天地间的暴雨。海明威的《老人与海》中,“人生来不是被打败的”,那句话便立足了他的一生。一艘小船,一个风烛残年的老人,面对茫茫无边的大海,面对凶残鲨群的围追,面对自己身上的苍老与伤痛,他始终长明着心中希望的烛光。在黑夜中,为自己指明了方向,带自己走出了困境。没有了鱼叉,便手握尖刀;没有了尖刀,便以船桨做武器。这是人生的奇迹,也是人一生的微缩。就像陶土进入窑中煅烧,经历了种种磨难,才能成就最好的自己。
做最好的自己,是坚定地为实现自已的理想去生活,而不必因为别人的眼光进退两难。《小松》一诗中曾提到:“时人不识凌云木,直待凌云始道高。”我们如松木一般,追寻自己的价值,成为最好的自己,仿佛并不太需要向别人如何解释。不要因为没有掌声,而荒废自己的梦想。
最好的自己,既能够数得清天上的繁星,也看得见自己脸上的煤灰,然后不慌不忙地对着这个世界微笑。
就算是倦鸟,也要奋力翱翔。因为你的世界在浩渺晴空,在层层云海之中。因为做最好的自己,所以永远在路上,永远步履匆匆。永远年轻,永远热泪盈眶。
夏日黄昏的阳光透过路旁大树的枝叶洒到肩上,不多不少。在暖暖的阳光下独自一人漫步在幽长的林间小路上,听着鸟儿们欢快的歌声,看着它们自由自在的飞,心情一下子放松了许多。顺着小路登上那座不算高的小山,“太棒了!夕阳,我爱你!”在经历了无数次失败后,小可终于在天黑之前爬上了山顶,拥抱了最红的落日。不断的挑战自己,每天都淘汰一遍自己,逼着自己做点苦难的事情,用更多的时间提升自我,让自己的抵抗力更强,做最好的自己。
做最好的自己其实是不容易的,在人生的道路上我们必然会经历欢乐与痛苦、幸福与磨难、平坦与坎坷,我们应该学会宽容与谅解,善待自己身边的每个人,用你的耐心和好脾气去与人相处。
生活不一定完美,苛求完美,也许只会得到两败俱伤的结果,不要带上“完美”的枷锁,不要总是去和别人比较,没有人比你更优秀,没有人比你更成功,做你想做的事,看你想看的世界,成为你想成为的那个人,为自己而活,不攀比任何人,我们只做最好的自己。
曾经有一个被撕掉一小片的圆想要找回完整的自己,于是到处寻找丢失的那一小片碎片。由于它是不完整的,所以滚动的很慢,这让它有充裕的时间去领略沿途美丽的风景:盛开的鲜花,嫩绿的小草,飘着朵朵白云的天空,清澈见底的溪流……它和路边的鸟儿愉快的聊天,与蚂蚁们一起嬉戏,充分感受阳光的温暖。它找到了很多不同的碎片,但都不是自己丢失的那一块,于是它坚持继续寻找。直到有一天,它终于实现了自己的梦想,成了一个完美无缺的圆。可是由于滚动的速度太快,它错过了花开,忽略了小鸟,也忘记了季节的变化。一天,它突然意识到自己虽然做到了完美的自己,却错过了身边的风景,于是它舍弃了历尽千辛万苦才找回来的碎片。
有时候完美也不一定是最好的。当你得到完美的那一刻,你有没有发现自己错过了什么、失去了什么。活出真实、快乐的自己,不媚俗、不沉沦,种下幸福,收获幸福。
生活有很多镜子,但我们去看不到自己。我们总是会看到别人的缺点与过错,看着别人不顺眼的地方,也总是会忍不住去说,当我们在说别人的时候,就没有想过自己是否也有类似的不足呢?
在追逐的道路上,有多少人忘记了自己的初衷?有多少人走到尽头才发现从未真正开怀?这样的遗憾不能再有,我们应该找到最有意义的活法,而唯一的选择就是做自己,做最好的自己!
城市的喧嚣为人们筑起了一道心底防线,究其根本,是人对陌生世界的认识不够,但当固步自封的我们真正从怀疑中走出来时才发现其实世界一直在阳光下只是我们撑起了伞。 世界上没有两片完全一样的叶子,也没有两朵完全一样的雪花,人也是一样,也许会有相似的地方,但绝对不会一模一样。
日液交替,一天一天;花开花落,一季一季;春夏秋冬,一年一年……珍惜美好,把握明天,做最好的自己!
大海深沉,微微一怒,荡起千层浪,小溪质朴,涓涓细流,滋润一方土地。大千世界,万物各有长短,只有做最好的自己,才能让生命开出美丽的花。
做最好的自己,只求问心无愧。林肯幼年丧母,但他并不因此沉浸于痛苦中,他试着经商,试了二十八次,但都失败了;他试着竞选,试了十一次,也都失败了。 精神崩溃了两次,妻子也跟别的男人跑了,但他沉沦过吗?没有,每天一起床,他就告诉自己要用全新的自我面对新的一天,力求把自己最好的一面展现出来。终于,他成功了,成为了新一任美国总统!他始终牢记母亲临终时的话:做最好的自己,这样你才能问心无愧。
做最好的自己,为自己,为他人。新一轮的NBA季后赛开始了,无疑,耳冕冠军湖人队是大家关注的焦点,毕竟连总统都赌湖人队会赢。湖人队的核心球员,科比,自然成为关注的对象。季后赛中,他敢打,敢突,敢投,一路续写神话,便自己季后赛总得分超越马龙,成为第四,三分球命中数也超过了雷·阿伦,成为第四的同时,也使球迷享受到了篮球带来的快乐。他自己说:“我是把最好的自己带到球场上,这对自己是件好事,也会让球迷快乐!”
再看看自己,第一次三县联考考得不尽如人意就险些放弃,真是太傻了!成败并不重要,重要的是尽力而为,做最好的自己。
既然有了小溪的滋润,何必羡慕太海的广阔?既然有了白天的飘逸,何必羡慕天空的深沉?既然现状无法改变,何不秀出最好的自己?
做最好的自己,我问心无愧;做最好的自己,给自己快乐,让他人幸福。
猫女盈盈
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。接下来是我为大家整理的高
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!
每个月递减的钱估计也就几块到十几块钱
极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充