jjgirl2008
廖立兵
1 材料科学与工程学简介
1.1 基本概念
材料(Material):人类用以制成用于生活和生产的物品、器件、构件、机器和其他产品的物质。
材料是物质,但不是所有的物质都可以称为材料,如燃料、化学原料、工业化学品、食物和药物,一般不算是材料。
材料是科学技术发展水平的标志,是国家现代化程度的标志。
材料科学、能源科学、信息科学是现代科学技术的三大支柱。
新材料、信息和生物技术是新技术革命的主要标志。材料科学(Material Science)是以晶体学、固体物理学、热力学和动力学、冶金学和化工等学科为基础,对材料的内在规律和应用进行探讨的科学。材料工程学(Material Engineering or Technology)是根据材料应用中所需要的性能,应用已知的规律和理论,从成分、结构、性质等直到工程中的具体应用进行设计和实施的科学。
材料科学与工程(Material Science and Technology)是研究和应用材料的成分、组织、结构、制备工艺与材料性能和用途之间关系的一门学科。
1.2 材料的分类
(1)根据材料的成分、显微结构和性质划分:无机非金属材料(Inorganic Nonmetallic Materials)、有机高分子材料(Organic Polymers)、金属材料(Metals and Alloys,Metallic Materials)和复合材料(Composites)。
(2)根据材料的性质和用途划分:①工程(结构)材料(Structural Materials)。由其结构特点而决定材料的强度、硬度等力学性能能够满足工程技术结构上的需要,主要应用于工程技术方面的一类材料。包括金属材料、陶瓷材料、高聚物材料、复合材料。②功能材料(Functional Materials)。具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料;是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料;同时对改造某些传统产业,如农业、化工、建材等起着重要作用。在全球新材料领域中,功能材料约占85%。特种功能材料对高技术的发展起着重要的推动和支撑作用,是新世纪生物、能源、环保、空间等高技术领域的关键材料,成为各国新材料领域发展的重点,是各国高技术发展中的战略竞争热点。功能材料按使用性能分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料、机敏(智能)材料。
(3)纳米材料(Nano-Materials):是关于原子团簇、纳米颗粒、纳米薄膜、纳米碳管和纳米固体材料的总称。原子团簇:包含几个到数百个原子或尺度小于1nm的粒子,是介于原子与固体之间的原子集合体。纳米颗粒:尺寸大于原子团簇,小于通常的微粒,一般尺寸为1~100nm。纳米薄膜:指含有纳米粒子和原子团簇的薄膜、纳米尺寸厚度的薄膜、纳米级第二相粒子沉积镀层、纳米粒子复合涂层或多层膜。具有准三维结构与特征,性能异常。纳米固体:由纳米尺度水平的晶界、相界或位错等缺陷的核中的原子排列来获得具有新原子结构或微结构性质的固体。纳米晶体材料(有高密度缺陷核,超过50%的原子位于缺陷核内),纳米结构材料(由弹性畸变结晶区所分隔的许多缺陷核心区所组成),纳米复合材料(O-O复合:不同种类纳米粒子复合;O-2复合:纳米粒子分散到二维薄膜材料中;O-3复合:纳米粒子分散到三维固体中)。纳米微粒的基本性质:电子能级不连续(准连续能级离散化)、量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效应。由于纳米粒子具有特殊性质,导致纳米材料具有一系列特殊性质。
(4)多孔材料(Porous Materials):具有高比表面积、高吸附性、离子交换性等性质。在吸附、分离、催化、纳米技术、分子识别、石油化工、精细化工和分子电子器件等领域广泛应用。根据国际纯粹与应用化学学会(IUPAC)的分类方案,将多孔材料依孔径大小分为:微孔材料(d<2nm)、介孔材料(2nm<d<50nm)、宏孔材料(d>50nm)。
(5)材料研究的四要素:性质与性能(Property and Performance)、成分(Composi-tion)、结构(Structure)和合成与加工(Process)
2 矿物材料学简介
2.1 基本概念
矿物材料(Mineral Material):以天然矿物或岩石为主要原料,经不以提纯金属和化工原料为目的的加工、改造所获得的材料或者能直接应用其物理、化学性质的矿物或岩石。矿物材料学(Mineral Material Science):是研究矿物材料的成分、结构、性质、性能、加工制备工艺及相互间的关系和矿物材料的工程应用技术的一门综合性边缘学科。
2.2 矿物材料学的研究内容
基础理论研究:矿物材料的性质与其矿物成分、非晶质成分、化学成分、微量元素等物质组分的关系;矿物材料的性质与其所含矿物的晶体结构、晶体化学、多型、结晶度、有序度等以及岩石结构、构造等的关系;矿物材料的性质与其晶界、表面、粒度等的关系;矿物材料的性质与其使用的原料种类、矿石类型、原料产地等的关系;矿物材料的性质与其加工改造温度、压力、气氛、矿化剂、黏结剂、乳化剂、偶联剂等加工工艺条件的关系;等等。
生产技术和应用研究:矿物材料的生产工艺路线、流程、设备、最佳配方等工程技术问题,以及矿物材料的应用领域、适用条件和保存方法等。
2.3 矿物材料的分类
按矿物材料的成分、结构和性质划分(一元系、二元系……);
按矿物材料的用途划分(陶瓷、玻璃、耐火材料……);
按矿物材料的状态划分(单晶、多晶、非晶、复合、分散);
按加工工艺特点划分:天然矿物材料、深加工矿物材料、复合及合成矿物材料;
综合分类:熔浆型材料(熔注结晶、玻璃釉料纤维等)、烧结型材料(耐火材料、陶瓷等)、保温材料、胶凝型材料、其他材料(建筑石材、粉体材料等);
建议的分类方案(按材料性质和用途划分):结构矿物材料(石材、结构陶瓷、矿物增强聚合物复合材料等)、功能矿物材料(环境矿物材料、纳米矿物材料、生物医用矿物材料、特种功能矿物材料等)。
2.4 矿物材料研究的意义
非金属矿产在国民经济中具有十分重要的作用,几乎应用于国民经济的各个领域,随着科学技术的不断发展,非金属矿产的应用领域还在不断扩大。在经济发达国家,非金属矿产的总产值大于金属矿产的总产值,因此一些学者把非金属矿产值是否大于金属矿产值作为衡量一个国家是否达到工业化国家的标志,并预言21世纪将进入“新石器时代”。非金属矿产的开发应用不仅在于是否掌握有非金属矿产资源,更在于是否掌握了非金属矿产开发应用的先进技术。我国非金属矿产资源非常丰富,已探明储量的就有87种,产地6000多处。但由于我国非金属矿产开发应用技术落后,大多数非金属矿产均为粗加工制品,因此总产值很低。
开展并加强矿物材料学研究对提高我国非金属矿物资源利用水平,提高人民生活质量,推动经济和社会发展具有重要意义。
3 我国矿物材料学研究现状
3.1 非金属矿物原料深加工研究
研究主要朝着超细粉碎、精细分级、提纯改性和多品种方向发展。由于在粉碎技术、超细粉碎和分级设备研制方面取得进展,我国目前已能进行多种粒度的粉碎和分级,个别矿种的粉碎分级水平已达国际先进水平。提纯研究也取得很大进展,主要表现在:针对新矿种的提纯新工艺大量涌现,传统非金属矿提纯工艺有了改进,微细粒提纯及高纯加工工艺设备有显著发展。
总之,在理论、方法、设备、选矿工艺、选矿药剂的应用研究方面都取得了可喜的成果。我国目前已基本具备成熟的加工高纯石墨、石英、硅藻土、高岭石、膨润土、金红石等的技术。
3.2 矿物孔道或层间域的离子、分子交换、插入有关的研究
已成为矿物材料研究的热点。研究对象主要是沸石等具孔道结构的矿物、岩石和以蒙脱石为主的各种粘土矿物和石墨等层状结构矿物。研究内容包括:孔道或层间离子交换技术及其应用;粘土矿物层间“柱撑”、插层技术及其应用等。目的是利用这些矿物孔道或层间域中的物质可交换性和层间域的可膨胀性质,或通过对这些性质加以改造,使其具有新的可利用的优异特性。比如通过对粘土矿物、沸石或膨胀石墨进行改性处理,使其具有吸附不同有害组分的性能,制备可用于各种环境治理的吸附剂。这方面的研究和应用领域很广,除在污水治理方面的应用外,改性过的孔道结构和层状结构矿物岩石还广泛用作催化剂载体、肥料增效剂、防水剂、膨胀剂、防沉降剂、凝胶剂、黏结剂、增塑剂、增稠剂、悬浮剂、脱色剂、导电材料、快离子导体材料、染色剂、干燥剂、过滤剂等。
3.3 矿物表面改性技术及其应用研究
即利用物理、化学方法对矿物表面进行处理,改变其表面性质,如表面原子结构和功能团、表面疏水性、电性、化学吸附和反应特性等,达到改善或提高矿物应用性能的目的。主要是为将矿物作为填料加到各种有机聚合物中时,使矿物与聚合物间有好的相容性,同时也提高矿物填料在聚合物中的分散效果。研究内容主要包括:表面改性剂的选取,不同表面改性剂对不同矿物的作用效果,表面改性工艺,表面改性效果等。
表面改性剂分有机和无机两类:①有机表面改性剂:偶联剂(硅烷类、钛酸酯类、锆类和络合物类等)、高级脂肪酸及其盐类、聚烯烃低聚物、不饱和有机酸、有机胺;②无机表面改性剂:氧化钛、氧化钠、氧化铁、氧化锆、氧化铝、氧化硅等金属氧化物。
目前应用最广泛的表面改性剂是偶联剂,其中又以硅烷偶联剂和钛酸酯偶联剂应用最多。硅烷偶联剂对表面有活性羟基的矿物作用效果较好,对硼、铁、碳的氧化物作用效果次之,对表面不含羟基的碳酸盐、碱金属氧化物几乎无效。
钛酸酯类偶联剂对矿物适用范围广,对表面有活性羟基的石英以及表面呈中性或碱性的碳酸钙、二氧化钛、长石、角闪石等大多数非金属矿物都有较好的偶联效果。
3.4 以非金属矿物为原料的新型建材研究
非金属矿物作为建材原料是矿物材料最传统的研究领域。随着科学技术的发展,这一领域的研究水平也随之提高,新技术不断涌现,仍然是矿物材料研究的一个重要领域。
研究内容主要集中在三个方面:传统原料矿物的应用新工艺研究、新原料矿物的发现和代替传统原料矿物的研究、新型建材开发研究。
应用领域极为广泛,涉及各种涂料、耐火材料、水泥、玻璃、陶瓷制品等。
3.5 非金属矿物中有用元素综合利用研究
一般而言,非金属矿产开发利用不以提取和利用其中的某种元素为目的,这是与金属矿产最大的区别。
由于资源紧缺和一些非金属矿物、岩石具有特殊的成分、结构,综合利用非金属矿物中某些元素的研究越来越受重视。
例如,由于我国钾资源严重短缺,已成为影响我国农业发展的一大因素,而很多非金属矿物岩石又富含钾元素,因此开发利用非金属矿物岩石中的钾,引起矿物材料研究者的关注,钾长岩、含钾页岩、伊利石等富钾矿物岩石相继被进行过活化、制备成矿物钾肥。
3.6 合成矿物材料研究
合成矿物材料的研究包括两个方面:利用某种天然矿物合成另一种矿物;用化学试剂合成矿物。
主要新成果:用凹凸棒石与磷酸反应生产活性二氧化硅、用天然沸石生产超轻硅酸钙、用叶蜡石合成沸石、人工合成金刚石、人工合成皂石、人工合成黄铜矿型太阳电池材料、以石英、粉煤灰等为原料,合成氮化硅、sialon等。
3.7 环境矿物材料研究
环境矿物材料是指以天然矿物岩石为主要原料,在制备和使用过程中能与环境相容和协调或在废弃后可被环境降解或对环境有一定净化和修复功能的材料。
利用天然矿物开发研制环境矿物材料具有得天独厚的条件,因为:矿物材料原料是天然矿物,与环境有很好的相容性;矿物材料生产能耗小、成本低;矿山尾矿综合利用本身即属于环境材料学研究内容;很多矿物材料有很好的环境修复、环境净化的功能。
因此,大力开展和加强矿物环境材料研究符合矿物材料的特点,建立环境矿物材料学科分支是时代的要求,是矿物材料的重要发展方向。
根据矿物材料的特点和在环保领域的应用情况,环境矿物材料的主要发展方向是:①环境工程矿物材料——即具有环境修复(如大气、水污染治理等)、环境净化(如杀菌、消毒、过滤、分离等)和环境替代功能(如替代环境负荷大的材料)的矿物材料;②环境相容矿物材料——即与环境有很好相容协调性的矿物材料(如生态建材等)。
矿物材料用于环保目的很早以前就开始,近年来更是备受关注,新技术、新材料、新应用成果层出不穷。
矿物材料除了在传统的污水处理、大气吸附、过滤脱色等方面应用水平不断提高外,在生态建材(如低温快烧陶瓷,具有保温、隔热、吸音、调光等功能的建材等)、杀菌、消毒剂、矿山尾矿综合利用等方面有新的应用技术和产品。
3.8 纳米矿物材料研究
这是矿物材料研究新领域,与以上很多研究领域相关。例如,非金属矿物深加工中的超细粉碎,正向纳米级方向发展,已制备出一些纳米级非金属矿制品;通过柱撑,将层状结构硅酸盐矿物剥离至纳米级颗粒用于橡塑制品增强等已成为层状结构矿物改性应用的新方向;微孔、介孔矿物材料的合成、充填(自组装)也将越来越受到人们的重视,等等。
3.9 生物医用矿物材料研究
包括生物医学材料和矿物药。
生物医学材料:用于和生物系统接合,以诊断、治疗或替换生物机体中的组织、器官或增进其功能的材料。又称生物材料。
矿物药:以天然矿物为原料或原料之一制备的各种药材。
3.10 特种矿物功能材料研究
例如发现光子晶体具有蛋白石型结构、有序方石英用于制备非线性光学晶体或作为制备光子晶体的模板、改性蒙脱石用于制备复合电极,具有高稳定性、可重复性和催化性的特点、纤维状海泡石作为增强材料用于制备摩擦材料。
3.11 矿物材料的其他应用研究
矿物材料研究还包括宝石加工和改善、矿物材料的基础理论研究等诸多方面,很难简单概括。宝石加工和改善已发展成一个专门领域,不作重点介绍。
4 矿物材料的重要发展方向
4.1 重要非金属矿物在不同物理场和化学环境中的各种效应研究
金属矿产主要是以应用它的某一元素为主,而非金属矿产主要是应用它的物化性质与工艺特性。工艺特性又主要取决于非金属矿物的化学组成、结构、构造和它的光学性、电性、热学性、磁性、声学性以及溶解、吸附、催化、扩散等物化特性。
因此,非金属矿物开发应用的基础是对非金属矿物的成分、结构及各种物化性能的研究。开展非金属矿物场效应及应用基础研究,将可获得重要非金属矿物完整的物化性能参数并查清这些参数与矿物成分、结构、外界环境间的关系,可建立起非金属矿物数据库,有利于开展矿物材料设计研究等。对改进已有的选矿工艺、改进现有的以这些矿物为原料的材料制备工艺、开拓这些非金属矿物新的应用途径和新的应用领域、开展矿物材料设计研究等都有十分重要的意义。
研究内容:在电场、磁场、光波、声波等作用下,或在各种化学环境中,对非金属矿物的各种参数(即非金属矿物的物化性能)进行测试;探讨这些参数与矿物成分、结构的关系,与外界条件的关系。
目的是获取重要非金属矿物全面的物理化学参数,为其有效应用或开拓其应用新领域奠定基础。
4.2 非金属矿物表面及界面学研究
矿物表面是指矿物和真空或气体的界面,表面有很多活跃的化学性质以及与体内不同的物理性质。
矿物材料界面是指矿物材料中相与相之间的接触表面。界面对多相矿物材料的性能起着极其重要的作用,甚至控制作用。表面与界面既有区别又有联系。矿物原料的表面是矿物材料界面的基础,对矿物材料界面有重要影响。因此矿物表面和界面的研究不能截然分开。矿物材料的表面及界面问题尚未获得足够的重视。随着矿物材料学的发展和研究的深入,表面、界面及其工程学研究将会成为矿物材料学研究的一个前沿领域。比如矿物超细、超纯加工、纳米矿物材料研制等都离不开表面、界面及其工程学。研究内容利用高分辨电子显微术、衍射衬度电子显微术、扫描隧道电子显微术、X射线能谱、电子能量损失谱、同步辐射连续X射线能量色散衍射等先进的分析测试技术,对矿物、矿物材料的表面、界面的层相组成及成分变化、位错类型及分布、残余应力等进行研究,在各种微观尺度上揭示表面、界面成分、结构细节及其与材料性能间的关系;重点研究架状、层状矿物的孔道结构特征、层间结构特征、孔道与层间域的各种化学、物理学特性等;研究各种产状、各种粒级矿物粉体的表面特性及与加工工艺间的关系。重点探讨矿物的超纯、超细工艺及其对矿物粉体表面、界面特性的影响;利用对矿物表面、界面的研究成果,利用已有的表面与界面工程学手段,研究开发以层状矿物为主的一系列重要非金属矿物的深加工新工艺技术,研制出一系列具优异性能的新型矿物材料。
4.3 矿物新材料设计研究
材料设计是近年来迅速形成和发展起来的一门材料学分支学科,是材料学理论和现代计算机技术相结合的产物,是社会经济发展对材料学研究提出的要求,因为传统的“试错”法已无法制备出能满足时代要求的新材料,只有在理论指导下进行“理性设计”,即根据对材料的具体要求,对材料配方、制备工艺、材料性能和行为机理进行预测。
矿物材料设计还未有人明确提出,但与此有关的工作已有一些报道。可以预料,随着矿物材料设计的开展,矿物材料研制水平将会提高到新的层次,矿物新材料也将不断出现。这项工作应注意吸引材料化学、材料物理学和计算机专业的专家学者广泛参与。
4.4 环境矿物材料学研究
近年来,环境矿物材料虽然发展迅猛,成果丰硕,但是环境矿物材料学作为一门学科分支还没有建立,环境矿物材料、环境工程矿物材料、环境相容矿物材料、环境降解矿物材料、环境负担性评估、生命周期评估(LCA)等概念尚未被广泛接受。
今后应进一步加强环境矿物材料学研究,提高环境矿物材料的研究和应用水平,扩大环境矿物材料的应用领域,发展环境矿物材料的相关理论(生态设计、生态加工、生态评价),扩大环境矿物材料在学术界、产业界的影响。
因此,发展环境矿物材料学仍然任重而道远。
4.5 农用矿物资源的高效应用理论及应用工艺研究
我国是人口大国、农业大国,面临着用少量土地养活众多人口的巨大压力。解决的途径只能是依靠科学种田,提高产量,保持生态平衡。天然非金属矿物在这些方面均可发挥重要作用。非金属矿物在农业上的应用主要包括:生产化肥,包括氮、磷、钾肥;微量元素化肥;稀土元素化肥、有机肥等;作饲料原料或添加剂;作为药剂矿物和载体矿物用于生产农药或直接用作农药;用于土壤改良。
以上应用均已有所开展,但应用技术水平低,范围窄,远远不能满足农业发展的需要,也远远没有充分发挥非金属矿物在这方面的应用潜力。比如我国是钾肥资源紧缺的国家,对含钾矿物岩石中的不可溶钾进行开发研究,可解决我国钾肥资源紧缺的问题。但目前这方面研究仍没有大的突破,主要问题是尚未寻找到高效、低成本、环境负担小的工艺技术。
研究内容包括:含钾矿物岩石钾元素活化、提取和综合利用新工艺研究;非金属矿物中微量元素、稀土元素和其他有用元素的综合利用研究;非金属矿物岩石在水土改良、生态环境改善方面的应用研究。
4.6 纳米矿物材料研究
由于纳米材料具有独特的成分、结构、性能及制备方法,这方面的研究仍将是材料学的前沿领域。纳米矿物材料与其他纳米材料相比,研究深度、广度均需提高。因此,除其他纳米材料所面临的共性问题外,纳米矿物材料更应加强以下方面研究:纳米矿物材料制备新技术、新型纳米矿物材料研制、纳米矿物材料有关理论研究。
参考文献
廖立兵.2004.从32届国际地质大会看矿物材料研究进展.现代地质,18(4):487~492
杨瑞成,蒋成禹,初福民主编.2002.材料科学与工程导论.哈尔滨:哈尔滨工业大学出版社
韩敏芳.2004.非金属矿物材料制备与工艺.北京:化学工业出版社
周馨我.2002.功能材料学.北京:北京理工大学出版社
曹茂盛,关长斌,徐甲强.2001.纳米材料导论.哈尔滨:哈尔滨工业大学出版社
翁端.2001.环境材料学.北京:清华大学出版社
徐国财,张立德.2002.纳米复合材料.北京:化学工业出版社
漆宗能,尚文宇.2002.聚合物/层状硅酸盐纳米复合材料理论与实践.北京:化学工业出版社
廖立兵.1998.我国矿物材料研究现状及几个应该重视的发展方向.见:中国矿物岩石地球化学学会第五届全国会员大会暨第六届学术交流会论文集.北京:经济出版社
倪文等.1998.矿物材料学导论.北京:科学出版社
邱克辉.1996.材料科学概论.成都:电子科技大学出版社
風雨飘零
碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put forward.Key words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 5.3SiCP/2124Al 粉末冶金20 552 103 7.0SiCP/6061Al 粉末冶金20 496 103 5.5SiCP/7090Al 粉末冶金20 724 103 2.5SiCP/6061Al 粉末冶金40 441 125 0.7SiCP/7091Al 粉末冶金15 689 97 5.0SiCP/A356Al 搅拌铸造20 350 98 0.5SiCP/A359Al 无压浸渗30 382 125 0.4表1 碳化硅颗粒增强铝基复合材料的力学性能[1]Tab.1 Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, Vol.40, No.12材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域3.1 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为0.3m,仅重4.54kg。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。3.2 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。3.3 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。4.1 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 2.3SiCp /ZL101 20 375 101 1.64SiCp /ZL101A 20 330 100 0.5SiCp /6061 25 517 114 4.5SiCp /2124 25 565 114 5.6Al2O3 /Al-1.5Mg 20 226 95 5.9Cf /Al 26 387 112 -表2 金属基复合材料的力学性能[1]Tab.2 Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。4.2 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。4.3 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。4.4 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。5.1 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。5.2 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, Vol.40, No.12材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。5.4 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. Mater.Process.Tech.,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.
【摘要】:陶瓷与书法艺术虽是两门独立艺术,代写论文但两者自古以来就有着深厚的历史渊源,两者具有相通的艺术特征。现代条件下陶瓷与书法艺术亦交相辉映,不同的陶瓷造型
分享到: 收藏推荐 复合材料研究日新月异,其中纤维增强塑料复 合材料(FRP),亦称之为纤维增强聚合物或纤维增 强复合材料,是一种新型复合材料,主要由高性能纤
《自己动手做6集 》链接: 幼儿动手能力的培养,也属幼儿素质教育范畴。素质教育的基础是面向全体幼儿,我们应全面贯彻落实国家的教育方针,培养体、智、德、美全面发
碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说
廖立兵 1 材料科学与工程学简介 1.1 基本概念 材料(Material):人类用以制成用于生活和生产的物品、器件、构件、机器和其他产品的物质。 材料是物质,