快到腕里来
抓好基础知识,重视培养思维能力一、基础知识必须让学生切实学好 1.从学生已有的知识和经验出发进行教学 数学具有严密的逻辑性,前后知识联系紧密,某一新的知识点往往是前一部分知识的发展和延伸,同时又 是后一部分知识的基础。就课本上新知识点来说,一般包含着许多旧有知识。因此,充分利用学生已有知识和 经验学习新知识,能激发学生学习兴趣,提高学习积极性,又能形成良好的知识结构。如分数乘法中分数乘以 整数的意义没有变,仍是求几个相同加数的和的简便算法。教学时通过对原有知识的复习,学生是容易理解的 。在讲例1前我们可以提出:4个2是多少?用加法如何计算?用乘法如何计算?此时我们可以提问:整数乘法的 意义是什么?在此基础上,我们进一步提出:4个2/9是多少?用加法如何列式?用乘法又如何列式?学生列出(2/9)+(2/9)+(2/9)+(2/9),(2/9)×4。因为做分数加法时是以原来的分母做分母,分子部分是相同加数求和, 所以(2/9)×4=(2×4)/9=8/9;引导学生观察算式得出:分数乘以整数的方法是用分数的分子和整数相乘的积 作分子,分母不变。本册分数除法中分数除以整数的意义与整数除法意义相同,教学时可通过学生已有知识引 入,使学生掌握新知识。 2.通过实物、教具、学具或者实际事例使学生在理解的基础上掌握知识 小学阶段是儿童从形象思维向抽象逻辑思维发展的转变阶段,仍应重视运用实物、教具、学具进行教学, 增加感性认识,促进学生对知识的理解和掌握。如长方体和正方体是学生第一次接触的立体图形,如果空间观 念不强,在计算长方体的表面积与体积时就会混淆。教师要重视实物、教具的演示作用,教学时可分为以下三 步:一是让学生搜集大小不同、形状各异的长方体实物,引导学生观察,使学生对长方体的特征有一个初步的 感性认识。二是用“切土豆”的方式使学生认识长方体的特征,如取一个较大的土豆,切一刀切出一个平面, 切两刀出来两个面、一条棱,切三刀出来三个面、三条棱和一个顶点……切六刀就成为六个面、十二条棱、八 个顶点的长方体(注意面与面要成直角)。三是出示长方体的框架模型,让学生指出长方体的面、棱和顶点, 并画出长方体的直观图,引导学生对照长方体框架模型指出相对应的面、棱和顶点。这样才能使学生牢固掌握 长方体的特征,形成长方体的概念。 二、引导学生参与获取知识的思维过程,培养思维能力 1.计算教学要让学生参与探究法则和算理的形成 法则和算理是计算的根据,掌握法则和算理对于提高计算能力会起到重要作用。因此在计算教学时要让学 生参与探究法则和算理的形成,从而帮助学生熟练地掌握、使用算理和法则。 教学分数乘以分数的计算法则时,教师先出示例题:“一台拖拉机每小时耕地3/5公顷,3/4小时耕地多少 公顷?提问:如果把已知条件换成整数或小数应怎样计算?接着让学生根据整数和小数乘除法的算理给例题列 式,这样学生就能明白,分数乘除法的算理和计算法则是从整数和小数的计算法则中演绎过来的。然后教师出 示下列三幅图,引导学生观察、分析、思考,并演示计算过程,最后让学生讨论归纳出分数乘以分数的计算法 则,这样,学生得到的不仅仅是法则。 引导学生得出:任何物体都占有一定的空间,“物体所占空间的大小叫做物体的体积”。这样 教学,学生得到的绝不仅仅是一个文字概念。 2.几何教学让学生参与公式的推导过程 长方体的体积公式:长方体的体积=长×宽×高,学生记住这个公式并不难,但是要理解为什么计算长方 体的体积要这样计算是比较困难的,为此,我们必须让学生参与公式的推导过程。教学时可这样进行: (1)把一个土豆(或萝卜及其他容易切开的物体)切成一个长4厘米、宽3厘米、高2厘米的长方体,引导学 生观察后指导学生把这个长方体切成1立方厘米的小正方体,再让学生数一数这个长方体切成了多少个1立方厘 米的小正方体,并说明小正方体的总和就是这个长方体的体积,每个小正方体都是这个长方体的体积单位。然 后组织学生讨论:是怎么切的,长方体的体积应如何计算? (2)让学生把24块1立方厘米的正方体,摆成体积是24立方厘米的长方体,进行操作实验,然后整理出如下 的摆法: 每排块数 排数 层数 总块数(体积) 4 3 224 6 4 1 24 6 2 2 24 8 3 1 24 12 2 1 24 引导学生从上面实验得出:长方体的体积=长×宽×高。 为了全面提高教学质量,着眼于学生素质的提高,数学教学还应注重学生的操作和实践活动,在操作和实践活动中培养学生解决简单实际问题的能力。
vivian0415
小学生在数学课上学习一点有关推理的知识,是《课标》指定的一个重要的教学内容。《数学课程标准》中指出:“推理能力的发展应贯穿在整个数学学习过程中。推理是数学的基本思维方式,也是人学习和生活经常使用的思维方式。推理一般的包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发按照逻辑推理的法则证明和计算。在解决问题的过程中,合情推理用于探索思路,发现结论;演绎推理用于证明结论。在小学阶段,主要学习合情推理,即归纳推理和类比推理。而归纳推理又多表现为不完全归纳推理”。数学推理,是从数和形的角度对事物进行归纳类比、判断、证明的过程,它是数学发现的重要途径,也是帮助学生理解数学抽象性的有效工具。在小学数学教学中,如能重视强化学生的推理意识,培养学生的推理能力,既有利于帮助学生形成言必有据一丝不苟的良好习惯,也有利于学生掌握科学的思维方法,促进已有知识、经验、技能的有效迁移,提高学生的学习效率。在小学数学教学中如何培养小学生的推理能力?下面谈谈我在教学中的一些体会。一、在小学数学教学中,要让学生说理,养成学生推理有据的好习惯语言是思维的外壳,组织数学语言的过程,也是教给学生如何判断的推理过程,而与语言最密不可分的是演绎推理,小学生解题时大多是不自觉地运用了演绎推理,因此教学中教师必须追问为什么,要求学生会想、会说推理依据,养成推理有据的习惯,例如:14和15是不是互质数时一定要学生这样回答:公因数只有1的两个数叫做互质数,因为14和15 只有公因数1,所以14和15是互质数。这样运用演绎推理方法,经常进行说理训练,有利于培养学生的演绎推理能力。二、教给学生正确的推理方法小学生学习模仿性大,如何推理、需要提出范例,然后才有可能让学生学会推理。小学数学中不少数学结论的得出是运用了归纳推理,教学时就要有意识地结合数学内容为学生示范如何进行正确的推理。例如,在教乘法交换律时,我是这样引导学生学习的,计算多组算式:5×3=15、3×5=15所以5×3=3×5还有:15×4=4×15引导学生观察、分析,找出这些算式的共同点:左、右两边因数相同,交换因数的位置积不变,归纳出乘法交换律。三、要把培养学生的推理能力贯穿在日常的数学教学中能力的发展决不等同于知识技能的获得。知识可以用“懂”来描述,技能可以用“会”来描述,都可以立竿见影。能力的形成是一个缓慢的过程,有其自身的特点和规律,它不是学生“懂”了,也不是学生“会”了,而是学生自己“悟”出了道理、规律和思考方法等。这种“悟”只有在数学活动中才能得以进行,因此教学活动必须给学生提供探索交流的空间,组织、引导学生经历观察、实验、猜想、验证等数学活动过程,并把推理能力的培养有机地结合在这一过程中。例如;在讲《分数的初步认识》这一课时时,学生在认识了二分之一,三分之一,四分之一……这些分数后,提出问题:二分之一和三分之一哪个分数大?先让学生说出自己的的猜想,接着验证:取两张相同的纸片,一个折出二分之一,另一个折出三分之一,再比较大小,一目了然,二分之一大于三分之一。接着再推理三分之一和四分之一哪个分数大?从而得出结论:分子为一的分数,分母小的分数大。这样再完成教学任务的同时,不知不觉中培养了学生的推理能力。四、要把推理能力的培养植根于学生熟悉的生活实践中要想促进学生推理能力更好地发展,除了书本知识外,还有很多活动能有效地发展学生的推理能力,例如:①大树与影子有什么关系,成什么比例,计算糖水里含糖量可能用什么比例解答,在解答之前,要用变化规律进行猜想,得到合情推理,再进行验证。②用举反例的方式证明结论不成立,如给小明家打电话,若多次接通但无人接听,则由此得出“小明不在家”的判断。③开展一些有趣的游戏或活动,培养学生的推理能力,如分圆比赛,就能得出“圆的周长与∏有关系”这一结论。五、把推理能力的培养落实到《数学课程标准》的四个内容领域之中“数与代数”、“空间与图形”、“统计与概率”、“实践与综合运用”这四个领域的内容都为发展学生的推理能力提供了很好的平台。1、在“数与代数”中培养学生的推理能力在“数与代数”的教学中.计算要依据一定的“规则”公式、法则、推理律等.因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:学习20以内进位加法时,让学生自主探索8+7=?,孩子们想出很多方法算出得数,有一个孩子说,我知道10+7=17,那么8+7=15,这
天津的明
曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r²,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r²=9²∏+6²∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r²=15²∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。 希望能够帮助你
白骨精6699
巧 分 苹 果 在四年级的奥数课上,有一个学习专题是“年龄问题”。课后老师出了一道思考题给我们,我苦思冥想了好久,都没有解出答案。我又仔细地研究了有关“年龄问题”和“逆推问题”的解题思路,终于茅塞顿开,有了答案。题目是这样的:三个兄弟分别收到了奶奶给他们寄来的苹果。每人收到的苹果个数是他们三年前的岁数。三弟是个聪明的孩子,他向两个哥哥提出了一个交换苹果的建议:他说:“我只要留一半苹果,还有一半送给你们对方;然后要二哥也留一半,把另一半让我和大哥平分;最后也要大哥留下一半,把另一半让我和二哥平分。”两个哥哥没有怀疑这建议有什么不妥当的地方,都同意三弟的要求。结果大家的苹果数都变成相等了,每人各分到8只苹果。问:三兄弟每个人的年龄是多少岁?我的解题思路是这样的,从最终的结果向前推断,即:最终的交换结果是每人得到了8个苹果,所以大哥在分出自己的苹果前是16只苹果,而二哥和三弟各有4只苹果。二哥在分出自己的苹果前有8只苹果,大哥有14只苹果,三弟有2只苹果。由此可知,三弟在分出苹果前有4只苹果,二哥有7只苹果,大哥有13只苹果。最后一定要注意题目中“每人收到的苹果个数是他们三年前的岁数”这句话,再分别加上3,所以现在三弟是7岁,二哥是10岁,大哥是16岁。怎么样,数学中的趣味还是很多的吧!
在小学数学教学中,要想使学生的创新能力得到培养和提高,其前提和基础是要充分发挥学生的 发散思维 ,鼓励他们从不同的角度进行观察和实践,探索多种解题思路,激发
《提高一年级小学生口算能力的研究》结题报告一、课题的提出口算也称心算,是不借助计算工具,直接通过思维算出结果的一种计算方法。它对于提高学生的注意力、记忆力,提高
计算是小学数学中一项重要的基础知识,学生的计算能力强弱与否,直接关系到学习数学的兴趣。小学生计算能力的高低,主要表现在计算得是否正确、迅速和灵活,也就是平常所说
小学数学计算教学策略论文 在日常学习和工作生活中,大家都经常接触到论文吧,通过论文写作可以培养我们独立思考和创新的能力。如何写一篇有思想、有文采的论文呢?下面是
我根据以上的原因,制定了相应的措施,以对症下药,解决实际问题。1、兴趣引路,提升计算欲望要培养学生的计算能力,教师首先要激发学生的计算兴趣,使学生乐于计算。我以