艺术边上观望
会的,老师对数据都很敏感的,如果要改,改的东西太多。还是要严谨的对待论文啊。硕士论文修改实证结果会被发现。首先,硕士论文需要经过导师审核,预答辩,外审,答辩等多个环节,在这些环节中可能就会被参与的专家发现你的修改情况。其次,如果这些阶段都没有发现,那么恭喜你,你给自己埋了一个雷,如果之后被发现就是学术造假,追回学位。
崽崽龙08
研究生论文数据造假会被发现如下:
造假被查出来的大都是生物,材料之类的领域,然而计算机(特指深度学习)才是重灾区,造假容易复现困难随机性强,别说二流论文,顶会论文都没有参考价值。所以除了廉价劳动力够多的大研究室,其他人论文的数量基本取决于不要脸的程度。这也是我再也不想碰ML领域会议的原因。
比如组合优化的性能曲线,所有人都知道是个指数曲线,你搞个新的剪枝条件,水一点咱不求正确解,毕竟大部分应用下并不需要正确解,切掉1%的解换来50%的速度是很合理的思想。什么性能改进不够大?5次实验最好的跟最坏的比啊,还不行用C+SIMD写的跟Java的比啊,再不行说实话你随便编个数也没人看得出来,毕竟理论上行得通,行不通那是他程序写的不好。
要说上面想法毕竟真的,顶多偷懒不想做实验,到了ML领域之后那就是明明白白的造假了。数据集精选到位,想法再烂几百个实验里只要能挑出一个能看的,那就是顶会苗子——normalization + adaptive learning rate + manifold constraint审稿人怎么知道哪个项work?
再进一步,古典ML还要你写程序做实验,到了DL里这些全都可以省了,完全可以画图编数据发顶会一步到位。毕竟就是个人肉Architecture Search,随便找个domain画个图,编个比SOTA高一点的精度,一篇论文就诞生了。需要公开数据集和代码?某国际大厂研究院实习生发的顶会论文也带代码,
最近有些研究都开始明目张胆的把validation dataset的distribution当制约条件,甚至直接sample数据进train loop,好家伙演都不演骑头上侮辱人智商呢是不?人家都把造假上升为novel approach了,就别提被发现了,那是伟大的研究懂不懂。
本科毕业论文问卷数据伪造会有发现的风险,属于学术不端行为,详细介绍如下: 一、学术数据伪造: 1、在造假的基础上得出的研究数据,无论有多合理多缜密,都免不了被发
硕士论文一般是由学校保存,只有优秀的论文才能被知网等网络数据库收录。但是在论文答辩之前要经过审核的,还是要注意一些为好。对论文的认真程度,要看你的答辩组的老师态
一般适用于论文内容较完整,逻辑清晰,但是英文写作不好或不地道的学者;或是投稿后因语言问题二次返修的学者。具体服务包含:语法、标点符号、拼写、矫正不地道的词汇短语
一般不会,但是最好还是自己做数据。 没必要为了证明你的命题而造假数据,如果真实数据证明不了你的命题就大大方方把结论和下一步猜想写出来,科学本来就是探究性的,没人
通过查询相关资料显示:要,数据造假是学术不端,毫无争议,非常不提倡。但是很多学生为了图方便,拿着别人的数据改改就变成自己的,还寄希望于导师不会发现,有这个猜测的