• 回答数

    7

  • 浏览数

    140

光影碎片
首页 > 学术期刊 > 高温合金钻削加工特性研究论文

7个回答 默认排序
  • 默认排序
  • 按时间排序

小小桐桐

已采纳

对于镍合金、钛合金以及钴合金等高温合金来说,耐高温的特性直接提高了加工难度。铜在加工时的重切削力和产生的高温共同作用下,使刀具产生碎片或变形,进而导致刀具断裂。此外,大多数此类合金都会迅速产生加工硬化现象。工件在加工时产生的硬化表面会导致刀具切削刃在切深处产生缺口,并使工件产生不良应力,破坏加工零件的几何精度。加工钛合金同样面临这些问题。尽管加工钛合金所需的切削力只比钢稍微高一点,但由于钛合金的特殊性能,,使加工它比加工同等硬度的钢要困难得多主要有以下几点:1、钛合金和其它高温合金一样,也容易产生加工硬化;2、钛基合金导热能力很低,使加工时产生的所有热量几乎都集中在切削刃上;3、钛合金的弹性模量很小,尤其是在重切削力时,使工件容易受刀具偏移和震动的影响;4、严重的是钛合金比其它高温合金化学性能都要活泼,这一点使钛合金工件在加工时很容易与刀具发生化学反应,从而导致工件产生缩孔。

220 评论

白兔糖vov

GH4169合金是一种变形高温合金,用立方氮化硼或者YG8刀具加工。

GH4169沉淀强化镍基高温合金

GH4169特性及应用领域概述:

该合金在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能良好。能够制造各种形状复杂的零部件,在宇航、核能、石油工业及挤压模具中,在上述温度范围内获得了极为广泛的应用。

GH4169工艺性能与要求:

1、因GH4169合金中铌含量高,合金中的铌偏析程度与治金工艺直接有关。2、为避免钢锭中的元素偏析过重,采用的钢锭直径不大于508mm。3、经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120℃。4、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。5、合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接

350 评论

我们家懒格格

高温合金主要牌号:

固溶强化型铁基合金:

GH1015、GH1035、GH1040、GH1131、GH1140

时效硬化性铁基合金:

GH2018、GH2036、GH2038、GH2130、GH2132、GH2135、GH2136、GH2302、GH2696

固溶强化型镍基合金:

GH3030、GH3039、GH3044、GH3028、GH3128、GH3536、GH605,GH600

时效硬化型镍基合金:

GH4033、GH4037、GH4043、GH4049、GH4133、GH4133B、GH4169、GH4145、GH4090

国外的高温合金叫包含inconel系列 incoloy系列 Hastelloy系列

成分和性能

镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的 A3B型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗yang化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗yang化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。

104 评论

傻喵喵123

一般推荐:YG6X、YD15、YS2T、YL1Q1等一、GH4169(Inconel718)高温合金的加工难点GH4169(Inconel718)高温合金合金化程度高,热导性能极差,切削温度高,切削力大,加工硬化现象严重,硬质点多,加工效率低,刀具磨损严重,切削加工成本较高。如果使用硬质合金刀具对其进行加工,会导致刀具磨损严重,加工表面质量难以保证,且易粘附,换刀频率高。因此使用CBN刀具是一个更好的选择,可以提高生产率,减少刀具磨损,提高零件表面质量。二、CBN刀具加工GH4169(Inconel718)高温合金的优势1、CBN刀具硬度高,无惧高温合金硬化现象。CBN刀具的硬度很高,一般约8000~9000HV,因此即使加工高硬度的高温合金,CBN刀具也能轻松实现高速切削。2、CBN刀具耐热性好,可承受较高切削温度。CBN刀具的耐热性为144~1500℃,虽然在高温合金切削中会产生大量的切削热,可能高达1000℃下左右,但依然不会影响CBN刀具的正常使用。3、CBN刀具耐磨性好,具有很好的化学稳定性。高温合金中含有很多碳化物、氮化物、硼化物及金属间化合物,构成细微的硬质点,会造成刀具磨损。而CBN刀具具有极强的耐磨性,大大减少了换刀次数,提高了加工效率。三、CBN刀具加工GH4169(Inconel718)高温合金工件案例虽然GH4169(Inconel718)高温合金的切削加工性能极差,是塑性难切削材料中较难切削的,但是只要选择合适的加工刀具,选择合理的切削参数,也是可以顺利完成切削加工的。GH4169 外圆车削试验1 试验条件 试件材料为GH4169 高温合金,采用圆棒试件,直径30mm,长50mm。试验机床为CK7525 数控车床,最大主轴转速为3000r/min,冷却方式采用乳化液冷却。刀具选用SANDVIK 公司生产的PVD-TiAlN涂层硬质合金刀片。车削试验现场如图1所示。表面粗糙度采用TR240 表面粗糙度测试仪进行测量,在已加工表面上共测量5 个点,然后求平均值。表面形貌采用VECOO 三维形貌测试仪进行测量。2 试验方案 采用3因素3水平正交试验的方法进行GH4169 高温合金的外圆车削试验。每一个试件进行切削试验之前,都采用同样的切削参数去除0.5mm 的厚度,以消除不均匀的表面,保证试件的一致性。试验方案及表面粗糙度测试结果如表1所示。 试验结果与讨论1 表面粗糙度经验公式的建立 在机床特征和刀具特征确定的前提下,基于正交试验方法获得的表面粗糙度的经验模型一般采用如下形式[13]: 其中,C 为取决于被加工材料和切削条件的系数,a1,a2,a3分别为指数。根据表1表面粗糙度的测试结果,采用多元线性回归法进行拟合,最终得到表面粗糙度的经验公式为: 运用极差分析法可以确定表面粗糙度影响因素的主次关系,极差统计如表2所示。极差最大的列,对应因素对表面粗糙度的影响最大,即进给量是影响高温合金车削加工中表面粗糙度的最主要因素,其次是切削速度,切削深度的影响最小。 nextpage2 切削参数对表面粗糙度的影响规律 根据表2做出各切削参数对表面粗糙度的直观分析图(图2)。由此可以分析切削参数对表面粗糙度的影响规律。 如图2(a)所示,随着切削速度增加,表面粗糙度减小。切削速度的变化会引起切屑形成过程的变化,而表面粗糙度在很大程度上与切屑形成过程,尤其是与积屑瘤现象密切相关。随着切屑的形成,刀具前面切削的压力增加,由于内外摩擦力的作用,切屑下层出现速度梯度,上下层金属出现相对移动,同时产生大量的热,在刀具前面形成一个“停滞区”,为形成积屑瘤创造了条件。产生的刀瘤会使加工表面粗糙度恶化。随着切削速度增大,切削区温度提高,使金属韧性增加,形成“停滞区”的条件就变坏,在切削热的高温作用下,金属边层软化,使摩擦系数降低,刀瘤软化并且有很大的塑性,以至于流过的切屑将它与“停滞区”的一部分金属分子带走,于是刀瘤变小了,表面粗糙度进一步降低。 如图2(b)所示,随着进给量增加,表面粗糙度急剧增加。这是因为随着进给量增加,切削厚度增加,表面金属塑性变形的体积增加,大量变形的金属从副刀刃方向排出,表面粗糙度因而迅速上升。 如图2(c)所示,随着切削深度增加,表面粗糙度变化很小,从0.898µm 增加到1.033µm。一般来图1 车削试验现场说,切削深度对加工表面粗糙度的影响不大。切削深度对加工表面质量的影响主要是由其对切削力的影响而引起的,增大切削深度会使切削力随之增大,这样使切屑与前刀面的挤压更严重,反应更强烈,会使切屑很容易粘结在刀具的前刀面上,形成积屑瘤。另外,切削深度较大也会引起较大加工表面变形及较大的振动等,因此随着切削深度的增大,加工表面粗糙度将随之增大。3 切削参数灵敏度分析 根据文献[12] 中相对灵敏度的计算方法,计算得到切削速度、进给量和切削深度的相对灵敏度分别为-0.623、1.303 和0.083。分析可知,表面粗糙度对进给量的变化最为敏感,对切削速度的变化敏感次之,对切削深度的变化不敏感。 根据文献[12] 中绝对灵敏度的计算方法,获得各切削参数的绝对灵敏度公式如式(3)所示。 图3为根据式(3)绘制的表面粗糙度对各切削参数的绝对灵敏度曲线。nextpage 如图3(a)所示,随着切削速度的增加,表面粗糙度对切削速度的绝对灵敏度值减小。在切削速度[80m/min,95m/min] 区间的绝对灵敏度值小于[65m/min,80m/min] 区间,即切削速度在[80m/min,95m/min] 区间时,表面粗糙度的变化相对平缓,切削速度在[65m/min,80m/min] 区间时,表面粗糙度的变化相对陡峭。 如图3(b)所示,随着进给量的增加,表面粗糙度对进给量的绝对灵敏度值增大。在进给量[0.1mm/r,0.15mm/r] 区间的绝对灵敏度值小于[0.15mm/r,0.2mm/r] 区间,即进给量在[0.1mm/r,0.15mm/r] 区间时,表面粗糙度的变化相对平缓,进给量在[0.15mm/r,0.2mm/r] 区间时,表面粗糙度的变化相对陡峭。 如图3(c)所示,随着切削深度的增加,表面粗糙度对切削深度的绝对灵敏度值减小。在切削深度[0.3mm,0.4mm] 区间的绝对灵敏度值小于[0.2mm,0.3mm] 区间,即切削深度在[0.3mm,0.4mm] 时,表面粗糙度的变化相对平缓,切削深度在[0.2mm,0.3mm] 区间时,表面粗糙度的变化相对陡峭。4 切削参数优选 根据相对灵敏度,以及绝对灵敏度和表面粗糙度随切削参数的变化规律综合优选。优选的参数区间首先保证表面粗糙度越小越好,其次绝对灵敏度尽量变化平缓。由于表面粗糙度对进给量的变化最敏感,所以进给量要重点优选。随着进给量的增加,表面粗糙度增加,绝对灵敏度也增加,所以进给量优选低的区间[0.1mm/r,0.15mm/r],这个区间可以保障表面粗糙度在0.76µm 以内,并且变化比较平缓。表面粗糙度对切削速度的变化较敏感,随着切削速度的增加,表面粗糙度减小,绝对灵敏度也减小,所以切削速度优选高的区间[80m/min,95m/min],这个区间可以保障表面粗糙度在0.95µm 以内,并且变化比较平缓。而表面粗糙度对切削深度的变化不敏感,切削深度对表面粗糙度的影响也比较小,原则上试验参数范围内都可以选择。具体可根据加工工序来选择,粗加工时可以选较大切深,而精加工时取较小值以提高加工精度,降低表面粗糙度。5 表面形貌分析 高温合金车削加工的三维表面形貌如图4 所示,车削后工件表面产生波浪状的表面纹理,它是车刀与工件相对移动后最终形成的表面形貌,清晰地反映了车刀切削刃的运动轨迹。图4(a)所示的已加工表面,表面粗糙度为0.406µm,最大波峰高度为1.76µm,最大波谷深度为1.39µm;图4(b)所示的已加工表面,表面粗糙度为0.772µm,最大波峰高度为2.79µm,最大波谷深度为1.90µm,从中可以看出,进给量从0.1mm/r 增加到0.15mm/r,已加工表面的最大波峰高度和最大波谷深度均显著增大,表面粗糙度显著恶化,所以在车削加工中进给量的变化对表面粗糙度有至关重要的影响。工件表面完全是由刀具切削刃直接切出来的,复制了刀具切削刃形状,刀具进给运动的轨迹清晰可见,每条均匀间隔突起的棱脊在进给方向的位移量等于每转进给量。工件表面上分布有沿切削运动方向的细小沟槽,这种沟槽一方面是刀具表面上硬质点对工件加工表面的犁耕,另一方面是刀具磨损表面上粗糙沟槽在工件加工表面上的复制。从图中可以看出,棱脊不是一条线,而是变成很多磨损沟槽组成的犁垄带,不仅影响加工表面粗糙度,还反作用于刀具表面,使之产生附加沟槽,加剧刀具磨损。在每一转进给量范围内,靠近刀尖部位的工件表面较为光滑平整,越靠近副后刀面和副切削刃尾部刀具与工件分离处,工件加工表面越粗糙,说明刀具磨损带内磨损状态分布不均匀。刀尖部位紧压工件过渡表面,接触稳定,磨损过程稳定,加工痕迹较平整;副后刀面上,由于副后刀面和切屑锯齿状边缘的影响,离刀尖越远,刀具与工件压紧程度越差,加剧了刀具副后刀面的磨损[14]。结束语 通过对GH4169 高温合金车削表面粗糙度及表面形貌的研究,得出如下结论。 (1)进给量是影响高温合金车削加工中表面粗糙度的最主要因素,其次是切削速度和切削深度。(2)表面粗糙度随切削速度的增加而减小,随进给量和切削深度的增加而增大。(3)表面粗糙度对进给量的变化最为敏感,对切削速度的变化敏感次之,对切削深度的变化不敏感。(4)切削速度优选80~95m/min的范围,进给量优选0.1~0.15mm/r 的范围,可以保障表面粗糙度在0.95µm 以内[4]。

127 评论

吃生鱼片的猫

镍基高温合金系列材料,被广泛地应用在航空 航天 石油 化工 核能 冶金海洋船舶 环保 机械 电子等领域。不同的部件选材不同,关于原材料介绍部分欢迎咨询了解上海勃西曼特殊钢。进口高温合金牌号:哈氏系列C-276、C-22、C-2000、C-4、B-3、G-30、ALLOY59、Inconel600、Inconel601、Inconel625、Inconel718、Inconel X750、Incoloy800、Incoloy800H、Incoloy800HT、Incoloy825、Monel400、Monel k500、Alloy20、Alloy 28 、Alloy31、RA330、RA333、N02201、NIMONIC系列、MP35N、ELGILOY、HAYNES HR-120 / HR-160 、HAYNES 556/242/230等。纯 镍:NI201、NI200等。变形高温合金牌号:GH1015、GH1016、GH1035、GH1040、GH1131、GH1139、GH1140、GH1180、GH1333、GH2132、GH2136、GH2696、GH2747、GH2018、GH2026、GH2036、GH2038、GH2130、GH2135、GH2136、GH2150、GH2302、GH2328、GH2706、GH2761、GH2787、GH2901、GH2903、GH2907、GH2909、GH2984、GH3128、GH3039、GH3030、GH3044、GH3536、GH3230、GH3170、GH3181、GH3600、GH3625、GH3652、GH4049、GH4090、GH4099、GH4105、GH4141、GH4145、GH4169、GH4648、GH4738、GH4202、GH4080A、GH4093、GH4098、GH4133、GH4137、GH4163、GH4199、GH4220、GH4413、GH4500、GH4586、 GH4698、 GH4708、 GH4710、 GH4720Li、GH4742、GH5605、GH5188、GH6159、GH6783等。铸造高温合金牌号:K213 、K403 、K417、K417G、 K418 、K418B、 K423、 K424、 K438 、K465、K4169、K4163、K644、MAR-M246、MA956等 。DZ404、DZ405、DZ406、DZ408 、DZ411、 DZ417G、 DZ422 、DZ422B、DZ438G、DZ468、DZ4125、DZ4125L、DZ4951、DZ640M等。DD402、DD403、DD404、DD406、DD407、DD408、DD426、DD432、DD499等。耐蚀合金牌号:NS111、NS112、NS113、NS142、 NS143、 NS312、 NS313、NS315、 NS321、 NS322、 NS333、 NS334、 NS335、NS336 等。特种不锈钢牌号:2205、2507、2520、317L、310S、904L、254smo、253ma、316lmod、725ln尿素钢、AL-6XN、1.4529、Nitronic50、Nitronic60等。精密合金牌号:1J22、1j31、1j34、1j36、1j38、1j46、1J50、1J79、1j85、2j04、2j07 、2j09、 2j10 、2j11、 2j12、2J85、3j01、3j21、3j33、3j53、4j9、4j28、4J29、4J32、4j33、4j34、4J36/Invar、4j39、4j40、4J42、4j50、4j52、5j11、5j16、6j20、6J22、6j23、6J40康铜、Hiperco27、Hiperco50等。主要规格:无缝管、钢板、圆钢、锻件、法兰、圆环、焊管、钢带、直条、丝材及配套焊材、圆饼、扁钢、六角棒、大小头、弯头、三通、加工件、螺栓螺母、紧固件篇幅有限,如需更多更详细介绍,欢迎咨询了解。

301 评论

太仓站沈

超精密加工与超高速加工技术一、技术概述超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m/min,铸铁为1500m/min,超耐热镍合金达300m/min,钛合金达150-1000m/min,纤维增强塑料为2000-9000m/min。各种切削工艺的切速范围为:车削700-7000m/min,铣削300-6000m/min,钻削200-1100m/min,磨削250m/s以上等等。超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。超精密加工当前是指被加工零件的尺寸精度高于0.1μ m,表面粗糙度Ra小于0.025μ m,以及所用机床定位精度的分辨率和重复性高于0.01μ m的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。超精密加工技术主要包括:超精密加工的机理研究,超精密加工的设备制造技术研究,超精密加工工具及刃磨技术研究,超精密测量技术和误差补偿技术研究,超精密加工工作环境条件研究。二、现状及国内外发展趋势1.超高速加工工业发达国家对超高速加工的研究起步早,水平高。在此项技术中,处于领先地位的国家主要有德国、日本、美国、意大利等。在超高速加工技术中,超硬材料工具是实现超高速加工的前提和先决条件,超高速切削磨削技术是现代超高速加工的工艺方法,而高速数控机床和加工中心则是实现超高速加工的关键设备。目前,刀具材料已从碳素钢和合金工具钢,经高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。切削速度亦随着刀具材料创新而从以前的12m/min提高到1200m/min以上。砂轮材料过去主要是采用刚玉系、碳化硅系等,美国G.E公司50年代首先在金刚石人工合成方面取得成功,60年代又首先研制成功CBN。90年代陶瓷或树脂结合剂CBN砂轮、金刚石砂轮线速度可达125m/s,有的可达150m/s,而单层电镀CBN砂轮可达250m/s。因此有人认为,随着新刀具(磨具)材料的不断发展,每隔十年切削速度要提高一倍,亚音速乃至超声速加工的出现不会太遥远了。在超高速切削技术方面,1976年美国的Vought公司研制了一台超高速铣床,最高转速达到了20000rpm。特别引人注目的是,联邦德国Darmstadt工业大学生产工程与机床研究所(PTW)从1978年开始系统地进行超高速切削机理研究,对各种金属和非金属材料进行高速切削试验,联邦德国组织了几十家企业并提供了2000多万马克支持该项研究工作,自八十年代中后期以来,商品化的超高速切削机床不断出现,超高速机床从单一的超高速铣床发展成为超高速车铣床、钻铣床乃至各种高速加工中心等。瑞士、英国、日本也相继推出自己的超高速机床。日本日立精机的HG400III型加工中心主轴最高转速达36000-40000r/min,工作台快速移动速度为36~40m/min。采用直线电机的美国Ingersoll公司的HVM800型高速加工中心进给移动速度为60m/min。在高速和超高速磨削技术方面,人们开发了高速、超高速磨削、深切缓进给磨削、深切快进给磨削(即HEDG)、多片砂轮和多砂轮架磨削等许多高速高效率磨削,这些高速高效率磨削技术在近20年来得到长足的发展及应用。德国Guehring Automation公司1983年制造出了当时世界第一台最具威力的60kw强力CBN砂轮磨床,Vs达到140-160m/s。德国阿享工业大学、Bremen大学在高效深磨的研究方面取得了世界公认的高水平成果,并积极在铝合金、钛合金、因康镍合金等难加工材料方面进行高效深磨的研究。德国Bosch公司应用CBN砂轮高速磨削加工齿轮齿形,采用电镀CBN砂轮超高速磨削代替原须经滚齿及剃齿加工的工艺,加工16MnCr5材料的齿轮齿形,Vs=155m/s,其Q达到811mm3/mm.s,德国Kapp公司应用高速深磨加工泵类零件深槽,工件材料为100Cr6轴承钢,采用电镀CBN砂轮,Vs达到300m/s,其Q`=140mm3/mm.s,磨削加工中,可将淬火后的叶片泵转子10个一次装夹,一次磨出转子槽,磨削时工件进给速度为1.2m/min,平均每个转子加工工时只需10秒钟,槽宽精度可保证在2μ m,一个砂轮可加工1300个工件。目前日本工业实用磨削速度已达200m/s,美国Conneticut大学磨削研究中心,1996年其无心外圆高速磨床上,最高砂轮磨削速度达250m/s。近年来,我国在高速超高速加工的各关键领域如大功率高速主轴单元、高加减速直线进给电机、陶瓷滚动轴承等方面也进行了较多的研究,但总体水平同国外尚有较大差距,必须急起直追。2.超精密加工超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μ m),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件?2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。该机床与该实验室1984年研制的LODTM大型超精密车床一起仍是现在世界上公认的技术水平最高、精度最高的大型金刚石超精密车床。在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μ m ,表面粗糙度Ra<10nm。日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,前者是以民品应用为主要对象,后者则是以发展国防尖端技术为主要目标。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。我国的超精密加工技术在70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超精密加工技术研究的主要单位之一,研制出了多种不同类型的超精密机床、部件和相关的高精度测试仪器等,如精度达0.025μ m的精密轴承、JCS-027超精密车床、JCS-031超精密铣床、JCS-035超精密车床、超精密车床数控系统、复印机感光鼓加工机床、红外大功率激光反射镜、超精密振动-位移测微仪等,达到了国内领先、国际先进水平。航空航天工业部三零三所在超精密主轴、花岗岩坐标测量机等方面进行了深入研究及产品生产。哈尔滨工业大学在金刚石超精密切削、金刚石刀具晶体定向和刃磨、金刚石微粉砂轮电解在线修整技术等方面进行了卓有成效的研究。清华大学在集成电路超精密加工设备、磁盘加工及检测设备、微位移工作台、超精密砂带磨削和研抛、金刚石微粉砂轮超精密磨削、非圆截面超精密切削等方面进行了深入研究,并有相应产品问世。此外中科院长春光学精密机械研究所、华中理工大学、沈阳第一机床厂、成都工具研究所、国防科技大学等都进行了这一领域的研究,成绩显著。但总的来说,我国在超精密加工的效率、精度可靠性,特别是规格(大尺寸)和技术配套性方面与国外比,与生产实际要求比,还有相当大的差距。超精密加工技术发展趋势是:向更高精度、更高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展;不断探讨适合于超精密加工的新原理、新方法、新材料。21世纪初十年将是超精密加工技术达到和完成纳米加工技术的关键十年。三、“十五”目标及主要研究内容1.目标超高速加工到2005年基本实现工业应用,主轴最高转速达15000r/min,进给速度达40-60m/min,砂轮磨削速度达100-150m/s;超精密加工基本实现亚微米级加工,加强纳米级加工技术应用研究,达到国际九十年代初期水平。2.主要研究内容(1)超高速切削、磨削机理研究。对超高速切削和磨削加工过程、各种切削磨削现象、各种被加工材料和各种刀具磨具材料的超高速切削磨削性能以及超高速切削磨削的工艺参数优化等进行系统研究。(2)超高速主轴单元制造技术研究。主轴材料、结构、轴承的研究与开发;主轴系统动态特性及热态性研究;柔性主轴及其轴承的弹性支承技术研究;主轴系统的润滑与冷却技术研究;主轴的多目标优化设计技术、虚拟设计技术研究;主轴换刀技术研究。(3)超高速进给单元制造技术研究。高速位置芯片环的研制;精密交流伺服系统及电机的研究;系统惯量与伺服电机参数匹配关系的研究;机械传动链静、动刚度研究;加减速控制技术研究;精密滚珠丝杠副及大导程丝杠副的研制等。(4)超高速加工用刀具磨具及材料研究。研究开发各种超高速加工(包括难加工材料)用刀具磨具材料及制备技术,使刀具的切削速度达到国外工业发达国家90年代末的水平,磨具的磨削速度达到150m/s以上。(5)超高速加工测试技术研究。对超高速加工机床主轴单元、进给单元系统和机床支承及辅助单元系统等功能部位和驱动控制系统的监控技术,对超高速加工用刀具磨具的磨损和破损、磨具的修整等状态以及超高速加工过程中工件加工精度、加工表面质量等在线监控技术进行研究。(6)超精密加工的加工机理研究。“进化加工”及“超越性加工”机理研究;微观表面完整性研究;在超精密范畴内的对各种材料(包括被加工材料和刀具磨具材料)的加工过程、现象、性能以及工艺参数进行提示性研究。(7)超精密加工设备制造技术研究。纳米级超精密车床工程化研究;超精密磨床研究;关键基础件,如轴系、导轨副、数控伺服系统、微位移装置等研究;超精密机床总成制造技术研究。(8)超精密加工刀具、磨具及刃磨技术研究。金刚石刀具及刃磨技术、金刚石微粉砂轮及其修整技术研究。(9)精密测量技术及误差补偿技术研究。纳米级基准与传递系统建立;纳米级测量仪器研究;空间误差补偿技术研究;测量集成技术研究。(10)超精密加工工作环境条件研究。超精密测量、控温系统、消振技术研究;超精密净化设备,新型特种排屑装置及相关技术的研究希望能帮到你.哈哈!本人就是从事精密机械生产,模具加工的,转载地址:来源:

174 评论

新月之垣

GH4169沉淀强化镍基高温合金,镍基合金材料,用硬质合金刀具加工

GH4169特性及应用领域概述(勃西曼特钢摘录):

该合金在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能良好。能够制造各种形状复杂的零部件,在宇航、核能、石油工业及挤压模具中,在上述温度范围内获得了极为广泛的应用。

GH4169相近牌号:

GH169、Inconel 718、UNS NO7718(美国)、NC19FeNb(法国)、W.Nr.2.4668(德国)

GH4169其他军标标准:

GJB 2611A 航空用高温合金冷拉棒材规范

GJB 2612 焊接用高温合金冷拉丝材规范

GJB3318A 航空用高温合金冷轧带材规范

GJB 3527 弹簧用高温合金冷拉丝材规范

GJB 5280 航空发动机用高温合金盘形锻件规范

GJB 5301 航空发动机用高温合金环形件规范

GJB 712A 航天用GH4169高温合金锻制圆饼规范

HB/Z 140 航空用高温合金热处理工艺

Q/5B 4040优质GH4169合金锻件

Q/3B 4048 (Q/5B 4029、抚高新13、协上五高22、C3S280)优质GH4169合金棒材

Q/3B 4056 (Q/5B 4009、抚高新11、协上五高24)高强GH4169合金压气机盘锻件

Q/3B 4054 (RJTO-10、抚高新10、协上五高23)直接时效GH4169合金压气机盘、涡轮盘锻件

Q/3B 4050 (Q/5B 4037、抚高新9、协上五高32) GH4169合金厚板、薄板和带材

Q/3B 4052 GH4169 合金毛细管材

GH4169热处理制度:

摘自HB/Z 140、GJB 712A、GJB 5301、Q/3B 4052 和Q/3B 4054,分标准热处理和直接时效处理两种。

标准热处理

a)盘形锻件、环形件,(950~980)℃+10℃X1h/OQ(或AC、或 WQ)+720℃土10℃X8h/FC(50℃士10℃/h)→620℃+10℃X8h/AC, HB 461~341;

b)航天用锻制圆饼,(950~1010)℃士10℃X1h/AC+720℃+10℃ X8h/FC(50℃/h)→620℃+10℃X8h/AC(或 FC);

c)丝材,955℃士10℃ × 1h/AC+720℃ 士10℃ ×8h/FC(50℃ 士10℃/h)→620℃士5℃X(7~8) h/ AC ,HRC≥ 32

d)棒材和锻件,(950~980)℃士10℃X1h/AC+720℃+5℃ X 8h/FC(50℃士10℃/h)→620℃士5℃X8h / AC, HB ≥346;

e)板材、焊接件:

制度I:(940~960)℃/AC+(710~730)℃X(8~8.5)h/FC(50℃士10℃/h)→(615~620)℃X(8~8.5)h/AC,其中固溶保温时间: δ (d)≤3mm, (25~30) min; δ(d)3mm~5mm, (30~35) min;

制度I:中间退火,(940~960)℃X(15~20)min/AC;

f)管材,955℃士10℃ X30min/AC(或风冷)+720℃士10℃X8h/FC(50℃土10℃/h)→620℃士10℃,使总保温时间不少于18h,空冷或风冷。

直接时效处理

盘形锻件直接时效制度:720℃土10℃X8h/FC(50℃士10℃/h)→620℃士10℃X8h/AC。

GH4169 金相组织结构:

该合金标准热处理状态的组织由γ基体γ'、γ'、δ、NbC相组成。

GH4169工艺性能与要求:

1、因GH4169合金中铌含量高,合金中的铌偏析程度与冶金工艺直接有关。2、为避免钢锭中的元素偏析过重,采用的钢锭直径不大于508mm。3、经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120℃。4、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。5、合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接。

GH4169主要规格:

GH4169无缝管、GH4169钢板GH4169、圆钢、GH4169锻件、GH4169法兰、GH4169圆环、GH4169焊管、GH4169钢带、GH4169直条、GH4169丝材及配套焊材、GH4169圆饼、GH4169扁钢、GH4169六角棒、GH4169大小头、GH4169弯头、GH4169三通、GH4169加工件、GH4169螺栓螺母、GH4169紧固件。

311 评论

相关问答

  • 车削加工研究论文

    数控车床毕业论文参考文献 数控车床毕业论文参考文献(1): [1]吕斌杰,高长银,赵汶.华中系统数控车床培训教程[M].北京:化学工业出版社,2013. [2]

    梁山好汉v 2人参与回答 2023-12-08
  • 钛合金加工刀具研究论文

    钛合金的硬度大于HB350时切削加工特别困难,小于HB300时则容易出现粘刀现象,也难于切削。但钛合金的硬度只是难于切削加工的一个方面,关键在于钛合金本身化学、

    健康&平安 4人参与回答 2023-12-10
  • 粘性土的工程特性研究论文

    关于土木工程专业毕业论文参考文献 导语:土木工程专业毕业论文参考文献有哪些呢?参考文献的著录格式是否规范反映作者论文写作经验和治学态度,所以,同学们在引用参考文

    豆哥豆爷 2人参与回答 2023-12-07
  • 复杂曲面高性能磨削工艺研究论文

    我们机电系的一篇论文,看看行不行 雕塑曲面体混流式叶片的多轴联动数控加工编程技术 摘要:转轮叶片是水轮机能量转换的关键部件,也是最难加工的零件,目前多轴联动数

    往事随风@遗忘 2人参与回答 2023-12-06
  • 内圆磨削加工毕业论文

    工程机械论文题目 机械工程是一门涉及利用物理定律为机械系统作分析、设计、制造及维修的工程学科。机械工程是以有关的自然科学和技术科学为理论基础,结合生产实践中的技

    多吃多漂亮哟 3人参与回答 2023-12-10