• 回答数

    3

  • 浏览数

    192

遇见你之前的我
首页 > 学术期刊 > 多天线预编码与检测论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

鱼京自心

已采纳

近年来,随着就业竞争越演越烈,关于 毕业 生就业质量问题的研讨亦日益广泛深入。下面是我为大家推荐的计算机论文,供大家参考。

计算机论文 范文 一:认知无线电系统组成与运用场景探析

认知无线电系统组成

认知无线电系统是指采用认知无线电技术的无线通信系统,它借助于更加灵活的收发信机平台和增强的计算智能使得通信系统更加灵活。认知无线电系统主要包括信息获取、学习以及决策与调整3个功能模块,如图1所示[3]。

认知无线电系统的首要特征是获取无线电外部环境、内部状态和相关政策等知识,以及监控用户需求的能力。认知无线电系统具备获取无线电外部环境并进行分析处理的能力,例如,通过对当前频谱使用情况的分析,可以表示出无线通信系统的载波频率和通信带宽,甚至可以得到其覆盖范围和干扰水平等信息;认知无线电系统具备获取无线电内部状态信息能力,这些信息可以通过其配置信息、流量负载分布信息和发射功率等来得到;认知无线电系统具备获取相关政策信息的能力,无线电政策信息规定了特定环境下认知无线电系统可以使用的频带,最大发射功率以及相邻节点的频率和带宽等;认知无线电系统具备监控用户需求并根据用户需求进行决策调整的能力。如表1所示,用户的业务需求一般可以分为话音、实时数据(比如图像)和非实时数据(比如大的文件包)3类,不同类型的业务对通信QoS的要求也不同。

认知无线电系统的第2个主要特征是学习的能力。学习过程的目标是使用认知无线电系统以前储存下来的决策和结果的信息来提高性能。根据学习内容的不同, 学习 方法 可以分为3类。第一类是监督学习,用于对外部环境的学习,主要是利用实测的信息对估计器进行训练;第2类是无监督学习,用于对外部环境的学习,主要是提取外部环境相关参数的变化规律;第3类是强化学习,用于对内部规则或行为的学习,主要是通过奖励和惩罚机制突出适应当前环境的规则或行为,抛弃不适合当前环境的规则或行为。机器学习技术根据学习机制可以分为:机械式学习、基于解释的学习、指导式学习、类比学习和归纳学习等。

认知无线电系统的第3个主要特性是根据获取的知识,动态、自主地调整它的工作参数和协议的能力,目的是实现一些预先确定的目标,如避免对其他无线电系统的不利干扰。认知无线电系统的可调整性不需要用户干涉。它可以实时地调整工作参数,以达到合适的通信质量;或是为了改变某连接中的无线接入技术;或是调整系统中的无线电资源;或是为了减小干扰而调整发射功率。认知无线电系统分析获取的知识,动态、自主地做出决策并进行重构。做出重构决策后,为响应控制命令,认知无线电系统可以根据这些决策来改变它的工作参数和/或协议。认知无线电系统的决策过程可能包括理解多用户需求和无线工作环境,建立政策,该政策的目的是为支持这些用户的共同需求选择合适的配置。

认知无线电与其他无线电的关系

在认知无线电提出之前,已经有一些“某某无线电”的概念,如软件定义无线电、自适应无线电等,它们与认知无线电间的关系如图2所示。软件定义无线电被认为是认知无线电系统的一种使能技术。软件定义无线电不需要CRS的特性来进行工作。SDR和CRS处于不同的发展阶段,即采用SDR应用的无线电通信系统已经得到利用,而CRS正处于研究阶段,其应用也正处于研究和试验当中。SDR和CRS并非是无线电通信业务,而是可以在任何无线电通信业务中综合使用的技术。自适应无线电可以通过调整参数与协议,以适应预先设定的信道与环境。与认知无线电相比,自适应无线电由于不具有学习能力,不能从获取的知识与做出的决策中进行学习,也不能通过学习改善知识获取的途径、调整相应的决策,因此,它不能适应未预先设定的信道与环境。可重构无线电是一种硬件功能可以通过软件控制来改变的无线电,它能够更新部分或全部的物理层波形,以及协议栈的更高层。基于策略的无线电可以在未改变内部软件的前提下通过更新来适应当地监管政策。对于较新的无线电网络,因特网路由器一直都是基于策略的。这样,网络运营商就可以使用策略来控制访问权限、分配资源以及修改网络拓扑结构和行为。对于认知无线电来说,基于策略技术应该能够使产品可以在全世界通用,可以自动地适应当地监管要求,而且当监管规则随时间和 经验 变化时可以自动更新。智能无线电是一种根据以前和当前情况对未来进行预测,并提前进行调整的无线电。与智能无线电比较,自适应无线电只根据当前情况确定策略并进行调整,认知无线电可以根据以前的结果进行学习,确定策略并进行调整。

认知无线电关键技术

认知无线电系统的关键技术包括无线频谱感知技术、智能资源管理技术、自适应传输技术与跨层设计技术等,它们是认知无线电区别传统无线电的特征技术[4,5]。

频谱检测按照检测策略可以分为物理层检测、MAC层检测和多用户协作检测,如图3所示。3.1.1物理层检测物理层的检测方法主要是通过在时域、频域和空域中检测授权频段是否存在授权用户信号来判定该频段是否被占用,物理层的检测可以分为以下3种方式:发射机检测的主要方法包括能量检测、匹配滤波检测和循环平稳特性检测等,以及基于这些方法中某一种的多天线检测。当授权用户接收机接收信号时,需要使用本地振荡器将信号从高频转换到中频,在这个转换过程中,一些本地振荡器信号的能量不可避免地会通过天线泄露出去,因而可以通过将低功耗的检测传感器安置在授权用户接收机的附近来检测本振信号的能量泄露,从而判断授权用户接收机是否正在工作。干扰温度模型使得人们把评价干扰的方式从大量发射机的操作转向了发射机和接收机之间以自适应方式进行的实时性交互活动,其基础是干扰温度机制,即通过授权用户接收机端的干扰温度来量化和管理无线通信环境中的干扰源。MAC层检测主要关注多信道条件下如何提高吞吐量或频谱利用率的问题,另外还通过对信道检测次序和检测周期的优化,使检测到的可用空闲信道数目最多,或使信道平均搜索时间最短。MAC层检测主要可以分为以下2种方式:主动式检测是一种周期性检测,即在认知用户没有通信需求时,也会周期性地检测相关信道,利用周期性检测获得的信息可以估计信道使用的统计特性。被动式检测也称为按需检测,认知用户只有在有通信需求时才依次检测所有授权信道,直至发现可用的空闲信道。由于多径衰落和遮挡阴影等不利因素,单个认知用户难以对是否存在授权用户信号做出正确的判决,因此需要多个认知用户间相互协作,以提高频谱检测的灵敏度和准确度,并缩短检测的时间。协作检测结合了物理层和MAC层功能的检测技术,不仅要求各认知用户自身具有高性能的物理层检测技术,更需要MAC层具有高效的调度和协调机制。

智能资源管理的目标是在满足用户QoS要求的条件下,在有限的带宽上最大限度地提高频谱效率和系统容量,同时有效避免网络拥塞的发生。在认知无线电系统中,网络的总容量具有一定的时变性,因此需要采取一定的接入控制算法,以保障新接入的连接不会对网络中已有连接的QoS需求造成影响。动态频谱接入概念模型一般可分为图4所示的3类。动态专用模型保留了现行静态频谱管理政策的基础结构,即频谱授权给特定的通信业务专用。此模型的主要思想是引入机会性来改善频谱利用率,并包含2种实现途径:频谱产权和动态频谱分配。开放共享模型,又称为频谱公用模型,这个模型向所有用户开放频谱使其共享,例如ISM频段的开放共享方式。分层接入模型的核心思想是开放授权频谱给非授权用户,但在一定程度上限制非授权用户的操作,以免对授权用户造成干扰,有频谱下垫与频谱填充2种。认知无线电中的频谱分配主要基于2种接入策略:①正交频谱接入。在正交频谱接入中,每条信道或载波某一时刻只允许一个认知用户接入,分配结束后,认知用户之间的通信信道是相互正交的,即用户之间不存在干扰(或干扰可以忽略不计)。②共享频谱接入。在共享频谱接入中,认知用户同时接入授权用户的多条信道或载波,用户除需考虑授权用户的干扰容限外,还需要考虑来自其他用户的干扰。根据授权用户的干扰容限约束,在上述2种接入策略下又可以分为以下2种频谱接入模式:填充式频谱接入和下垫式频谱接入。对于填充式频谱接入,认知用户伺机接入“频谱空穴”,它们只需要在授权用户出现时及时地出让频谱而不存在与授权用户共享信道时的附加干扰问题,此种方法易于实现,且不需要现有通信设备提供干扰容限参数。在下垫式频谱接入模式下,认知用户与授权用户共享频谱,需要考虑共用信道时所附加的干扰限制。

在不影响通信质量的前提下,进行功率控制尽量减少发射信号的功率,可以提高信道容量和增加用户终端的待机时间。认知无线电网络中的功率控制算法设计面临的是一个多目标的联合优化问题,由于不同目标的要求不同,存在着多种折中的方案。根据应用场景的不同,现有的认知无线电网络中的功率控制算法可以分成2大类:一是适用于分布式场景下的功率控制策略,一是适用于集中式场景下的功率控制策略。分布式场景下的功率控制策略大多以博弈论为基础,也有参考传统Adhoc网络中功率控制的方法,从集中式策略入手,再将集中式策略转换成分布式策略;而集中式场景下的功率控制策略大多利用基站能集中处理信息的便利,采取联合策略,即将功率控制与频谱分配结合或是将功率控制与接入控制联合考虑等。

自适应传输可以分为基于业务的自适应传输和基于信道质量的自适应传输。基于业务的自适应传输是为了满足多业务传输不同的QoS需求,其主要在上层实现,不用考虑物理层实际的传输性能,目前有线网络中就考虑了这种自适应传输技术。认知无线电可以根据感知的环境参数和信道估计结果,利用相关的技术优化无线电参数,调整相关的传输策略。这里的优化是指无线通信系统在满足用户性能水平的同时,最小化其消耗的资源,如最小化占用带宽和功率消耗等。物理层和媒体控制层可能调整的参数包括中心频率、调制方式、符号速率、发射功率、信道编码方法和接入控制方法等。显然,这是一种非线性多参数多目标优化过程。

现有的分层协议栈在设计时只考虑了通信条件最恶劣的情况,导致了无法对有限的频谱资源及功率资源进行有效的利用。跨层设计通过在现有分层协议栈各层之间引入并传递特定的信息来协调各层之间的运行,以与复杂多变的无线通信网络环境相适应,从而满足用户对各种新的业务应用的不同需求。跨层设计的核心就是使分层协议栈各层能够根据网络环境以及用户需求的变化,自适应地对网络的各种资源进行优化配置。在认知无线电系统中,主要有以下几种跨层设计技术:为了选择合适的频谱空穴,动态频谱管理策略需要考虑高层的QoS需求、路由、规划和感知的信息,通信协议各层之间的相互影响和物理层的紧密结合使得动态频谱管理方案必须是跨层设计的。频谱移动性功能需要同频谱感知等其他频谱管理功能结合起来,共同决定一个可用的频段。为了估计频谱切换持续时间对网络性能造成的影响,需要知道链路层的信息和感知延迟。网络层和应用层也应该知道这个持续时间,以减少突然的性能下降;另外,路由信息对于使用频谱切换的路由发现过程也很重要。频谱共享的性能直接取决于认知无线电网络中频谱感知的能力,频谱感知主要是物理层的功能。然而,在合作式频谱感知情况下,认知无线电用户之间需要交换探测信息,因此频谱感知和频谱共享之间的跨层设计很有必要。在认知无线电系统中,由于多跳通信中的每一跳可用频谱都可能不同,网络的拓扑配置就需要知道频谱感知的信息,而且,认知无线电系统路由设计的一个主要思路就是路由与频谱决策相结合。

认知无线电应用场景

认知无线电系统不仅能有效地使用频谱,而且具有很多潜在的能力,如提高系统灵活性、增强容错能力和提高能量效率等。基于上述优势,认知无线电在民用领域和军用领域具有广阔的应用前景。

频谱效率的提高既可以通过提高单个无线接入设备的频谱效率,也可以通过提高各个无线接入技术的共存性能。这种新的频谱利用方式有望增加系统的性能和频谱的经济价值。因此,认知无线电系统的这些共存/共享性能的提高推动了频谱利用的一种新方式的发展,并且以一种共存/共享的方式使获得新的频谱成为可能。认知无线电系统的能力还有助于提高系统灵活性,主要包括提高频谱管理的灵活性,改善设备在生命周期内操作的灵活性以及提高系统鲁棒性等。容错性是通信系统的一项主要性能,而认知无线电可以有效改善通信系统的容错能力。通常容错性主要是基于机内测试、故障隔离和纠错 措施 。认知无线电对容错性的另一个优势是认知无线电系统具有学习故障、响应和错误信息的能力。认知无线电系统可以通过调整工作参数,比如带宽或者基于业务需求的信号处理算法来改善功率效率。

认知无线电所要解决的是资源的利用率问题,在农村地区应用的优势可以 总结 为如下。农村无线电频谱的使用,主要占用的频段为广播、电视频段和移动通信频段。其特点是广播频段占用与城市基本相同,电视频段利用较城市少,移动通信频段占用较城市更少。因此,从频率域考虑,可利用的频率资源较城市丰富。农村经济发达程度一般不如城市,除电视频段的占用相对固定外,移动通信的使用率不及城市,因此,被分配使用的频率利用率相对较低。由于农村地广人稀,移动蜂窝受辐射半径的限制,使得大量地域无移动通信频率覆盖,尤其是边远地区,频率空间的可用资源相当丰富。

在异构无线环境中,一个或多个运营商在分配给他们的不同频段上运行多种无线接入网络,采用认知无线电技术,就允许终端具有选择不同运营商和/或不同无线接入网络的能力,其中有些还可能具有在不同无线接入网络上支持多个同步连接的能力。由于终端可以同时使用多种 无线网络 ,因此应用的通信带宽增大。随着终端的移动和/或无线环境的改变,可以快速切换合适的无线网络以保证稳定性。

在军事通信领域,认知无线电可能的应用场景包括以下3个方面。认知抗干扰通信。由于认知无线电赋予电台对周围环境的感知能力,因此能够提取出干扰信号的特征,进而可以根据电磁环境感知信息、干扰信号特征以及通信业务的需求选取合适的抗干扰通信策略,大大提升电台的抗干扰水平。战场电磁环境感知。认知无线电的特点之一就是将电感环境感知与通信融合为一体。由于每一部电台既是通信电台,也是电磁环境感知电台,因此可以利用电台组成电磁环境感知网络,有效地满足电磁环境感知的全时段、全频段和全地域要求。战场电磁频谱管理。现代战场的电磁频谱已经不再是传统的无线电通信频谱,静态的和集重视的频谱管理策略已不能满足灵活多变的现代战争的要求。基于认知无线电技术的战场电磁频谱管理将多种作战要素赋予频谱感知能力,使频谱监测与频谱管理同时进行,大大提高了频谱监测网络的覆盖范围,拓宽了频谱管理的涵盖频段。

结束语

如何提升频谱利用率,来满足用户的带宽需求;如何使无线电智能化,以致能够自主地发现何时、何地以及如何使用无线资源获取信息服务;如何有效地从环境中获取信息、进行学习以及做出有效的决策并进行调整,所有这些都是认知无线电技术要解决的问题。认知无线电技术的提出,为实现无线环境感知、动态资源管理、提高频谱利用率和实现可靠通信提供了强有力的支撑。认知无线电有着广阔的应用前景,是无线电技术发展的又一个里程碑。

计算机论文范文二:远程无线管控体系的设计研究

1引言

随着我国航天事业的发展,测量船所承担的任务呈现高密度、高强度的趋势,造成码头期间的任务准备工作越来越繁重,面临着考核项目多、考核时间短和多船协调对标等现实情况,如何提高对标效率、确保安全可靠对标成为紧迫的课题。由于保密要求,原研制的远程标校控制系统无法接入现有网络,而铺设专网的耗资巨大,性价比低,也非首选方案。近些年来,无线通信已经成为信息通信领域中发展最快、应用最广的技术,广泛应用于家居、农业、工业、航天等领域,已成为信息时代社会生活不可或缺的一部分[1],这种技术也为解决测量船远程控制标校设备提供了支持。本文通过对常用中远距离无线通信方式的比较,择优选择了无线网桥,采用了桥接中继的网络模式,通过开发远程设备端的网络控制模块,以及相应的控制软件,实现了测量船对远程设备的有效、安全控制。

2无线通信方式比较

无线通信技术是利用电磁波信号在自由空间中进行信息传播的一种通信方式,按技术形式可分为两类:一是基于蜂窝的接入技术,如蜂窝数字分组数据、通用分组无线传输技术、EDGE等;二是基于局域网的技术,如WLAN、Bluetooth、IrDA、Home-RF、微功率短距离无线通信技术等。在中远距离无线通信常用的有ISM频段的通信技术(比如ZigBee以及其他频段的数传模块等)和无线 网络技术 (比如GSM、GPRS以及无线网桥等)。基于ISM频段的数传模块的通信频率为公共频段,产品开发没有限制,因此发展非常迅速,得到了广泛应用。特别是近年来新兴的ZigBee技术,因其低功耗、低复杂度、低成本,尤其是采用自组织方式组网,对网段内设备数量不加限制,可以灵活地完成网络链接,在智能家居、无线抄表等网络系统开发中得到应用[2]。但是,对于本系统的开发而言,需要分别研制控制点和被控制点的硬件模块,并需通过软件配置网络环境,开发周期长,研制成本高,故非本系统开发的最优方案。

GSM、GPRS这种无线移动通信技术已经成为人们日常生活工作必不可少的部分,在其他如无线定位、远程控制等领域的应用也屡见不鲜[3],但是由于保密、通信费用、开发成本等因素,也无法适用于本系统的开发。而无线网桥为本系统的低成本、高效率的研发提供了有利支持,是开发本系统的首选无线通信方式。无线网桥是无线网络的桥接,它可在两个或多个网络之间搭起通信的桥梁,也是无线接入点的一个分支。无线网桥工作在2•4GHz或5•8GHz的免申请无线执照的频段,因而比其他有线网络设备更方便部署,特别适用于城市中的近距离、远距离通信。

3系统设计

该远程控制系统是以保障测量船对远端标校设备的有效控制为目标,包括标校设备的开关机、状态参数的采集等,主要由测量船控制微机、标校设备、网络控制模块、主控微机以及无线网桥等组成。工作流程为测量船控制微机或主控微机发送控制指令,通过无线网桥进行信息传播,网络控制模块接收、解析指令,按照Modbus协议规定的数据格式通过串口发给某一标校设备,该标校设备响应控制指令并执行;网络控制模块定时发送查询指令,并将采集的状态数据打包,通过无线发给远程控制微机,便于操作人员监视。网络通信协议采用UDP方式,对于测量船控制微机、主控微机仅需按照一定的数据格式发送或接收UDP包即可。网络控制模块是系统的核心部件,是本文研究、设计的重点。目前,常用的网络芯片主要有ENC28J60、CP2200等,这里选用了ENC28J60,设计、加工了基于STC89C52RC单片机的硬件电路。通过网络信息处理软件模块的开发,满足了网络信息交互的功能要求;通过Modbus串口协议软件模块的开发,满足了标校设备监控功能,从而实现了系统设计目标。

3.1组网模式

无线网桥有3种工作方式,即点对点、点对多点、中继连接。根据系统的控制要求以及环境因素,本系统采用了中继连接的方式,其网络拓扑如图1所示。从图中可以清晰看出,这种中继连接方式在远程控制端布置两个无线网桥,分别与主控点和客户端进行通信,通过网络控制模块完成数据交互,从而完成组网。

3.2安全防范

由于是开放性设计,无线网络安全是一个必须考虑的问题。本系统的特点是非定时或全天候开机,涉密数据仅为频点参数,而被控设备自身均有保护措施(协议保护)。因此,系统在设计时重点考虑接入点防范、防止攻击,采取的措施有登录密码设施、网络密匙设置、固定IP、对数据结构体的涉密数据采取动态加密等方式,从而最大限度地防止了“被黑”。同时,采用了网络防雷器来防护雷电破坏。

3.3网络控制模块设计

3.3.1硬件设计

网络控制模块的功能是收命令信息、发状态信息,并通过串口与标校设备实现信息交互,其硬件电路主要由MCU(微控制单元)、ENC28J60(网络芯片)、Max232(串口芯片)以及外围电路组成,其电原理图如图2所示。硬件设计的核心是MCU、网络芯片的选型,本系统MCU选用的STC89C52RC单片机,是一种低功耗、高性能CMOS8位微控制器,可直接使用串口下载,为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。ENC28J60是由M-icrochip公司出的一款高集成度的以太网控制芯片,其接口符合IEEE802.3协议,仅28个引脚就可提供相应的功能,大大简化了相关设计。ENC28J60提供了SPI接口,与MCU的通信通过两个中断引脚和SPI实现,数据传输速率为10Mbit/s。ENC28J60符合IEEE802.3的全部规范,采用了一系列包过滤机制对传入的数据包进行限制,它提供了一个内部DMA模块,以实现快速数据吞吐和硬件支持的IP校验和计算[4]。ENC28J60对外网络接口采用HR911102A,其内置有网络变压器、电阻网络,并有状态显示灯,具有信号隔离、阻抗匹配、抑制干扰等特点,可提高系统抗干扰能力和收发的稳定性。

3.3.2软件设计

网络控制模块的软件设计主要包括两部分,一是基于SPI总线的ENC28J60的驱动程序编写,包括以太网数据帧结构定义、初始化和数据收发;二是Modbus协议编制,其软件流程如图3所示。

3.3.2.1ENC28J60的驱动程序编写

(1)以太网数据帧结构符合IEEE802.3标准的以太网帧的长度是介于64~1516byte之间,主要由目标MAC地址、源MAC地址、类型/长度字段、数据有效负载、可选填充字段和循环冗余校验组成。另外,在通过以太网介质发送数据包时,一个7byte的前导字段和1byte的帧起始定界符被附加到以太网数据包的开头。以太网数据包的结构如图4所示。(2)驱动程序编写1)ENC28J60的寄存器读写规则由于ENC28J60芯片采用的是SPI串行接口模式,其对内部寄存器读写的规则是先发操作码<前3bit>+寄存器地址<后5bit>,再发送欲操作数据。通过不同操作码来判别操作时读寄存器(缓存区)还是写寄存器(缓冲区)或是其他。2)ENC28J60芯片初始化程序ENC28J60发送和接收数据包前必须进行初始化设置,主要包括定义收发缓冲区的大小,设置MAC地址与IP地址以及子网掩码,初始化LEDA、LEDB显示状态通以及设置工作模式,常在复位后完成,设置后不需再更改。3)ENC28J60发送数据包ENC28J60内的MAC在发送数据包时会自动生成前导符合帧起始定界符。此外,也会根据用户配置以及数据具体情况自动生成数据填充和CRC字段。主控器必须把所有其他要发送的帧数据写入ENC28J60缓冲存储器中。另外,在待发送数据包前要添加一个包控制字节。包控制字节包括包超大帧使能位(PHUGEEN)、包填充使能位(PPADEN)、包CRC使能位(PCRCEN)和包改写位(POVERRIDE)4个内容。4)ENC28J60接收数据包如果检测到EIR.PKTIF为1,并且EPKTCNT寄存器不为空,则说明接收到数据,进行相应处理。

3.3.2.2ModBus协议流程

本系统ModBus协议的数据通信采用RTU模式[5],网络控制模块作为主节点与从节点(标校设备)通过串口建立连接,主节点定时向从节点发送查询命令,对应从节点响应命令向主节点发送设备状态信息。当侦测到网络数据时,从ENC28J60接收数据包中解析出命令,将对应的功能代码以及数据,按照Modbus数据帧结构进行组帧,发送给从节点;对应从节点响应控制命令,进行设备参数设置。

4系统调试与验证

试验调试环境按照图1进行布置,主要包括5个无线网桥、1个主控制点、2个客户端、1块网络控制模块板以及标校设备等,主要测试有网络通信效果、网络控制能力以及简单的安全防护测试。测试结论:网络连接可靠,各控制点均能安全地对远端设备进行控制,具备一定安全防护能力,完全满足远程设备控制要求。

5结束语

本文从实际需要出发,通过对当下流行的无线通信技术的比较,选用无线网桥实现远控系统组网;通过开发网络控制模块,以及相应的控制软件编制,研制了一套用于测量船远程控制设备的系统。经几艘测量船的应用表明,采用无线网桥进行组网完全满足系统设计要求,具有高安全性、高可靠性、高扩展性等优点,在日趋繁重的保障任务中发挥了重要的作用。本系统所采用的无线组网方法,以及硬件电路的设计方案,对其他相关控制领域均有一定的参考价值。

162 评论

王小旭zx

光纤耦合的论文资料我有不少,但是测量串扰方面的论文好像没有。我做的论文是光纤放大器,里面讲很多耦合的内容。要的话可以发一些给你。下面这论文有一些特性参数,但不一定适合你的论文。你导师应该给出一些论文给你参考吧,不懂的可以上Q问我,白天我一般都在线光子晶体光纤及其耦合分析 【英文题名】 Research on Photonic Crystal Fibers and Coupling 【作者中文名】 陈丽颖; 【导师】 孙军强; 【学位授予单位】 华中科技大学; 【学科专业名称】 光学工程 【学位年度】 2006 【论文级别】 硕士 【网络出版投稿人】 华中科技大学 【网络出版投稿时间】 2008-02-19 【关键词】 光子晶体光纤; 等效折射率模型; 有限元分析法; 耦合损耗; 【英文关键词】 photonic crystal fiber; effective-index model; finite-element mathematical model; coupling losses; 【中文摘要】 近年来出现了一种新型结构的光纤——光子晶体光纤。光子晶体光纤是一种将二维光子晶体结构引入光纤中而制成,从截面上来看,它是在石英介质上周期性地分布一些空气孔,纤芯由中心缺陷形成。它的导光机理与传统光纤的全内反射方式有很大不同,利用光子晶体中存在的光子禁带效应导光,落在频率禁带范围内的光就不能在光子晶体中传播。在单模传输、色散、损耗以及非线性效应方面表现出了许多不同于传统光纤的优良特性。目前,对光子晶体光纤的研究表明,它将有广阔的应用天地。 本文分别用等效折射率法和有限元分析法对光子晶体光纤的模场分布情况进行了理论分析,得到了光子晶体光纤的模场分布情况随其结构参数变化的趋势,并用有限元分析法得到类似结果映证了结果的正确性。 本文进一步对全内反射型光子晶体光纤与传统单模光纤的耦合损耗情况进行了分析,得到了光子晶体光纤的结构参数对于耦合损耗的主要来源——模场失配损耗的... 【英文摘要】 In recent years, remarkable properties of optical fibers with a detect core region and a periodicity surrounding silica/air photonic crystal (PC) cladding have been reported. It is a kind of two dimensional photonic. Different from total internal reflection (TIR) of traditional fiber, photonics crystal fiber (PCF) guides wave through photonic band gap (PBG) effect. Light can’t propagate in PCF if its frequency failed into the band gap. So PCF represents lots of much remarkable properties than traditio...

132 评论

sy2009Jason

学号:20011210119    姓名:范亚奇 【嵌牛导读】         不断提高空中接口的吞吐率是无线制式的发展目标。MIMO多天线技术是LTE大幅提升吞吐率的物理层关键技术。MIMO技术和OFDM技术一起并称为LTE的两大最重要物理层技术。 【嵌牛鼻子】MIMO多天线技术 【嵌牛正文】 1.MIMO基本原理       最早的多天线技术是一种接收分集技术。多条接收通道同时处于深度衰落的可能性比单天线通道处于深度衰落的可能性小很多。接收分集可以提高无线传输的可靠性,基站侧布置多个接收天线实现上行接收分集较为容易。但终端侧布置多个天线会提高手机复杂度和成本,实现较困难,那能不能在基站侧实现发射分集(多天线发射相同的数据流)来提高下行传输可靠性呢?人们尝试这样做,但发现多天线发送相同的数据流,他们是相互干扰的,甚至会相互抵消,起不到分集的作用。想要实现发送分集,必须解决发送天线之间无线链路的正交性问题。多天线正交性的问题最终被攻克,于是MIMO技术成熟。1.1 数学模型       由于数据看不见摸不着,把数据看作从仓库A搬运到仓库B的货物,如图所示。        装货点A1有1/3的货物到了卸货点B1,2/3到卸货点B2;装货点A2有3/4货物到了卸货点B1,有1/4到卸货点B2。在B1有1个货物的损失,在B2有两个货物的损失。于是装货点的货物数量x1、x2和卸货点数量y1、y2数量关系如下:可以用矩阵关系表示上述数量关系:借鉴类似思路,可以给MIMO系统建立数学模型。在发射端和接收端分别设置多个天线,如图      上面s1、s2和r1、r2的关系可以用如下矩阵表示:(其实只要记H矩阵是接收天线数×发射天线)         MIMO系统是在发射端和接收端同时采用多天线的技术,广义上SISO,SIMO,MISO也是MIMO的特例。1.2 极限容量         香农给出了单发射天线、单接收天线的SISO无线信道的极限容量公式:        B为信道带宽,S/N为接收端信噪比。由香农公式,提高SNR或带宽可以增加无线信道容量。但发射功率P和带宽都是有一定限度的。在一定带宽条件下,SISO无论采用什么样的编码和调制方式,系统容量都不可能超过香农公式极限。目前广泛使用的Turbo码、LDPC码,使信道容量逼近了信道容量极限。       但多天线的情况下,信道容量随着接收天线数量Mr的增加而增加,两者为对数关系;信道容量也随着发射天线数量Mt的增加而增加,两者也为对数关系;       也就是说发射分集和接受分集可以改善接收端的信噪比,从而提高信道容量和频谱效率,但对信道容量的提升也是有限的,仅为对数关系。        MIMO系统容量会随着发射端或接收端天线数中较小的一方min(Mr,Mt)的增加而线性增加(不是对数增加)。        例如,从MIMO系统极限容量公式可以看书,2×2天线配置的MIMO系统和2×4天线配置的MIMO系统的极限容量是接近的。因为二者的最小天线数目一样,都是2。但发射天线数目翻倍也不是一点作用都没,发射天线数目翻倍起到了分集作用,改善了接收端信噪比。两者虽然极限容量一样,但2×4的天线配置方式,下行的平均容量会提高。1.3 多天线技术增益        阵列增益:在单天线发射功率不变的情况下,增加天线个数,可使接收端通过多路信号的相干合并,获得平均信噪比(SNR)的增加。阵列增益是和天线个数(M)的对数lg(M)强相关的,阵列增益可以改善系统覆盖。         功率增益:覆盖范围不变时增加天线数目可以降低天线口发射功率,继而可以降低对设备功放线性范围的要求。若单天线发射功率不变,采用多天线发射相当于总的发射功率增加,从而增加覆盖范围。         分集增益:同一路信号经过不同路径到达接收端,可以有效对抗多径衰落,减少接收端SNR的波动。独立衰落的分支数目越大,接收端信噪比波动越小,分集增益越大。分集增益可以改善系统覆盖,增加链路可靠性。         空间复用增益:提高极限容量和改善峰值速率。在天线间互不相关前提下,MIMO信道的容量可随着接收天线和发射天线二者的最小数目线性增长。这个容量的增长就是空间复用增益。        干扰抑制增益:多天线收发系统中,空间存在的干扰有一定的统计规律。利用信道估计技术,选取不同的天线映射算法,选择合适的干扰抑制算法,可降低干扰。2.MIMO的工作模式        MIMO系统就是多个信号流在空中的并行传输。在发射端输入的数据流变成几路并行的符号流,分别从Mt个天线同时发射出去;接收端从Mr个接收天线将信号接收下来,恢复原始信号。        多个信号流可以是不同的数据流,也可以是同一个数据流的不同版本。不同的数据流就是不同的信息同时发射,意味着信息传送效率的提升,提高了无线通信的效率。同一个数据流的不同版本,就是同样的信息,不同的表达方式,并行发射出去,确保接受端收到信息的准确,提高信息传送的可靠性。为提高信息传送效率的工作模式,就是MIMO的复用模式;为提高信息传送可靠性的工作模式,就是MIMO的分集模式。 2.1 空分复用模式        空分复用(Space Multiplexing,SM)思想是把1个高速的数据流分割为几个速率较低的数据流,分别在不同的天线进行编码、调制,然后发送。天线之间相互独立,一个天线相当于一个独立的信道,接收机利用空间均衡器分离接收信号,然后解调、解码,将几个数据流合并,恢复出原始信号,如图所示。        一路数据变为多路数据的方法是贝尔实验室提出的时空转移大法:空时编码(Space Time Coding,STC),即BLAST(Bell Labs Layered Space-Time)技术。将数据看作待转运的货物,为了快速地转运(复用)出去,可以把它安排在不同的地点(空间),也可以变换交货的时间。“不同的天线”就是空时编码中“空间”的概念;“不同的OFDM周期”就是空时编码中“时间”的概念。空时编码的最小单位是TB块(Transport block,传输块),TB块是一个子帧内含有的编码前比特数,由很多个RB组成。一个TTI是1ms。         空分复用(SM)常用的空时编码技术有两种:预编码(Precoding)、PARC(Per Antenna Rate Control,每天线速率控制)。预编码技术把原始数据流两个符号分为一组进行变换,如某一组为”s1、s2“,转换成并行数据流”z1、z2“,然后分别由不同的天线发出去,如图所示。二者的关系式为:      其中V矩阵就是预编码矩阵,他就是负责把数据流转换到天线端口的数学变换公式。PARC是不进行符号变换的,直接根据每个天线的信道条件调节其信息发送速率。天线信道好的,速率快一些,反之速率慢一些。速率本身也是一种时空编码,只不过一路天线速度快些,另一路慢些。在天线口,PARC的空时编码所做的工作就是直接把速率调节好的两列数据搬在天线口发射,可不做变换。2.2 空间分集模式        空间分集(Space Diversity,SD)的思想是制作同一个数据流的不同版本,分别在不同的天线进行编码、调制,然后发送,如图所示,这个数据流可以是原来要发送的数据流,也可以是原始数据流经过一定的数学变换后形成的新数据流。同一个东西,不同的面貌。接收机利用空间均衡器分离接收信号,然后解调、解码,将同一数据流的不同接收信号合并,恢复出原始信号。空间分集可以起到可靠传输数据的作用。不管是复用技术还是分集技术,都涉及把一路数据变成多路数据的技术,即时空编码技术。空间分集常用的技术有STBC(空时块编码)、SFBC(空频块编码)、TSTD/FSTD(时间/频率转换传送分集)、CDD(循环延时分集)。       STBC主要思想是在空间和时间两个维度上安排数据流的不同版本,可以有时间和空间分集的的效果,从而降低信道误码率提高可靠性。如图所示,天线1上两个符号s1,s2分别放在1个子帧两个时隙的第一个OFDM符号周期上;天线2上这两个符号调换一下时隙位置,把他们的另一个版本-s2*、s1*分别放在这个子帧的两个时隙上。        SFBC的主要思想是在空间和频率两个维度上安排数据流的不同版本,可以有空间分集和频率分集的效果。在天线1上,两个符号s1、s2分别安排在两个相邻的子载波上,在天线2上,这两个符号调换一下子载波的位置,把它们的另一个版本-s2*、s1*分别放在这两个子载波上。        TSTD也是在空间和时间两个维度上安排数据流的不同部分,有空间和时间分集的效果。在天线1和天线2的时隙位置上,交叉安排符号流s1、s2,符号排队等待发射,在第一个符号周期,这个符号放在天线1上发射,下一符号周期则放在天线2上发射,以此类推。TSTD/FSTD技术的矩阵表示形式如图所示,2.3 多天线工作模式对比        多天线技术主要指以下四种:空间复用、空间分集、空分多址(SDMA)、波束赋型。            空间分集利用天线间的不相关性来实现,这个不相关要求天线间距在10个电磁波波长以上。目的是提高链路质量而不是链路容量。         空间复用也是利用天线间不相关性来实现的。一般需要多个发射和接受天线,是一种MIMO方式,也可以是智能天线方式。在复用时,并行发射和接受多个数据流,目的是调高链路容量(峰值速率),而不是链路质量。         空分多址是利用相同的时隙、相同的子载波,但不同的天线传送多个终端用户的数据。不同用户的数据如果要彼此相互区别就要求天线间的不相关性。空分多址的主要目的是通过空间上区别用户,在链路上容纳更多的用户,提高容量。         波束赋型利用电磁波之间的相干特性,将电磁波的能量(波束)集中于某个特定的方向上。不同于以上三种,波束赋型利用的是天线阵元之间的相关性。因此波束赋型要求天线之间的距离小一些,通常在波长的1/2左右。主要目的是增强覆盖和抑制干扰。使用波束赋型的多天线技术,就是传统的智能天线(Smart Antenna)技术,也叫AAS(Adaptive Antenna System,自适应天线系统)。TD-SCDMA系统的关键技术就是智能天线。        MIMO主要利用天线之间的不相关性,而智能天线主要利用天线间的相关性。MIMO可有效克服多径效应;而智能天线克服多径能力有限但抗干扰效果较好。 2.4 MIMO工作模式小结 MIMO系统可根据不同的系统条件、变化的无线环境采用不同的工作模式,协议中定义了以下七种MIMO的工作模式: 1.单天线工作模式:传统个无线制式的天线工作模式。 2.开环发射分集:利用复数共轭的数学方法,在多个天线上形成了彼此正交的空间信道,发送相同的数据流,提高传输可靠性。 3.开环空间复用:在不同的天线上人为制造“多径效应”,一个天线正常发射。其他天线引入相位偏移环节。多个天线的发射关系构成复矩阵,并行地发射不同的数据流。这个复矩阵在发射端随机选择,不依赖接收端的反馈结果,就是开环空间复用。 4.闭环空间复用:发射端在并行发射多个数据流的时候,根据反馈的信道估计结果,选择制造“多径效应”的复矩阵,就是闭环空间复用 5.MU-MIMO:并行传输的多个数据流是由多个UE组合实现的,就是多用户空间复用。 6.Rank=1的闭环发射分集:作为闭环空间复用的一特例,只传输一个数据流,也就是说空间信道的秩Rank=1。这种工作模式起到的是提高传输可靠性的作用,实际上是一种发射分集的方式。 7.波束赋型:多个天线协同工作,根据基站和UE的信道条件,实时计算不同的相位偏移方案,利用天线之间的相位干涉叠加原理,形成指向特定UE的波束。 3.MIMO系统的实现 把货物运送的港口的过程分为三个步骤: 步骤一:打包方式的选择(类似传输块TB的形成); 步骤二:根据货物的种类和去往的目的地进行初步的分类(类似层映射); 步骤三:运输公司的选择(预编码矩阵的选择)。 运输公司确定好之后,由运输公司选择港口,而发货方无须关心由哪个港口发送。不同港口对应着不同的运输公司和运输航道。如何选择港口来发送货物?有两种方式:开环方式和闭环方式。开环就是根据自己对港口的条件判断发货,无须等待接收货物方对发货质量的确认。闭环则要等待货物接收方对运送质量的反馈,来决定选择什么样的包装方式和运输公司。

139 评论

相关问答

  • 毕业论文编码与密码

    毕业设计(论文)管理系统密码修改过后就进不去了。怎么办

    游客小孩儿 7人参与回答 2023-12-09
  • 天平检测论文

    作为通过资质认定或国家实验室认可的实验室,为确保检测数据的准确性,需加强对设备的有效控制。为了确保在两次检定/校准之间设备状态的可信度,增强实验室的信心,保证检

    小屋美眉 2人参与回答 2023-12-07
  • 核酸检测线上预约论文

    这两年,有了疫情以后,为了大家的安全考虑,如果外出要戴口罩、显示绿码,如果是出行到了较远的地方或者是从中高疫情风险区回来,还要出示48小时的阴性核酸检测证明,每

    石门小可爱 2人参与回答 2023-12-11
  • 条码检测方法与技巧论文

    随着物流行业在国内日益受到重视,物流信息化建设提上了日程,条码在物流企业中的应用前景也逐步显现。具体来看,作为物流管理的工具,条码的应用主要集中在以下环节。(1

    shaaaronzy 4人参与回答 2023-12-07
  • 核酸检测线上预约管理系统论文

    1. 评价医院预约管理毕业论文任务书的目的2. 评价医院预约管理毕业论文任务书的观点3. 评价医院预约管理毕业论文任务书的方法4. 评价医院预约管理毕业论文任务

    我是娜弟 4人参与回答 2023-12-08