• 回答数

    3

  • 浏览数

    133

电风扇啊电风扇
首页 > 学术期刊 > 热机效率论文参考文献

3个回答 默认排序
  • 默认排序
  • 按时间排序

Diana~蜜桃

已采纳

你的意思是想要代里一款自己手机麻将游戏么。代里一款麻将游戏的步骤如下:1、首选确定什么类型的麻将游戏会被市场所需要;2、了解自己的这款游戏的投放范围(区域性还是全国性);3、定制选择9五八开发合作伙伴有没有区域限制;4、谈相关的合作协议,完成签单即可;一般开发或者定制代里游戏的步骤就是以上4个基本步骤。

290 评论

静静仰望静

热机热引擎或称热机是能够将热源提供的一部分热量转化成为对外输出的机械能的机器。热机对外输出的机械能称为输出功。热机的工作模式一般可以简化为热力学循环的模型,热机的种类也按背后不同的热学模型命名,比如卡诺热机、迪塞尔热机等等。此外,按照热源或工作特性,也各自有约定成俗的名称,如柴油机、汽油机、蒸汽机等等。热机可以是开放系统,也可以是封闭系统。热源可以是使用煤的蒸汽炉,汽车发动机的燃烧室,也可以是太阳能的蒸汽炉,地热和核反应堆。热机分为内燃机和外燃机两种。人们一方面利用已经有的热能,或者燃烧燃料来创造热能给热力发动机,而另一方面却在浪费很多的热能,比如很多电厂不得不利用大量的水来冷却。法国工程师尼古拉·卡诺在1824年的研究推出了卡诺定理。这个定理表示即使是一个理想热机,它利用热能转化成机械能的效率也低于100%。这个公式是:效率 = 有用功/注入系统中的能量对所有热机对一个卡诺热机来说,这个公式变为:在这里,是高温热源给工作系统的热量,是低温热源给工作系统的热量(是负值)。熵变化量表示变化量卡诺热机中之图上之点,最后会回到原来的点,所以代入熵变化量式子将上式代入上上式只适用于卡诺热机根据卡诺提出的定理:在这里,和是温度以卡尔文为单位,等号仅当热机循环是可逆的时候成立。从而我们可以得出:[1]从这个公式我们可以看出,要得到100%的效率,低温热源需要在绝对零度下,或者高温热源温度无限大。

148 评论

蜜糖Rose

辅助——字母 F F V —数字 2 0 4 2—控制————软件— 非英文数理经典译评之二克拉贝隆:论热的驱动能力导读卡诺关于热机效率的原理性论文在沉睡了12年后等来了克拉贝隆的诠释。克拉贝隆此文不仅开启了热力学的理论化进程,还论及了相变和临界现象。发明柴油机的狄塞尔,想必读懂了此文的最后一句。撰文 曹则贤(中科院物理研究所研究员)1作者简介克拉贝隆(Benoît Paul Émile Clapeyron, 1799 – 1864), 法国工程师、物理学家, 曾在巴黎综合工科学校 (École polytechnique)和矿业学校( École des mines)接受高等教育。克拉贝隆的名字刻在埃菲尔铁塔上,是埃菲尔铁塔上所谓的72贤人之一, 同时出现的有他的大学同学 Gabriel Lamé (还记得曲线坐标变换的 Lamé 系数?)。按说克拉贝隆(图1)和卡诺在学习和学术上应该有交集,但似乎没有文献交代。 在卡诺辞世后两年,即1834年,克拉贝隆在皇家综合工科学校校刊上发表了 Mémoire sur la puissance motrice de la chaleur (论热的驱动能力)一文,此文乃是对卡诺思想的发展,是奠定热力学这门学科的第二篇。 1843年,克拉贝隆进一步发展了可逆过程的思想,给出了卡诺原理的确定的表述。 克拉贝隆是一个了不起的工程师,主持了巴黎到圣日耳曼之间铁路的建设。图1. 克拉贝隆2 版本源流此文的法文原版(图2)长达39页,1834年发表在皇家综合工科学校的校刊上,作者标明的身份是矿业工程师(ingénieur des mines);其英译版memoir on the motive power of heat于1837年面世。未见此文的中译本。图2. Mémoire sur la puissance motrice de la chaleur 一文的原始版本3学术背景简介关于气体的研究早在热机出现之前就卓有成效。爱尔兰人波义耳(Robert William Boyle,1627-1691)得出了气体压力与体积之间变换的关系,这个定律在1679年又为法国人马洛特(Edme Mariotte,1620-1684)独立得到,所以这个定律被称为波义耳定律(Boyle's law)、马洛特定律(the law of Mariotte)或者波义耳-马洛特定律。它说的是,一定量的气体在温度不变时,其体积和压力成反比,。关于气体的另一个定律是盖-吕萨克定律(the law of Gay-Lussac), 为法国人盖-吕萨克定律(Joseph Louis Gay-Lussac, 1778-1850)约在1808年所发现。在恒定压力下,在一定温度范围内所有气体都具有相同的平均热膨胀性。这个表述的含糊科学史上有人研究过,笔者以为,这地方实际上要说的,用现代语言来表述,是“在恒定压力下,所有气体的体积在一定温度范围内随温度的变化落在一条直线上”。关于气体还有一个定律是阿蒙顿定律(Amontons's law), 是法国人 (Guillaume Amontons, 1663-1705)在1700-1702 年间发现的:“一定量的气体当体积不变时,其压力随温度下降线性地减小。” 此为 绝对温度概念产生的实验基础 。这些气体所遵循的物理定律,对于热力学的建立具有至关重要的意义。这些定律是普适定律,我猜测热机效率独立于工质之思想或许就受到它的启发。注意到卡诺循环中涉及等温过程和绝热过程,等温过程气体的 p-V 变化由马洛特定律给出,那么绝热过程呢?再者,工作介质可不纯粹是气体,蒸汽机里明显有水而不总是水蒸气。液-气混合体系是怎样借助热产生驱动力的呢?这些是克拉贝隆要回答的主要问题。提醒读者一点,绝热用来描述一个器璧英文用的是 impermeable to heat,把 adiabatic 一词翻译成绝热并滥用到统计物理和量子力学,实在是失于草率。 Adiabatic 是不(让)通过的意思,不单针对热。 Thermally adiabatic 才是绝热。4文章摘译在气体之体积、压力和温度之间建立起联系的马洛特定律和盖-吕萨克定律早已为人们所接受。但是,这些定律没能告诉我们一定量的气体所含的热量,压缩或者降温放出去多少热量,也没给出定压和定容条件下比热(质)的定律(la loi des caloriques spécifiques à pression constant et à volume constant)。最近,Dulong 先生的文章“关于弹性流体比热的研究”断言:“等体积的弹性流体在相同的温度和压力下,因体积突然变化同样的比例,在此过程中会吸收或放出同样的绝对量的热。”拉普拉斯和泊松最近的工作表明,定容比热(calorique spcifique à volume constant)同定压比热(calorique spcifique à pression constant)的比值是不变的。我还要引用卡诺1824年文章中的工作,他的论证是建立在承认无保留地(英文把此处的 de toutes pièce 译成 absolutely)产生驱动力或者热(de créer de toutes pièce de la force motrice ou de la chaleur)之可能性的荒唐的基础上的。请记住如下的重要结果:1. 气体等温条件下改变体积和压力吸收或放出的热质之多少与气体的种类无关;2. 各种气体具有同样的定压热容与定容热容的差;3. 在等温条件下改变体积,若体积变化按照几何级数,则吸收或放出的热量呈算术级数。我有兴趣重新理解(reprende)卡诺的理论,我将试图表明卡诺的结果可以由一些更一般的定律轻松地得到(se déduisent sans peine d'une loi plus générale)。我也将把卡诺的研究所基于的基本定理作为出发点。热可以用来产生驱动力,反过来用驱动力也可以产生热。在前一种情形中总是有一定量的热质从高温物体去到了另一低温物体(il y a toujours passage d'une quantité determine de calorique d'un corps d'une température donnée à un corps d'une température inférieure)。两不同温度的物体直接接触,总意味着活力,或曰机械力或者作用量,的损失(perte de force vive, de force mécanique ou de quantité d'action)。因此欲实现最大效率, 热机中只能有等温接触 。我们关于气体与蒸汽的知识表明这个目标是可以达到的。假设有两物体A 和 B 分别维持在温度 T 和一个较低的温度 t 上。热机中的锅炉和冷凝器就是分别靠燃烧和冷水流维持两个不同温度的。设想气体和物体A 接触保持温度 T,物体A 提供气体因膨胀将其变成了潜在的(rend latente)热质,随着气体膨胀压力逐步变小。如 Fig.1 所示 (图3),体积从 CB 对应的值变到 ED 对应的值,这期间产生的机械力(译者注:现在称为功),是对压力乘上体积微分的积分,即图形 BCED 的面积。接着在绝热环境中(dans une enveloppe imperméable à la chaleur) 继续膨胀到 FG 对应的值,使得气体的温度从 T 降到 t,所得的机械力是图形 DEFG 的面积。现在让气体与温度为 t 的物体B 接触,压缩气体,因其压缩而由潜在变为可感知的(latent rendu sensible par la compression)热质被物体B 吸收从而保持在温度 t 下, 压力增加。这个过程由马洛特定律描述。 假设压缩到 K 点,此过程中放出的热量精确地等于膨胀时从物体A 处吸收的热量(译者注:这还是基于热质概念的想法)。此时,物体具有的绝对热质的量与其开始此过程时相同。把气体从物体B挪开,继续加压,潜热质会被释放出来使得气体最终回到温度 T 和开始时的体积与压力。气体的这一系列状态由体积、压力、温度和热质的绝对量(la quantité absolue de calorique)来表征。其中两个量已知,另两个量可由其求得。因此,若体积和热质的绝对量回到原来的值,可以确信压力和温度也回复到原来的值。体积减小过程消耗一定量的机械力,则此循环过程中所得的净机械力由 Fig.1 中的曲面平行四边形 CEFK 给出。逆过程也是可以的,只是产生机械力变成了吸收机械力,这两者的数值相同。通过把液体转化为气体能得到同样的结果。液体体积增加,其一部分变成蒸汽,热源A 提供所需的潜热质以维持温度 T。因为这个过程中压力(可以)不变,由 Fig.2(图3)中的直线 CE 表示。重复上述关于气体的循环,可得 Fig.2中的循环,产生的机械力为四边形 CEGK 的面积。但是,物体A 给出的热质都给了物体B,且过程中没有不同温度物体的接触。逆过程会把相同量的热质从物体B 传给物体A。由此可见,机械作用的量和从高温物体挪到低温物体的热的量是具有同样本性的量(des quantités de même nature), 两者可以互相替换。从在温度 T 下的物体到温度 t 下的另一物体,传递一定量的热和由此产生的作用的量,与所用哪种气体或液体无关。否则的话,会得出可以产生作用而不消耗任何热的荒唐。现在我们来推导最大(机械)作用的量的表达式,以及体积、压力、温度和热质的绝对量之间的新关系。结合马洛特定律和盖-吕萨克定律,可得温度 t(译者注:用的是摄氏温标)下体积 v 与压强 p 的关系式。考虑工作在温度 t 和 t-dt 下的热机,从 p, v 表征的状态开始,Fig.3 (图3)中平行四边形 abcd 就是所产生的机械作用的量度,为。其中,ab 和 cd 是等温曲线的投影,而 ad 是 bc 等热质量的曲线的投影。现在需要知道产生这些机械力所需的热质的量,把 Q 看作是 p 和 v 的函数,(译者注:没有偏微分符号),加上此是等温过程有,因此有。因此,产生的机械力与传递热质的量之比为。这个量与所用气体无关,与使用气体的量也无关,但是没有理由认为它与温度无关。也就是说,量应该是一个温度 t 的函数。而由关系式可知 t 本身是 pv的函数, 因此有,因此可得关于Q的一般性的表达(译者注:没弄懂 (hyp)p 这个表达的意义。从后文看就是 p。当然 log p的表示也是不恰当的,函数log的变量应该无量纲)。当然,函数 Q 可以写成形式,其中 B, C 都是温度的函数,由此可得,也即。此函数 C 具有重要的意义,它是正定的,是热所能产生最大机械作用的量度。由我们的理论,四个物理量,Q, t, p 和 v 由两个式子,即和,联系到了一起。函数 C 与气体种类无关,而函数 B 可能与具体的气体有关,但对所有的简单气体也可能是一样的(probable qu'elle est la même pour tous les gaz simples)。由关系式,对于由 (p, v) 和 (p', v') 所分别对应的状态,有。由关系式,还可以得到定压比热与定容比热之间的差为。(译者注:采用绝对温标,且知道把函数 C 选为绝对温度,这个差就是 R。把函数 C 选为绝对温度,要等克劳修斯和开尔文爵士的工作。)把同样的推理应用到蒸汽上可以得到潜热质、体积和压力之间的关系。考察 Fig.4 (图3)代表的过程,依然是在温度 t 和 t-dt 之间的过程,产生的机械作用的量度为平行四边形 cdef 的面积。若温度 t 下维持压力 p, 则两温度下的压差为。若液体密度为 ρ,气体密度为 δ,形成了体积为 v 的蒸汽,体积增加为。则四边形 cdef 的面积。设液-气相变所需单位体积的潜热为 k,k 是温度 t 的函数,则产生的机械作用与吸收热量比为。这个比只应该是温度的函数,,进一步可得,其中 C 是温度的函数。若气体密度远小于液体密度,由此可得。这个方程告诉我们,在同一温度下,不同液体的蒸汽所包含的潜热质正比于。若假设函数 C 和在任意温度下都不是无限的,则可知当压力足够大,温度足够高(lorsque la pression sera assez forte et la température assez élevée) 使得蒸汽的密度等同于液体密度时,潜热质减小到零(译者注:这就是在说临界现象啊)。T 和 Q 之间存在关系,这可以从我们已建立的原则通过类比得到。若提升物体的温度以dT而让体积不变,则压力会增加,如 Fig.5 (图3)中的线段 df 所示。接下来用热源A来保持温度 T+dT, 且允许体积增加,此过程中工质所含的热质的量 Q 会增加 dQ。此后,让工质冷却降低其温度达 dT 但保持其间体积不变,则压力减小一个由前段 ge 表示的小量。这时工质的温度是 T,现在令其和热源 B 接触,保持温度不变减小其体积,从而回到出发点上的体积。相应地,其压力和所含的热质也回复到原来的值。平行四边形 dfge 的面积为

160 评论

相关问答

  • 航空公司运营效率论文参考文献

    随着国际民航事业的发展,我国民航事业也在稳步扩大和飞速的提升,航空公司所起的作用日益重要。下文是我为大家整理的关于航空公司有关论文优秀 范文 的内容,欢迎大

    小胖怡情 2人参与回答 2023-12-10
  • 考研热论文的参考文献

    论文参考文献,就是你所写的论文中引用的其他资料中的内容,如数据、概念及别人的研究成果等。不能随便写,是要写出准确出处的。参考文献的编写格式要求。 一、参考文献著

    咚董董动 5人参与回答 2023-12-06
  • 考研热论文参考文献

    很多的,可以看 国外研究生论文期刊参考资料 [1].国外研究生学术,国外工程管理硕士专业学位(MEM)设置对我国的启示,《国外论文参考文献格式:国外蒙学文献》

    你真美呀? 9人参与回答 2023-12-11
  • 企业创新效率论文参考文献

    1、牛长松著。英国高校创业教育研究。学林出版社,2009.01。 2、席升阳著。我国大学创业教育的观念、理念与实践。科学出版社,2008.05 3、王英杰、郭小

    喵布拉基 3人参与回答 2023-12-11
  • 论文参考文献时效性

    硕士论文参考文献要求如下: 1、专着: 序号、作者名。书名[M].出版地:出版单位,出版年:引文页码。 2、期刊: 序号、作者名。题名[J].刊名,年,卷号(期

    阿迪思念 2人参与回答 2023-12-11