• 回答数

    3

  • 浏览数

    329

一坨Lemon
首页 > 学术期刊 > 关于常微分的毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

路人乙1987

已采纳

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

173 评论

诗诗2009

随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系

313 评论

左村爆破兵

随机微分方程数值解在泄洪风险分析中的应用摘要: 根据泄洪过程中库水位过程的随机微分方程,利用数值解方法,模拟了随机干扰下的库水位及其波动状况.采用相应公式计算了洪水漫越坝顶事件的概率以及库水位过程在不同时刻的样本均值.并通过比较在同样强度的随机干扰下库水位的高低状况,确定出各种泄洪方案的优劣,从而对防洪工作具有重要的指导意义.关键词: 随机微分方程;数值解;欧拉法;泄洪风险1 引 言收稿日期:2005-06-27基金项目:国家自然科学基金(60474037);教育部新世纪优秀人才支持计划(NCET-04-415) 对于洪水,风暴潮等自然灾害事件,风险分析是一种极为有效的工具[1].由于洪水过程具有很多种不确定性因素,随机性便很自然地被引入到防洪过程的分析.近年来,这方面的很多研究工作都认为洪水过程是一随机点过程[2—4];Sen以一阶马尔科夫过程为工具对具有线性相关结构的水文系列风险进行计算[5].特别地,随机微分方程被引入防洪风险分析,由此建立了水库调洪演算的随机数学模型[6,7].由于随机微分方程本身的复杂性,除了一些线性的或者特殊结构的方程以外,可求出显示解的随机微分方程很少[8,9].本文中讨论的随机微分方程不具有上述性质,因此无法求出显示解.姜树海根据其解过程的一阶概率密度函数满足Fokker-Plank向前方程,而这一方程又是一偏微分方程,从而利用偏微分方程的有限差分法求出其数值解[6],但这种方法不能求得概率特征,于是JC计算方法被用于近似地算出洪水漫越坝顶的概率[7].不难看出,这种方法由于采用多次转化,误差比较大.本文利用随机微分方程数值解方法,结合实际例子,分析总结了库水位在布朗运动干扰下的随机波动状况;直接求出了洪水漫坝的风险概率和库水位过程在不同时刻的数学期望.并且还对不同的方案进行分析比较,以确定哪种方案的效果更好,从而可对防洪决策过程提供一定的依据.2 调洪过程的随机微分方程调洪过程中入库洪水和出库泄量是随机过程,其库容水位满足随机微分方程[6]:dH(t) =Q-(t) -q-(H,c)G(H)dt+dB(t)G(H)H(t0) =H0(1)H(t)为库水位过程;H0为初始库水位,它是一个随机变量;Q(t)为任意时刻入库洪水量;q(h,c)为相应时刻的泄洪流量;Q-,q-分别为来流和泄洪的均值过程线;c为流量系数等水利参数.G(H) =dW(H)dH,W(H)是水库的库容量,B(t)是一均值为零的Wiener过程,dB(t)/dt是一正态白噪声,B(t)的一维概率密度函数f(B)为:f(B) =12πt·σexp -B22σ2t.由上式可以看出,E[B(t)] = 0,D[B(t)] =σ2t.洪水漫越坝顶的泄洪风险率定义为Pf=Pf[H Z],其中,Z为相应的坝高.3 计算方法由于随机微分方程很少可求出显示解,故其数值解方法得到广泛的研究和应用.相对于常微分方程数值法而言,随机微分方程数值解方法引入了随机增量,它将所考虑的时间区间做有限划分,一步一步地在节点处生成样本轨道的逼近值,其数值解方法主要有:Eu-ler法、Milstein法、Runge-Kutta法等.这里采用Euler法.3.1 随机微分方程解的欧拉逼近法考虑一般随机微分方程:dXt=a(t,Xt)dt+b(t,Xt)dWt(2)其中,t0 t T,初始条件是Xt0=X0.我们对时间区间[t0,T]进行离散化:t0=τ0<τ1<…<τn<…<τN=T. 采用Euler逼近法[8],构造一连续过程Y= {Y(t),t0 t T}满足以下迭代格式:Yn+1=Yn+a(τn,Yn)(τn+1-τn) +b(τn,Yn)(Wτn+1-Wτn)其中,n= 0,1,2,…,N- 1,Y0=X0.将通过逐步迭代得出的有限个离散的随机变量作为原随机微分方程在相应时间节点的近似解.显然,如果扩散项系数为零,则原随机微分方程退化为一般的常微分方程,于是随机微分方程的Euler法就退化为常微分方程的Euler法.就数值方法而言,一般讨论其强收敛性.定义1[8] 对于一个最大步长为δ的离散逼近序列Yδ,它在时刻T强收敛于一个Ito∧过 你好,我有相关论文资料(博士硕士论文、期刊论文等)可以对你提供相关帮助,需要的话请加我,7 6 1 3 9 9 4 5 7(扣扣),谢谢。

132 评论

相关问答

  • 有关高阶常微分方程的毕业论文

    列几个题目引导一下你吧,呵呵,我不是学这能帮助你的也只能这样了。抽象代数中的若干问题[数学专业论文]复变函数积分方法探究[数学专业论文]高阶微分方程解的分布问题

    天骄建材 4人参与回答 2023-12-11
  • 关于微电影毕业论文

    作为大众 文化 的电影已经有了100多年的历史,在现代营销的催化下,电影中的 广告 元素的利用成为目前的一种新的媒介。下面是我为大家整理的电影广告研究生

    猫与老虎 2人参与回答 2023-12-06
  • 关于微生物的毕业论文

    优秀的临床医学专业的学生培养是我国医学院的重点,但是本科生临床专业的学生培养质量还有待提高。下面是我为大家整理的本科临床医学 毕业 论文,供大家参考。本科临

    笑脸笑脸笑脸 3人参与回答 2023-12-05
  • 常微分论文开题报告

    开题报告就是你选题的一些简要介绍,让老师看看你的题目是否合理,准备的差不多,以及是否可以动工写了包括如下几个部分:1论文的研究目的和意义2国内(外)研究现状文献

    足疗沙发厂家 8人参与回答 2023-12-11
  • 关于微信的毕业论文

    我这有一个类似的订单系统, 不过是基于web的, 如果说基于微信公众平台的不知道你的要求是写一个h5+接入嵌入呢, 还是其他方式如果是h5的话就比较简单了, 页

    小希很爱小希 3人参与回答 2023-12-06