• 回答数

    4

  • 浏览数

    231

潘朵拉的音乐
首页 > 学术期刊 > 研究生论文纳什均衡

4个回答 默认排序
  • 默认排序
  • 按时间排序

wumeiyan01

已采纳

“纳什均衡”:合作是有利的“利己策略”。它必须符合以下黄金律:按照你愿意别人对你的方式来对别人,但只有他们也按同样方式行事才行。也就是中国人说的“己所不欲勿施于人”。但前提是人所不欲勿施于我。1994年诺贝尔经济学奖的获得者美国普林斯顿大学的约翰·纳什。纳什获得诺贝尔经济学奖的原因是他在博奕沦领域的贡献,他提出了“纳什均衡”理论、关于博奕论,流传最广的是一个叫做“囚徒困境”的故事:话说有一天,一个富翁在家中被杀,财物被盗;警方在此案的侦破过程中,抓到两个犯罪嫌疑人张三和李四,并从他们的住处搜出被害人家中丢失的财物。但是,他们矢口否认曾杀过人,辩称他们只是顺手牵羊偷了点儿东西。于是警方将两人隔离,分别关在不同的房间进行审讯。警察分别对张三和李四说,“由于你们的偷盗罪已有确凿的证据,所以可以判你们1年刑期。但是,我可以和你做个交易。如果你单独坦白杀人的罪行,我只判你3个月的监禁,但你的同伙要被判10年刑。如果你拒不坦白,而被同伙检举,那么你就将被判10年刑,他只判3个月的监禁。但是,如果你们两人都坦白交代,那么,你们都要被判5年刑。”张三和李四怎么办呢?他们面临着两难的选择——坦白或抵赖。显然最好的策略是双方都抵赖,结果是大家都只被判一年。但是由于两人处于隔离的情况下无法串供,按照亚当·斯密的理论,每一个人都是一个“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他招了,我不招,得坐10年监狱,招了才5年,所以招了划算;假如我招了,他也招,得坐5年,他要是不招,我就只坐3个月,而他会坐10年牢,也是招了划算。综合以上几种情况考虑,不管他招不招,对我而言都是招了划算。两个人都会动这样的脑筋,最终,两个人都选择了招?结果都被判5年刑期。原本对双方都有利的策略(抵赖)和结局 (被判1年刑)就不会出现。这就是著名的“囚徒困境”。它实际上反映了一个很深刻的问题,这就是个人理性与集体理性的矛盾。实际上,如果两个都抵赖,各判刑1年,显然比都判5年好,但实际上做不到,因为它不满足个人理性要求。作为一个理性的人,张三和李四都会想,如果我抵赖而对方坦白的话,自己就可能判刑10年,理性的人是不会冒这种险的。但张三和李四都理性选择的结果,两人都被判了5年,最优的被判1年的结果并没有出现。也就是说,对每个人而言都是理性的选择,但对于整个集体来说却是不理性的。这与传统经济学所言的结论相悖。传统经济学认为市场经济存在“看不见的手”,它调节的结果是每个人的理性选择最终会造成对整个集体的最大利益。实际上,就像囚徒困境一样,这只看不见的手在参与选择的人数只有少数几个的时候会失去作用,因为这个时候,人们决策的过程会考虑其他参与者的想法,就像赌博和下棋的时候一样,这就和买家和卖家数量都巨大时的完全竞争不完全一样,需要新的一套思路进行研究。在上面的例子中,我们注意到了一个并非最优的结果,就是两人都选择坦白的策略以及因此被判5年的结果,这个结果被称为“纳什均衡”,也叫非合作均衡。博奕论中最基本的概念就是“纳什均衡”,一谈到博奕论,人们说的最多的最著名的也是“纳什均衡”。纳什均衡指的是这样一种战略组合,这种战略组合由所有参与人的最优战略组成,也就是说,给定别人战略的情况下,没有任何单个参与人有积极性选择其他战略使自己获得更大利益,从而没有任何人有积极性打破这种均衡。当然,“纳什均衡”虽然是由单个人的最优战略组成,但并不意味着是一个总体最优的结果。如上述,在个人理性与集体理性的冲突的情况下,各人追求利己行为而导致的最终结局是一个“纳什均衡”,也是对所有人都不利的结局。从这个意义上说,“纳什均衡”提出的悖论实际上动摇了西方经济学的基石。同时,它也提示我们:合作是有利的“利己策略”。实际上,如果上述两个囚徒能够串供进行合作,那么他们一定会选择都抵赖从而只因偷盗罪被判1年,当然,正是考虑到了这一点,所以警察才对他们隔离审查从而获知了事实真相,对囚徒而言最有利的合作结果才没有出现。“纳什均衡”描述的就是一种非合作博奕均衡,在现实中非合作的情况要比合作情况普遍。所以“纳什均衡”是对冯·诺依曼和摩根斯特恩的合作博奕理论的重大发展,甚至可以说是一场革命。今天,纳什均衡被广泛应用于各个领域的研究,尤其在进行制度分析寸,我们可应用它得出一个很重要结论:一种制度(体制)安排要发生效力,必须是一种纳什均衡。否则,这种制度安排便不能成立。

84 评论

婕哥大王

纳什均衡,Nash equilibrium ,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名. 约翰·纳什1948年作为年轻数学博士生进入普林斯顿大学.其研究成果见于题为《非合作博弈》(1950)的博士论文.该博士论文导致了《n人博弈中的均衡点》(1950)和题为《非合作博弈》(1951)两篇论文的发表.纳什在上述论文中,介绍了合作博弈与非合作博弈的区别.他对非合作博弈的最重要贡献是阐明了包含任意人数局中人和任意偏好的一种通用解概念,也就是不限于两人零和博弈.该解概念后来被称为纳什均衡. 纳什的主要学术贡献体现在1950年和1951年的两篇论文,1950年他才把自己的研究成果写成题为“非合作博弈”的文章刊登在美国全国科学院每月公报上,立即引起轰动.说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低,嘲笑几天之后,他遇到盖尔,像说梦话似的告诉他自己已经将冯·诺依曼的“最小最大原理找到了普遍化的方法和均衡点.纳什这个初出茅庐的小子,根本不知道竞争的险恶,从没想到学术欺的后果.结果还是戴维·盖尔充当了他的“经纪人”,起草致科学院的短信,系主任列夫谢茨则利用方便的人脉关系亲自将文稿递交给科学院.纳什写的文章不多,他辩解说:少了才是精品.中国国内提一个教授,要求在“核心的刊物”上发表多少篇文章.按照这个标准可能纳什还不一定够资格. 1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法. Nash平衡是指博弈中这样的局面,对于每个参与者来说,只要其他人不改变策略,他就无法改善自己的状况.Nash在证明了在每个参与者都只有有限种策略选择、并允许混合策略的前提下,Nash平衡一定存在.以两家公司的价格大战为例,Nash平衡意味着两败俱伤的可能:在对方不改变价格的条件下,既不能提价,否则会进一步丧失市场;也不能降价,因为会出现赔本甩卖.于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案,也就是Nash平衡.类似的推理当然也可以用到选举,群体之间的利益冲突,潜在战争爆发前的僵局,议会中的法案争执等. 假设有n个局中人参与博弈,给定其他人策略的条件下,每个局中人选择自己的 纳什均衡 最优策略(个人最优策略可能依赖于也可能不依赖于他人的战略),从而使自己利益最大化.所有局中人策略构成一个策略组合(Strategy Profile).纳什均衡指的是这样一种战略组合,这种策略组合由所有参与人最优策略组成.即在给定别人策略的情况下,没有人有足够理由打破这种均衡.纳什均衡,从实质上说,是一种非合作博弈状态. 纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的.纳什均衡也不意味着博弈双方达到了一个整体的最优状态,以下的囚徒困境就是一个例子.

104 评论

CuteGourmet

纳什均衡(没有特定的定义)既是:在这一均衡中,每个博弈参与人都确信,在给定其他参与人战略决定的情况下,他选择了最优战略以回应对手的战略。”也就是说,所有人的战略都是最优的。而讲解“纳什均衡”的最著名的案例就是“囚徒的困境”。 列:a,b两个囚徒,a坦白b抵赖,b判10年,a判1年.若两人均坦白则各判5年,若两人均抵赖则都判2年。a,b面临抉择。 显然最好的策略是双方都抵赖,结果是大家都只被判2年。但是由于两人处于隔离的情况下无法串供,按照亚当·斯密的理论,每一个人都是一个“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如他招了,我不招,得坐10年监狱,招了才5年,所以招了划算;假如我招了,他也招,得坐5年,他要是不招,我就只坐1年,而他会坐10年牢,也是招了划算。综合以上几种情况考虑,不管他招不招,对我而言都是招了划算。两个人都会动这样的脑筋,最终,两个人都选择了招,结果都被判5年刑期。 原本对双方都有利的策略(抵赖)和结局 (被判1年刑)就不会出现。这就是著名的“囚徒困境”。它实际上反映了一个很深刻的问题,这就是个人理性与集体理性的矛盾。

95 评论

打豆打豆

第1节 纳什:天才还是疯子?《美丽心灵》是一部非常经典的影片,它再现了伟大的数学天才约翰·纳什的传奇经历,影片本身以及背后的人物原型都深深地打动了人们。这部影片上演后接连获得了第59届金球奖的5项大奖,以及2002年第74届奥斯卡奖的4项大奖。纳什是一位数学天才,他提出的“纳什均衡”是博弈论的理论支柱。同时,他还是诺贝尔经济学奖获得者。但这并不是他的全部,只是他传奇人生中辉煌的一面。我们在讲述“纳什均衡”之前,先来了解这位天才的传奇人生。纳什于1928年出生在美国西弗吉尼亚州。他的家庭条件非常优越,父亲是工程师,母亲是教师。纳什小时候性格孤僻,不愿意和同龄孩子一起玩耍,喜欢一个人在书中寻找快乐。当时纳什的数学成绩并不好,但还是展现出了一些天赋。比如,老师用一黑板公式才能证明的定理,纳什只需要几步便可完成,这也时常会让老师感到尴尬。 1948年,纳什同时被4所大学录取,其中便包括普林斯顿、哈佛这样的名校,最终纳什选择了普林斯顿。当时的普林斯顿学术风气非常自由,云集了爱因斯坦、冯·诺依曼等一批世界级的大师,并且在数学研究领域一直独占鳌头,是世界的数学中心。纳什在普林斯顿如鱼得水,进步非常大。 1950年,纳什发表博士论文《非合作博弈》,他在对这个问题继续研究之后,同年又发表了一篇论文《n人博弈中的均衡点》。这两篇论文不过是几十页纸,中间还掺杂着一些纳什画的图表。但就是这几十页纸,改变了博弈论的发展,甚至可以说改变了我们的生活。他将博弈论的研究范围从合作博弈扩展到非合作博弈,应用领域也从经济领域拓展到几乎各个领域。可以说“纳什均衡”之后的博弈论变成了一种在各行业各领域通用的工具。 发表博士论文的当年,纳什获得数学博士学位。1957年他同自己的女学生阿丽莎结婚,第二年获得了麻省理工学院的终身学位。此时的纳什意气风发,不到30岁便成为了闻名遐迩的数学家。1958年,《财富》杂志做了一个评选,纳什被评选为当时数学家中最杰出的明星。上帝喜欢与天才开玩笑,处于事业巅峰时期的纳什遭遇到了命运的无情打击,他得了一种叫作“妄想型精神分裂症”的疾病。这种精神分裂症伴随了他的一生,他常常看到一些虚幻的人物,并且开始衣着怪异,上课时会说一些毫无意义的话,常常在黑板上乱写乱画一些谁都不懂的内容。这使得他无法正常授课,只得辞去了麻省理工大学教授的职位。 辞职后的纳什病情更加严重,他开始给政治人物写一些奇怪的信,并总是幻觉自己身边有许多苏联间谍,而他被安排发掘出这些间谍的情报。精神和思维的分裂已经让这个曾经的天才变成了一个疯子。 他的妻子阿丽莎曾经深深被他的才华折服,但是现在面对着精神日益暴躁和分裂的丈夫,为了保护孩子不受伤害,她不得不选择同他离婚。不过,他们的感情并没有就此结束,她一直在帮他恢复。1970年,纳什的母亲去世,他的姐姐也无力抚养他,当纳什面临着露宿街头的困境时阿丽莎接收了他,他们又住到了一起。阿丽莎不但在生活中细致入微地照顾纳什,还特意把家迁到僻静的普林斯顿,远离大城市的喧嚣,她希望曾经见证纳什辉煌的普林斯顿大学能重新唤起纳什的才情。 妻子坚定的信念和不曾动摇过的爱深深地感动了纳什,他下定决心与病魔做斗争。最终在妻子的照顾和朋友的关怀下,20世纪80年代纳什的病情奇迹般地好转,并最终康复。至此,他不但可以与人沟通,还可以继续从事自己喜欢的数学研究。在这场与病魔的斗争中,他的妻子阿丽莎起了关键作用。走出阴影后的纳什成为1985年诺贝尔经济学奖的候选人,依据是他在博弈论方面的研究对经济的影响。但是最终他并没有获奖,原因有几个方面,一方面当时博弈论的影响和贡献还没有被人们充分认识;另一方面瑞典皇家学院对刚刚病愈的纳什还不放心,毕竟他患精神分裂症已经将近30年了,诺贝尔奖获得者通常要在颁奖典礼上进行一次演说,人们担心纳什的心智没有完全康复。 等到了1994年,博弈论在各领域取得的成就有目共睹,机会又一次靠近了纳什。但是此时的纳什没有头衔,瑞典皇家学院无法将他提名。这时纳什的老同学、普林斯顿大学的数理经济学家库恩出马,他先是向诺贝尔奖评选委员会表明:纳什获得诺贝尔奖是当之无愧的,如果以身体健康为理由将他排除在诺贝尔奖之外的话,那将是非常糟糕的一个决定。同时库恩从普林斯顿大学数学系为纳什争取了一个“访问研究合作者”的身份。这些努力没有白废,最终纳什站在了诺贝尔经济学奖高高的领奖台上。 当年,同时获得诺贝尔经济学奖的还有美国经济学家约翰·海萨尼和德国波恩大学的莱茵哈德·泽尔腾教授。他们都是在博弈论领域做出过突出贡献的学者,这标志着博弈论得到了广泛的认可,已经成为经济学的一个重要组成部分。 经过几十年的发展,“纳什均衡”已经成为博弈论的核心,纳什甚至已经成了博弈论的代名词。看到今天博弈论蓬勃地发展,真的不敢想象没有约翰·纳什的博弈论世界会是什么样子。 第2节 解放博弈论我们一直在说纳什在博弈论发展中所占的重要地位,但是感性的描述是没有力量的,下面我们将从博弈论的研究和应用范围具体谈一下纳什的贡献,看一下“纳什均衡”到底在博弈论中占有什么地位。 前面我们已经介绍过了,博弈论是由美籍匈牙利数学家冯·诺依曼创立的。创立之初博弈论的研究和应用范围非常狭窄,仅仅是一个理论。1944年,随着《博弈论与经济行为》的发表,博弈论开始被应用到经济学领域,现代博弈论的系统理论开始逐步形成。 直到1950年纳什创立“纳什均衡”以前,博弈论的研究范围仅限于二人零和博弈。我们前面介绍过博弈论的分类,按照博弈参与人数的多少,可以分为两人博弈和多人博弈;按照博弈的结果可以分为正和博弈、零和博弈和负和博弈;按照博弈双方或者多方之间是否存在一个对各方都有约束力的协议,可以分为合作博弈和非合作博弈。 纳什之前博弈论的研究范围仅限于二人零和博弈,也就是参与者只有两方,并且两人之间有胜有负,总获利为零的那种博弈。 两人零和博弈是游戏和赌博中最常见的模式,博弈论最早便是研究赌博和游戏的理论。生活中的二人零和博弈没有游戏和体育比赛那么简单,虽然是一输一赢,但是这个输赢的范围还是可以计算和控制的。冯·诺依曼通过线性运算计算出每一方可以获取利益的最大值和最小值,也就是博弈中损失和赢利的范围。计算出的利益最大值便是博弈中我们最希望看到的结果,而最小值便是我们最不愿意看到的结果。这比较符合一些人做事的思想,那就是“抱最好的希望,做最坏的打算”。 二人零和博弈的研究虽然在当时非常先进和前卫,但是作为一个理论来说,它的覆盖面太小。这种博弈模式的局限性显而易见,它只能研究有两人参与的博弈,而现实中的博弈常常是多方参与,并且现实情况错综复杂,博弈的结局不止有一方获利另一方损失这一种,也会出现双方都赢利,或者双方都没有占到便宜的情况。这些情况都不在冯诺依曼当时的研究范围内。 这一切随着“纳什均衡”的提出全被打破了。1950年,纳什写出了论文《n人博弈中的均衡点》,其中便提到了“纳什均衡”的概念以及解法。当时纳什带着自己的观点去见博弈论的创始人冯·诺依曼,遭到了冷遇,之前他还遭受过爱因斯坦的冷遇。但是这并不能影响“纳什均衡”带给人们的轰动。 从纳什的论文题目《n人博弈中的均衡点》中可以看出,纳什主要研究的是多人参与,非零和的博弈问题。这些问题在他之前没人进行研究,或者说没人能找到对于各方来说都合适的均衡点。就像找出两条线的交汇点很容易,如果有的话,但是找出几条线的共同交汇点则非常困难。找到多方之间的均衡点是这个问题的关键,找不到这个均衡点,这个问题的研究便会变得没有意义,更谈不上对实践活动有什么指导作用。而纳什的伟大之处便是提出了解决这个难题的办法,这把钥匙便是“纳什均衡”,它将博弈论的研究范围从“小胡同”里引到了广阔天地中,为占博弈情况大多数的多人非零和博弈找到意义。纳什的论文《n人博弈中的均衡点》就像惊雷一样震撼了人们,他将一种看似不可能的事情变成了现实,那就是证明了非合作多人博弈中也有均衡,并给出了这种均衡的解法。“纳什均衡”的提出,彻底改变了人们以往对竞争、市场,以及博弈论的看法,它让人们明白了市场竞争中的均衡同博弈均衡的关系。 “纳什均衡”的提出奠定了非合作博弈论发展的基础,此后博弈论的发展主要便是沿着这条线进行。此后很长一段时间内,博弈论领域的主要成就都是对“纳什均衡”的解读或者延伸。甚至有人开玩笑说,如果每个人引用“纳什均衡”一次需要付给纳什一美元的话,他早就成为最富有的人了。 不仅是在非合作博弈领域,在合作博弈领域纳什也有突出的贡献。合作型博弈是冯·诺依曼在《博弈论与经济模型》一书中建立起来的,非合作型博弈的关键是如何争取最大利益,而合作型博弈的关键是如何分配利益,其中分配利益过程中的相互协商是非常重要的,也就是双方之间你来我往的“讨价还价”。但是冯·诺依曼并没有给出这种“讨价还价”的解法,或者说没有找到这个问题的解法。纳什对这个问题进行了研究,并提出了“讨价还价”问题的解法,他还进一步扩大范围,将合作型博弈看做是某种意义上的非合作性博弈,因为利益分配中的讨价还价问题归根结底还是为自己争取最大利益。 除此之外,纳什还研究博弈论的行为实验,他就曾经提出,简单的“囚徒困境”是一个单步策略,若是让参与者反复进行实验,就会变成一个多步策略。单步策略中,囚徒双方不会串供,但是在多步策略模式中,就有可能发生串供。这种预见性后来得到了验证,重复博弈模型在政治和经济上都发挥了重要作用。 纳什在博弈论上做出的贡献对现实的影响得到越来越多的体现。20世纪90年代,美国政府和新西兰政府几乎在同一时间各自举行了一场拍卖会。美国政府请经济学家和博弈论专家对这场拍卖会进行了分析和设计,参照因素就是让政府获得更多的利益,同时让商家获得最大的利用率和效益,在政府和商家之间找到一个平衡点。最终的结局是皆大欢喜,拍卖会十分成功,政府获得巨额收益,同时各商家也各取所需。而新西兰举行的那场拍卖会却是非常惨淡,关键原因是在机制设计上出现了问题,最终大家都去追捧热门商品,导致最后拍出的价格远远高于其本身的价值;而一些商品则无人问津,甚至有几种商品只有一个人参与竞拍,以非常低的成交价就拍走了。 正是因为对现实影响的日益体现,所以1994年的诺贝尔经济学奖被授予了包括纳什在内的三位博弈论专家。 我们最后总结一下纳什在博弈论中的地位,中国有句话叫“天不生仲尼,万古长如夜”。意思是老天不把孔子派到人间,人们就像永远生活在黑夜里一样。我们如果这样说纳什同博弈论的关系的话,就会显得夸张。但是纳什对博弈论的开拓性发展是任何人都无可比拟的,在他之前的博弈论就像是一条逼仄的胡同,而纳什则推倒了胡同两边的墙,把人们的视野拓展到无边的天际。

228 评论

相关问答

  • 教育均衡发展和学校布局研究论文

    教育 关系到人才的培养,关系到一个国家的未来,义务教育是我国的一大教育特色。下面是我带来的关于义务教育论文的内容,欢迎阅读参考!义务教育论文篇1:《农村义务教

    谈情伤感情 3人参与回答 2023-12-09
  • 膳食营养均衡课题研究论文

    饮食营养与健康论文 饮食营养与健康论文,饮食是一种文化,而中华美食则誉满天下。中国饭好吃,外国人爱吃也是不争的事实。中国的饮食文化源远流长。以下是我整理的饮食营

    姣姣Devil 2人参与回答 2023-12-05
  • 义务教育均衡化研究论文

    最新的~ 详细一些~

    哈鲁咕噜 3人参与回答 2023-12-05
  • 负载均衡算法研究论文

    条件: 发表时间 between (2012-01-01,2014-05-30 and 题名=算法分析) (精确匹配)RT Conference Proceed

    Sally-yiner 2人参与回答 2023-12-06
  • 均衡教育论文大纲样本模板

    义务教育均衡发展,是义务教育本质属性的要求,是政府公共服务的法定职责,更是促进教育公平、构建社会主义和谐社会的重要举措,将为全面实施素质教育提供宽松的环境。进入

    秋刀鱼与禹 3人参与回答 2023-12-11