• 回答数

    2

  • 浏览数

    123

小雨叫主子
首页 > 学术期刊 > 细胞图像分割系统毕业论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

王小旭zx

已采纳

题目的拟定对于一篇医学论文来说至关重要,选题有意义,写出来的 文章 才有学术价值,如果选定的题目毫无意义或过于偏狭,也毫无价值可言。下面我给大家带来2021医学专业的 毕业 论文题目有哪些,希望能帮助到大家!

医学影像技术论文题目

[1]培养医学影像学生审美能力提高《医学影像检查技术》教学效果

[2]大学教材《医学影像成像原理》出版发行

[3]_版中国科技期刊引证 报告 相关数据——《中国医学影像技术》

[4]《中国医学影像技术》被数据库收录情况

[5]肺结节人工智能技术在医学影像学专业实习生教学中的初步应用

[6]基于网络资源“探究式-理实一体化”教学在超声诊断学中的应用

[7]医学物理学开放性实验教学模式探索

[8]角色扮演教学法在医学影像检查技术学临床示教中应用的研究

[9]中国超声医学的发展与展望

[10]《中国医学影像技术》被数据库收录情况

[11]医学影像实训教学大型设备拆移、软件处理探讨

[12]现代医学影像科核磁机房施工技术分析——以江苏省妇幼保健院为例[

[13]医学影像技术专业在核医学科实习过程中的问题分析及应对

[14]高职高专医学影像实训基地的建设与研究

[15]医学影像技术学中CT与MR教学分析

[16]SPOC在医学影像检查技术学教学中的应用与实践

[17]全数字化_线影像技术在医学影像科的应用价值

[18]医学影像技术专业建设初探

[19]放射测量与防护教材的改革策略

[20]OBE教学理念在《断层解剖学》课程教学改革中的研究与探索

[21]数据挖掘技术在医学影像信息系统中的应用

[22]“以赛促学、以赛促教”全面提升我校医学影像技术专业育人质量

[23]本科医学影像技术专业多维度毕业考核模式的设计与实践

[24]医学影像检查技术教学与技能大赛结合的实践

[25]医学影像技术专业CT科室实习带教 方法 探讨

[26]对医学影像技术技能大赛选手辅导的体会

[27]PBL-LBL教学模式在医学影像检查技术学上的应用探索

[28]医学影像技术专业实习生在普通放射科DR摄影的带教心得

[29]基于TBL与CBL教学法的医学影像检查技术教学研究

[30]以“器官系统为中心”的中医院校医学影像学教学探讨

[31]医学影像技术在影像临床诊断中的应用探析

[32]基于FPGA的Micro-CT采集控制系统设计

[33]医用模拟人在医学影像技术专业实训中的应用效果

[34]医学影像技术专业学生毕业实习教学模式分析

[35]基于云课堂的混合式学习在医学影像技术课程 教育 中的应用——以《盆部影像检查技术》为例

[36]20_版中国科技期刊引证报告相关数据——《中国医学影像技术》

[37]《中国医学影像技术》被数据库收录情况

[38]PBL教学法在MRI检查技术实习带教中的效果

[39]微信辅助改良式PBL教学法在医学影像学实习带教中的应用

[40]医学影像技术高素质人才的培养方式研究

[41]医学影像技术在慢性肾脏病早期肾功能评估中的研究与应用进展

[42]基于“医、教、研、赛”四维协同平台的医学影像技术专业人才培养体系建设实践

[43]基于计算机的医学影像后处理技术定位癫痫致痫灶研究进展

[44]图像增强技术在数字x射线医学影像中的应用分析

[45]基于视觉优化的医学影像数据可视化技术研究

[46]医学影像学导航技术在穿支皮瓣的应用进展

[47]安徽省职业教育先进单位 安徽省淮北卫生学校

[48]基于深度学习的医学图像分割研究进展

[49]《中国医学影像技术》被数据库收录情况

[50]20__版中国科技期刊引证报告相关数据——《中国医学影像技术》

中医论文题目

[1]胁痛中医临床实践指南

[2]发生学视角下中医肝藏实质探溯

[3]口疮中医临床实践指南

[4]基于数据挖掘中医古籍中肺热病症状及证型分布规律分析

[5]基于数据挖掘中医古籍治疗肺热病遣方用药分析[

[6]“冲气”观与中医学

[7]基于现代文献的膝骨关节炎中医证型与证素分布规律研究

[8]肝硬化腹水的中医药治疗现状

[9]疏肝健脾法治疗肝郁脾虚型卒中后抑郁的疗效meta分析

[10]基于中医传承辅助系统的脊髓损伤内治处方分析

[11]中医治未病·血管性轻度认知障碍专家共识

[12]氟骨症的中医治疗研究进展

[13]三子养亲汤加减对肺气虚型尘肺病患者中医证候的影响

[14]现代信息技术在中医四诊中的应用研究

[15]热敏灸对腰椎间盘突出症患者预后的影响观察

[16]中医综合护理在功能性消化不良患者中的应用分析

[17]基于“脾肾相关”论治疗骨质疏松症的研究进展

[18]无症状颈动脉狭窄人群认知功能障碍与中医体质分布特点研究

[19]基于数据挖掘对中医治疗慢性肾衰竭组方规律的分析

[20]温脾散穴位敷贴联合理中复元方对脾虚痰瘀型慢性萎缩性胃炎患者的临床疗效

[21]中成药在子宫腺肌病治疗中的应用研究进展

[22]中药复方治疗老年性骨质疏松症疗效Meta分析及用药规律分析

[23]基于中医传承辅助平台探讨沈舒文教授治疗慢性胃炎的用药规律

[24]中药膏方联合穴位埋线治疗支气管哮喘缓解期临床观察

[25]温阳通络方对急性心肌梗死经皮冠状动脉介入治疗术后患者心室重构和血管内皮功能的影响

[26]原发性支气管肺癌中医体质和中医证型调查研究

[27]慢性非萎缩性胃炎中医证型与幽门螺杆菌感染、胃镜像及病理表现相关性分析

[28]透刺配合热补针法治疗风寒湿阻型膝关节滑膜炎疗效及对红细胞沉降率、C反应蛋白、前列腺素E_2和滑膜动脉血流指数的影响

[29]运用中医治未病思想防治克罗恩病

[30]循证医学与中医学的 反思

[31]艾灸治疗肛肠术后尿潴留研究进展

[32]基于中医理论的智能养生餐厅探析

[33]基于文献研究与专家共识法的原发性痛经中医证候研究

[34]基于虚实辨证的补泻平衡手法治疗膝骨关节炎临床研究

[35]从“胃不和则卧不安”理论探讨失眠的辨证论治

[36]郭志华运用桔梗治疗心衰 经验

[37]谢林运用风药治疗椎动脉型颈椎病

[38]基于病历数据的中医临床能力数字化评价体系研究

[39]基于临床调查的冠心病心绞痛气虚证症状组成的文献分析

[40]安胃汤治疗功能性消化不良寒热错杂证的临床观察

医学检验免疫毕业论文题目

1、基于纳米颗粒的分子展示应用于超灵敏检测

2、SLE患者中几种新型自身抗体的检测及其临床诊断价值的探讨

3、多肽酶检测和细胞表面荧光标记的新方法研究

4、区域检验服务协同平台的设计与实现

5、胶体金喷膜仪的设计与开发

6、重庆市乡镇卫生院医疗资源的调查研究

7、基于氧化石墨烯和硫化铅纳米颗粒的荧光生物传感器研究

8、产气荚膜梭菌α毒素快速诊断金标试纸条的研制及初步应用

9、纳米粒子免疫层析法在检测异位妊娠和膀胱癌中的应用

10、现代医院检验科模块化设计研究

11、酶免工作站监控系统的设计与实现

12、乙型肝炎表面抗原胶体金免疫层析法血清快速测定的性能评估

13、基于微型压电与光谱生化分析系统的POCT新技术研究

14、长江三角洲地区犬猫皮肤真菌病调查及体外药敏试验

15、我国医学检验本科专业人才培养的问题与对策研究

16、基于电化学分子信标基因传感技术的HIV-1核酸检测新方法研究

17、Free β-hCG和PAPPA光激化学发光免疫分析试剂的研制

18、乙肝快速分析仪的研究与开发

19、阿托伐他汀对动脉粥样硬化患者外周血中PPAR γ的作用研究及相关炎症因子与动脉粥样硬化关系的建模分析

20、综合性医院医学检验资源优化管理研究

21、全自动多功能免疫检验过程关键问题的优化研究

22、HMGB1通过NF-κB激活TGF-β1诱导特发性肺纤维化发病机制的研究

23、若干病毒感染模型的动力学分析

24、现代综合医院检验中心空间设计研究

25、大型公立医院创建医学独立实验室可行性研究

26、高血压病证型与血清褪黑色素水平的相关性研究

27、医用臭氧与α-干扰素对照治疗慢性乙型病毒性肝炎

28、网织血小板在系统性红斑狼疮患者的临床应用

29、G公司第三方独立医学实验室服务营销策略研究

30、临床毛细管电泳的研究

31、基于光电检测与信息处理技术的纳米金免疫层析试条定量测试的研究

32、贫铀长期作用后的吸收分布特点及其主要蓄积器官的损伤效应研究

33、基于磁性微球的PMMA微流控免疫分析芯片系统的研究

34、hr HPV、L1壳蛋白、p16蛋白与宫颈病变的关系及诊断价值研究

35、76例急性白血病的MICM分型及预后

36、国产化学发光法诊断系统检测乙肝表面抗原的评价

37、蛋白A-藻蓝蛋白β亚基双功能蛋白的性质及其在免疫检测中的应用

38、上海市社区卫生服务中心检验开展现状及检验项目合理化设置研究

39、__ 医学检验集团发展战略研究

40、胃肠肿瘤标志物诊断大肠癌之检验医学实践

41、广州KM公司分析前流程优化方案制定

42、医学高职院校人文教育现状与对策研究

43、脑脊液中ADA、LA、CRP、LDH的检测在小儿颅内感染诊断中的价值

44、MiR210和Stat3全脑缺血大鼠脑组织的表达通过HIF-1α通路对神经元凋亡的影响

45、医学检验器材智能化物流系统的设计与运营

46、上海市嘉定区医疗机构临床实验室检验质量管理现状及对策研究

47、六西格玛管理在临床检验流程中的应用研究

48、基于纳米材料修饰的新型生物传感器检测D-二聚体

49、新城疫快速诊断金标试纸条的研制及初步应用

50、肾上腺脑白质营养不良蛋白的原核表达和肾上腺脑白质营养不良的分子诊断研究

医学专业的毕业论文题目有哪些相关文章:

★ 临床医学专业的毕业论文

临床医学专业毕业论文5000字(2)

★ 临床医学专业毕业论文5000字

大专临床医学毕业论文(2)

★ 医学的毕业论文

★ 临床医学生毕业论文(2)

★ 临床医学内科毕业论文(2)

★ 临床医学毕业论文范文大全

★ 本科临床医学专业毕业论文范文

★ 关于医学生的毕业论文3000字怎么写(2)

168 评论

sy2009Jason

摘要 人们普遍认为,对深层网络的成功训练需要数千份已标注的训练样本。在本文中,我们提出了一个网络和训练策略,为了更有效的利用标注数据,我们是用数据扩张的方法(data augmentation )的方法。该体系结构由两部分组成:包括一个收缩路径(contracting path )来获取上下文信息以及一个支持精确定位的对称扩展路径(symmetric expanding path)。我们证明,这样的网络可以从非常少的图像中进行端到端的训练,并且在ISBI(生物医学成像国际研讨会)挑战中优于先前的最佳方法(一个滑动窗口的卷积网络),用于在电子显微镜的堆栈中分割神经元结构。使用相同的网络,在透射光显微镜图像上(阶段对比DIC(鉴别干涉对比显微镜)),我们在这些类别中以很大的优势赢得了ISBI细胞跟踪挑战。此外,网络速度很快。在最近的GPU上,一个512x512图像的分割需要不到一秒的时间。完整的实现(基于Caffe)和经过训练的网络可以在: 一、介绍 在过去的两年里,在许多视觉识别任务中,深度卷积神经网络的表现超过了艺术状态。虽然卷积神经网络已经存在很长时间了,但由于可用的训练集的大小和被考虑的网络的大小,它们的成功是有限的。Krizhevsky等人的突破是由于对一个大型网络的监督训练,该网络有8层,数百万个参数在ImageNet数据集上,包括了100万个训练图像。从那以后,甚至更大、更深入的网络被训练。 [图片上传中...(-71d741-1523449829707-0)]

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations. 卷积神经网络的典型应用是分类任务上,对图像的输出是一个单独的类标签。然而,在许多视觉任务中,特别是在生物医学图像处理中,所期望的输出应该包括局部定位。一个类标签应该被分配给每个像素。此外,在生物医学任务中,数以千计的训练图像通常是无法触及的。因此,Ciresan等人建立了一个滑动窗口去训练了一个网络,通过预测每个像素点的类别对医学图像进行分割。首先,这个网络可以完成定位工作。其次,由于预测时要切patch,所以训练数据量比训练图片的数量大得多。由此产生的网络在2012年ISBI的EM分割挑战中获得了很大的优势。 很明显的是,这个网络有两个很明显的缺点:首先,它相当慢,因为每个patch都必须单独运行,由于重叠的patch会存在大量的冗余。(要分别预测每一个patch的类别,patch之间的重叠导致每次预测都要重复计算同一个点。)然后这个网络需要在局部准确性和获取整体上下文信息之间取舍。更大的patches需要更多最大池化层来降低定位精度,而小的patches则允许网络只看到很少的上下文。最近的方法提出了一个分类器输出,它考虑了来自多个层的特性。良好的定位和上下文的使用是可能的。 在这篇论文中,我们建立了一个更优雅的架构,即所谓的“全卷积网络”。我们修改并扩展了这个架构,使它可以使用非常少的训练图像就可以工作,并获得更高的分割准确率。fcn主要的想法是:修改一个普通的逐层收缩网络,用上采样(up sampling)操作代替网络后部的池化(pooling)操作。因此,这些层增加了输出的分辨率。为了定位,在网络收缩过程(路径)中产生的高分辨率特征(high resolution features) ,被连接到了修改后网络的上采样的结果上。在此之后,一个卷积层基于这些信息综合得到更精确的结果。 与fcn不同的是,我们的网络在上采样部分依然有大量的特性通道(feature channels)这使得网络可以将环境信息向更高的分辨率层(higher resolution layers)传播。结果是,扩张路径基本对称于收缩路径,并产生一个u型的体系结构。网络不存在任何全连接层(fully connected layers),并且,只使用每个卷积的有效部分,例如,分割图(segmentation map)只包含这样一些像素点,这些像素点的完整上下文都出现在输入图像中。overlap-tile strategy 允许无缝地分割任意大的图像(参见图2),为了预测图像边界区域的像素点,我们采用镜像图像的方式补全缺失的环境像素。这个tiling方法在使用网络分割大图像时是非常有用的,因为如果不这么做,GPU显存会限制图像分辨率。 Fig. 2. Overlap-tile strategy for seamless segmentation of arbitrary large images (here segmentation of neuronal structures in EM stacks). Prediction of the segmentation in the yellow area, requires image data within the blue area as input. Missing input data is extrapolated by mirroring. 对于我们的任务,我们的训练数据非常少,我们通过对现有的训练图像应用弹性形变的方式来增加数据。这使得模型学习得到形变不变性,不需要在带标注的图像语料库中看到这些转换。这在生物医学的分割中尤其重要,因为组织的形变是非常常见的情况,并且计算机可以很有效的模拟真实的形变,在无监督特征学习的范围内,Dosovitskiy等人的学习增加数据去获得不变性的的价值已经显现出来。 在许多细胞分割任务中,另一个挑战是如何将同类别的相互接触的目标分开,为了达到这个目的,我们建议使用加权损失,我们提出了使用一种带权重的损失(weighted loss)。在损失函数中,分割相互接触的细胞获得了更大的权重。 由此产生的网络适用于各种生物医学分割问题。在本文中,我们展示了EM栈中神经元结构的分割(在ISBI 2012年开始的一场持续的竞争),我们的表现超过了Ciresan等人的网络。此外,我们还展示了2015年ISBI细胞跟踪挑战的光学显微镜图像的细胞分割结果。在这两个最具挑战性的2D传输光数据集上,我们获得了很大的优势。 二、网络结构 图1展示了网络结构,它由contracting path 和 expansive path组成。contracting path是典型的卷积网络架构。它的架构是一种重复结构,每次重复中都有2个卷积层和一个pooling层,卷积层中卷积核大小均为3 3,激活函数使用ReLU,两个卷积层之后是一个2 2的步长为2的max pooling层。每一次下采样后我们都把特征通道的数量加倍。expanding path中的每一步都首先使用反卷积(up-convolution),每次使用反卷积都将特征通道数量减半,特征图大小加倍。反卷积过后,将反卷积的结果与contracting path中对应步骤的特征图拼接起来。contracting path中的特征图尺寸稍大,将其修剪过后进行拼接。对拼接后的map进行2次3 3的卷积。最后一层的卷积核大小为1 1,将64通道的特征图转化为特定深度(分类数量,二分类为2)的结果。网络总共23层。 为了允许无缝地平铺输出分割图(参见图2),选择输入tile大小是很重要的,这样所有2x2的最大池采样操作都被应用到一个具有偶数x和y大小的层上。 三、训练 利用输入图像及其相应的分割图,利用Caffe的随机梯度下降法对网络进行了训练。由于没有填充的卷积,输出图像要比输入的小,因为它是一个恒定的边界宽度。为了最小化开销并最大限度地使用GPU显存,比起输入一个大的batch size,我们更倾向于大量输入tiles,因此我们使用了一个高动量(high momentum)(0.99),这样大量以前看到的训练样本决定了当前优化步骤中的更新。 能量函数是由一个像素级的softmax在最终的特征图和交叉熵损失函数之间计算出来的。Soft-max被定义为 。 表示在像素位置x的特征通道k的数目,,,K表示为类别的数量,是近似的最大值函数,即是对于最大的激活量来说的,对于所有其他的k来说。交叉熵在每个位置都受到惩罚,,表示每个像素的真实标签 (交叉熵函数) 是我们引入的一个权重图,在训练中凸显某些像素的重要性。我们对每一张标注图像预计算了一个权重图,来补偿训练集中每类像素的不同频率,使网络更注重学习相互接触的细胞之间的小的分割边界。我们使用形态学操作计算分割边界。权重图计算公式如下:

wc是用于平衡类别频率的权重图,d1代表到最近细胞的边界的距离,d2代表到第二近的细胞的边界的距离。基于经验我们设定w0=10,σ≈5像素。

Fig. 3. HeLa cells on glass recorded with DIC (differential interference contrast) microscopy. (a)raw image. (b) overlay with ground truth segmentation. Different colors indicate different instances of the HeLa cells. (c) generated segmentation mask (white:foreground, black: background). (d) map with a pixel-wise loss weight to force the network to learn the border pixels.

网络中权重的初始化:我们的网络的权重由高斯分布初始化,分布的标准差为(N/2)^0.5,N为每个神经元的输入节点数量。例如,对于一个上一层是64通道的3 3卷积核来说,N=9 64。 3.1 数据增加 在只有少量样本的情况下,要想尽可能的让网络获得不变性和鲁棒性,数据增加是必不可少的。因为本论文需要处理显微镜图片,我们需要平移与旋转不变性,并且对形变和灰度变化鲁棒。将训练样本进行随机弹性形变是训练分割网络的关键。我们使用随机位移矢量在粗糙的3*3网格上(random displacement vectors on a coarse 3 by 3 grid)产生平滑形变(smooth deformations)。 位移是从10像素标准偏差的高斯分布中采样的。然后使用双三次插值计算每个像素的位移。在contracting path的末尾采用drop-out 层更进一步增加数据。 四、实验 我们演示了u-net对三个不同的分割任务的应用。第一个任务是在电子显微镜记录中分割神经元结构。图2显示了数据集和我们获得的分割的一个例子。我们提供完整的结果作为补充材料。该数据集是由2012年ISBI挑战提供的,目前仍对新贡献开放。训练数据是由果蝇第一个幼虫腹侧神经索(VNC)的连续段透射电子显微镜的30张图像(512x512像素)组成的。每个图像都有一个对应的完全带标注的分割图像(白色)和膜(黑色)。测试集是公开的,但是它的分割图是保密的。通过将预测的膜概率图发送给组织者,可以获得评估。该评估是通过在10个不同的层次上对图进行阈值计算,并计算“warping error”、“Rand error”和“pixel error”。

u-net(平均超过7个旋转版本的输入数据)在没有任何进一步的预处理或后处理错误的情况下实现了0.0003529的“warping error”(新的最好的分数,见表1)和一个0.0382的“rand error”。这比Ciresan等人的滑动窗口卷积网络的结果要好得多,后者的最佳“warping error”是0.000420和“rand error”为0.0504。在“rand error”方面,在这个数据集上唯一更好的执行算法使用高度数据集特定的后处理方法1应用于Ciresan等人的概率图。

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result (random colored masks) with manual ground truth (yellow border).

我们还将u-net应用到一个细胞分割任务中,在微观图像中。这一分段任务是ISBI细胞跟踪挑战的一部分,2014年和2015年10月13日。第一个数据集“PhC-U373”包含由相衬显微术记录的聚丙烯酰胺-星形胶质细胞瘤细胞瘤(见图4a、b和Supp.材料)。它包含35个部分带注释的训练图像。这里我们实现平均IOU(“十字路口在联盟”)的92%,这是明显比第二个最好的算法为83%(见表2)。第二个数据集“DIC-HeLa”海拉细胞在一个玻璃(DIC)微分干涉对比显微镜记录。它包含20个部分带标注的训练图像。在这里,我们得到的平均IOU是77.5%,这明显优于第二种最好的算法46%。

五、结论 u-net体系结构在不同的生物医学分割应用上取得了很好的性能。由于有弹性的数据处理功能,它只需要很少的标注图像,而且在NVidia Titan GPU(6 GB)上只有10个小时的训练时间。我们提供完整的基于Caffe的实现和训练有素的网络。我们确信,u-net体系结构可以很容易地应用到更多的任务中。

142 评论

相关问答

  • 图像分割与边缘检测实验分析论文

    摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处

    lucifer487 2人参与回答 2023-12-08
  • 图像分割毕业论文答辩题目

    中国知网也好!万方数据也好都有例子!甚至百度文库都有!==================论文写作方法===========================论文

    Meow儿儿 2人参与回答 2023-12-07
  • 与图像分割综述有关论文参考文献

    图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读! 图像分割技术研究 摘要:图像分割是图像处理与计

    一17777777 2人参与回答 2023-12-06
  • 图像分割学位论文

    医学影像分割论文可以在nature上发表。nature上目前也有很多影像相关的文章,医学影响分割的论文可以在上面发表。

    大熊简单明了 3人参与回答 2023-12-11
  • 图像分割算法本科毕业论文

    通过遥感变化信息检测方法对两时相遥感影像进行处理分析后,得到 “变化信息”影像,同时为了便于后续震害信息的识别,需要把这些变化信息从复杂的环境背景中提取出来,得

    豆大王zz 2人参与回答 2023-12-06