• 回答数

    2

  • 浏览数

    177

莮Renissodifficult
首页 > 学术期刊 > 矿产资源加权计算方法研究论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

jessica8918

已采纳

邵长高梁建陈宏文曾文娟

(广州海洋地质调查局 广州 510760)

第一作者简介:邵长高(1983—),男,硕士,主要研究方向:3S技术在资源调查和生态环境动态监测、数字海洋中的应用和开发。E-mail:zkyscg@ yahoo.com.cn。

摘要传统矿产储量计算模型基于欧式测量,应用于小比例尺海洋矿产储量计算时存在精度差的问题,论文通过对WGS1984投影、墨卡托投影、兰勃托投影以及阿尔伯斯投影等特性的研究,提出将矿产实体进行切片处理,计算切片间矿物实体的体积累加和的方法,实现了海洋小比例尺地图投影下储量的精确量测及体积计算,系统地论述了在不规则地球椭球体下如何实现海洋矿产储量计算,为我国海洋资源探测和军事战略方面提供基础服务。

关键词海洋量测地理信息系统地图投影储量计算

1前言

近年来资源勘探已经覆盖大部分陆地区域。越来越多的国家把目光投向海洋。海洋作为一个巨大的能源和资源宝库在国民经济、军事战略等的重要性也日益显现。各个国家竞相制定海洋科技开发规划、战略计划,优先发展海洋新技术[1]。海洋研究成为一个热点,技术的革新也日新月异。

由于海洋是一个大面积的区域,其与陆地的资源勘探技术存在较大区别,尤其在大范围海洋区域的矿产储量计算方面区别甚大。地球是一个不规则的椭球体,采用传统基于平面的欧式测量方法进行小比例尺海洋地图测量时,由于地图投影等方面的原因将会导致变形,严重影响储量计算的精确度[2]。包括欧洲石油勘探组织在内的国内外机构为了消除这种影响建立了一系列的投影转换公式。这些投影转换应用到二维投影当中一定程度上提高了地图量算的精确度。但是对于地球变形引起三维储量计算方面的误差目前并未提供行之有效的方法。本文在前人研究的基础上通过引入基于投影转换的方法,通过对WGS1984投影、墨卡托投影、兰勃托投影以及阿尔伯斯投影等特性的研究,提出将矿产实体进行切片处理,计算切片间矿物实体的体积累加和的方法,实现了海洋小比例尺地图投影下储量的精确量测及体积计算,系统地论述了在不规则地球椭球体下如何实现海洋矿产储量计算,为我国海洋资源探测和军事战略方面提供基础服务。

2海洋投影概述

我国的海洋基本比例尺地形图中,海区小于1:50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)[1]。现在我国企事业单位科研人员用的海图大部分为墨卡托投影。但是在海洋小比例尺下计算矿物储量时必须消除墨卡托投影引起的地图变形误差。论文引入了阿尔伯斯投影,利用其在投影变换中面积不变的特性计算储量来消除误差。在矿物深度方向上,切片间距离值取深度值的差值。

3技术路线

海洋大面积矿产实体,跨度大,地图投影变形明显,形状不规则,因此大大增加了计算储量的难度。论文引入切片技术把矿产实体切成实体面,利用切片间实体的累加和计算实体面之间体积的总和即得矿产实体储量。示意图(图1)如下:

图1 矿物实体切片Fig.1 The slice of the mineral reserve

图1中海洋矿物实体被分割为n个切面,切面间体积和相加即为整个实体的体积。当n趋向于无穷大时则与实际体积越接近。n的值取决于实测数据的精度,也就是经纬度和深度的值的精度。

3.1数据预处理

3.1.1数据来源

1)多波速水深数据:多波束数据经常应用于湖泊盆地等的体积运算。多波束水深其工作原理是通过声波发射与接收换能器阵进行声波广角度定向发射、接收,通过各种传感器(卫星定位系统、运动传感器、电罗经、声速剖面仪等)对各个波束测点的空间位置归算,从而获取在与航向垂直的条带式高密度水深数据[6]

2)地震剖面数据:海洋矿产储量数据主要来自海洋地震剖面断层数据。地震勘探方法是在地面上布置一条条的测线,沿各条测线进行地震施工采集地震信息,然后经过电子计算机处理就得出一张张地震剖面图。经过地质解释的地震剖面图就像从地面向下切了一刀,在二维空间(长度和深度方向)上显示了地下的地质构造情况(图2)[7]。海洋地震剖面中可以根据断层的层位读取炮点号,并结合导航数据读取矿产储层的坐标数据。

图2 二维地震剖面示意图Fig.1 Two dimensional seismic data

3.1.2数据入库

从多波束或者地震剖面中提取出的位置数据,数据整理按照如下数据库格式入库:

表1 矿物储量数据结构Table.1 The data sheet of the mineral reserve

表中数据的经度、纬度需存储经投影转换处理后变成的阿尔伯斯投影数据。

3.2切面面积计算

3.2.1 切面绘制

运用sql语言搜索深度相同的多边形的边界值,绘制切面。方法为:

1)用sql语言搜索出数据库数据中深度值相同的数据。

2)取所有数据中一个特定数据(a1,b1),此数据需要位于所有坐标值(ax,bx)之间。

3)从(a1,b1)的0度角开始逆时针计算两者之间距离值L=sqrt[(b2-b1)2+(a2-a1)2]。同时计算角度差。如果过角度差相等则取L值较大的点。

4)把所有3)中取出数据连接成多边形即为此切面。

3.2.2切面计算

为了保持面积计算结果不受地球椭球体影响需要将墨卡托投影转换为阿尔伯斯投影。墨卡托投影转阿尔伯斯投影在ArcEngine下方法如下[4]:

Dim pPoint As esriGeometry.IPoint

Set pPoint=New Point

pPoint.PutCoords mx,my

Set pPoint.SpatialReference=pSpRef2

pPoint.Project pSpRef1‘此处先实现由墨卡托投影到WGS1984投影中

lon=pPoint.X

lat=pPoint.Y

Set pPCS=pSpRFc.CreateProjectedCoordinateSystem(esriSRProjCS_NAD1983USA_Albers)

Set pSpRef2=pPCS

pPoint.Project pSpRef2‘实现由WGS1984投影到阿尔伯斯投影的转换

lon=pPoint.X‘lon即为在阿尔伯斯投影中的经度值

lat=pPoint.Y‘lat即为阿尔伯斯投影中的纬度值[4’

ArcEngine是目前地理信息系统处理方面比较流行的二次开发工具。墨卡托投影转化为阿尔伯斯投影时,每一个坐标点均要做转换,通常是采用W GS1984投影作为中间转换投影。先将墨卡托投影转化到WGS1984投影,然后将转化来的WGS1984投影转化成阿尔伯斯投影。

阿尔伯斯投影最大的特点是投影前后面积保持不变,本文采用质心量算法进行面积计算,具体步骤是先寻找多边形的质心,然后由质心到各多边形顶点引直线,最后把每个多边形的面积相加即得结果。计算步骤如图3[4]。

方法为[4]:

1)首先遍历数据库,读取数据库中高程相等数据的坐标值组成平面多边形。找出多边形质心。

2)连接多边形每个点与质心。

3)计算每个小多边形的面积然后相加。S=s1+s2+s3………。其中S表示多边形面积,s1、s2、s3等表示小三角形面积[4]。

设L为边长,L两端点坐标值为(a1,b1),(a2,b2)。如图4所示:

则:L=sqrt[(b2-b1)2+(a2-a1)2]

每个小三角形面积计算源代码为[4]:

s=(L1+L2+L3)/2

S=sqrt[s*(s-L1))*(s-L2)*(s-L3)]

图3 多边形的面积量算[4]Fig.3 Area measurement of the polygon

图4 每个小三角形面积计算Fig.4 The calculation of every triangle

此处S值即为切面面积。切面面积的计算结果考虑了地球椭球体引起的误差更接近实际值。

3.3切面间体积计算

将矿物实体分割切片后其中每个切面间体积v的计算模拟梯形计算模式,S上为上切面面积,S下为下切面面积,h为切面间高度差。如图5所示:

图5 单个切面实体Fig.5 Single slice object

则切面间体积v=(S上+S下)h/2。图1和5中当切面数n趋向于无穷大时,切面1和切面2之间的面积差值越小,相应的两个多边形的形状也就最接近,h值也就最小。此时可以得到误差较为小的切面体积计算结果。

3.4矿物储量计算

将矿产实体分割成n个切面后,每个小切面的体积的累加和即为整个矿产实体的储量。切面数n的值越大所切割的体积个数越多,则切面值越接近实际值。体积值V即是每个小切面间体积v的累加和。

南海地质研究.2010

式中:V即为整个矿物储量。它累加了所有的切面间实体的体积之和,切面间实体的个数取决于n的大小。当n趋向于无穷大时最接近实际值。

4结语

本文介绍了基于投影转换的海洋小比例尺矿产储量的计算方法,同时提供了基于Ar-cEngine的投影转换方法。矿产储量的计算模式不同于传统的计算模式,关键在于考虑到了小比例尺下由于地球椭球体变形引起的误差。所以论文引入了投影变换的方法,从一定程度上降低了地球的不规则性引起的误差。但是此方法只适应于固体矿产的储量计算,对于石油、水合物等的储量计算只能做体积计算的一个参数。

参考文献

[1]单宝强,毛永强.GIS中的坐标系定义与转换[J].黑龙江国土资源,2005,11,38~39

[2]欧洲石油勘探组.Coordinate Conversions and Transformation including Formulas[M].国际石油技术软件开放公司,2008

[3]苏国辉,戴勤奋,魏合龙.海洋地质数据库数据的存储结构[J].海洋地质动态,2003,19(6):5~7

[4]邵长高,谭建军等.海洋小比例尺地图精确测量及计算方法[J].地理与地理信息科学,2009,25(2):42~45

[5]

[6]

[7]

Method of Precise Measurem ent and Calculation of Small Scale Mineral Reserve Calculation

Shao Changgao,Liang Jian,Chen Hongwen,Zeng Wenjuan

(Guangzhou Marine Geological Survey,Guangzhou,510760)

Abstract:To the small-scale map in ocean mine reserve field,the traditional measurement method computes the reserve with a relatively coarse precision.In order to improve that,a new method has been provided in this study,which uses Arc Engine technology to finish the conversion between different projections and measure the earth's area as well as other information precisely.And then cut the mine reserve object into several pieces,so we can calculate the volume of the reserve by summing every piece.The different projections,such as WGS1984,Mercator,and Albers,also have been discussed,which can provide a good service for the military strategy and exploration of ocean resources.

Key words:Ocean measurements,GIS,Map projection,Reserve Calculation

141 评论

大大的熨斗

此文原载《华北地质经济管理通讯》1994年第2期

我国关于矿产资源价值问题的讨论已有十几年的时间,逐渐形成两种观点,即有价观和无价观。有价观认为,矿产资源是一种有用的耗竭不可再生的稀缺性资源,其有用性决定它有使用价值,人类为发现它的存在而投入的勘探劳动及由稀缺性引致的供需矛盾决定了矿产资源价值的大小。无价观认为,矿产资源是天然形成的,未经人类劳动的过滤,它的存在及用途大小只有质量上的差异,与价值形成无关,因此它没有价值。在此,我们首先肯定矿产资源是有价值的,而且其价值可以按一定的规则、公式计算。

关于矿产资源价值的测算,从时间上讲始于1982年,1986年、1990年、1991年、1992年又从不同侧面进行过深入研究。1993年8月召开的关于进行矿产探明储量潜在价值计算工作会议,从计算范围、方法、参数选择上作了明确规定,并将此作为一项正常的年度工作;从研究内容上,由潜在价值扩展到潜在产值、潜在净值,甚至与国外的对比;计算范围由原来的45种扩大到近200种。下面我们按时间顺序分别作一简要的回顾介绍。

1 1982年地质工作现代化研究中的矿产储量价值计算

1982年地矿部原地矿司和资料局在作地质工作现代化研究中,按照矿产资源潜在价值=探明储量(A+B+C+D)×矿产品价格的公式测算了世界100多个国家探明的45种主要矿产(与现在所说的45种主要矿产出入不大,其中能源矿产4种,金属矿产21种,非金属矿产20种)的储量价值,得出世界主要国家的45种主要矿产总价值为74.7万亿美元,其中能源矿产占72%,金属矿产占16%,非金属矿产占12%的结论,与矿产总值列前十位的国家相比的结果是:

第一,我国已探明矿产储量价值占第三位,仅次于苏、美(苏、美、中分别为13万亿、12万亿、11万亿美元)。

第二,从国土单位面积矿产储量价值丰度上看,英国、沙特阿拉伯、南非和伊朗居先,我国次于美国居第六位(英、沙、南、伊、美、中分别为1260万、230万、180万、154万、132万、114万美元/平方千米)。

第三,按人口平均,沙特阿拉伯、澳大利亚、加拿大居先,我国居末位。最高的沙特阿拉伯为62.58万美元/人,而我国仅1.19万美元/人,相差50多倍。

2 1986年地矿部提出《我国四十五种主要矿产单位储量的资源潜在价值基本参数表》

1986年,地矿部原计划司为统一计算矿产资源的潜在价值,考核地勘工作经济效益,会同原资料总局、地矿司和政研室编制了《我国四十五种主要矿产单位储量的资源潜在价值基本参数表》。参数表列出了45种主要矿产的回采率、选矿回收率、国内矿产品价格(1985年价格)及利用单位储量潜在价值计算矿产储量潜在价值的公式,即矿产储量潜在价值=探明储量(A+B+C)×单位储量潜在价值;单位储量潜在价值=矿产品价格×矿产储量总回收率(总回收率:回采率×选矿回收率)。

按上述参数及计算公式测算得知,截至1985年,我国探明的45种主要矿产的潜在价值为20万亿元人民币。

3 1990年利用耗用储量矿产价格计算矿产资源潜在价值

这是地矿部综合计划司和直管局委托部经研院和定额队共同开展的《地质工作经济社会效益指标的建立和实用性研究》中的一个专题报告提出的计算方法。研究者认为:矿产资源潜在价值=矿产探明保有储量(A+B+C)×矿产品价格×耗用储量矿产价格系数,其中耗用储量矿产价格系数因矿产品加工深度不同及矿产储量计量单位的差异有4种形式,即精矿产品金属价、精矿产品矿石价、原矿产品金属价和原矿产品矿石价,并用5种方法计算了耗用储量矿产的价格系数。由于公式十分繁琐,这里不作详细介绍。

研究者在广泛收集了1987年、1988年我国矿产品采、选技术参数、矿产品价格基础上,测算出68种矿产1988年保有工业储量的潜在价值为33万亿元人民币。

4 1991年开展的矿产资源潜在净值的计算

这是在“矿产资源核算及纳入国民经济核算体系”研究基础上开展的。研究者认为,矿产资源潜在净值是目前技术经济条件下已证实的经济可采资源扣除勘查、开发全部成本后的净价值。计算公式为:

矿产资源潜在净值=储量规模(A+B+C)×资源净价×资源综合回收率。

这里,资源净价是以国际矿产品市场价格为基础扣除矿山采、选(冶)成本及利润和勘查成本后得出的。

资源综合利用率=采矿回收率×选矿回收率×冶炼回收率

据此公式,研究者计算出我国1988年42种主要矿产储量的潜在净值为3.5万亿美元。

5 1992~1993年开展的全矿种探明储量潜在价值的计算

这次活动是按照朱训部长的指示开展的。首先总结了前几次方法的优缺点,而后参考有关文献确定了矿产储量潜在价值的涵义及计算方法。认为某种矿产探明储量的潜在价值,是指该种矿产探明储量按其初级矿产品价格折算的价值。这一指标不扣除矿产资源的采、选回收率及其勘查和开发的成本,是假定探明储量可利用部分完全采取时的总产值。这种潜在价值仅是国家物质财富的源泉,是未来矿业开发总产值的基础。在讨论中一致认为,潜在价值包含三个层次:潜在总值、潜在产值和潜在净值。潜在总值即矿产资源的潜在价值,计算公式为:

V1=R1×P×g×k

式中:

V1——矿产储量潜在总值;

R1——矿产探明储量(A+B+C+D);

P——矿产品价格;

g——品位系数(矿产储量平均品位/矿产品品位);

k——统一折算系数。

潜在产值的计算公式为:

V2=R2×P

式中:

V2——潜在产值;

R2——可采储量(探明储量扣除设计损失的储量);

P——矿产品价格。

潜在净值的计算公式为:

V3=V2-C1-C2-C3-V0

式中:

V3——潜在净值;

V2——潜在产值;

C1——矿山投资;

C2——生产成本;

C3——各项税费;

V0——投资收益。

在确认了矿产资源潜在价值的三个层次之后,计算出我国1991年探明的203种矿产资源中的198种矿产储量的潜在总值为180万亿元人民币,其中探明保有工业储量(A+B+C)的潜在总值为60万亿元人民币。

作为这次活动的延续,1993年9月由地矿部资源司组织召开了“矿产资源潜在价值研讨会”,会议期间肯定了这一计算方法的全面、适用性的同时,与会代表按统一的品位系数、矿产品价格(1990年不变价)及调整系数,计算了各省的探明矿产储量潜在价值。地矿部要求从1993年起,每年对全国和各省(区、市)的45种主要矿产新增探明储量和保有储量的潜在价值进行一次计算;每5年对全部矿产新增探明储量和保有储量的潜在价值进行一次计算;同时根据矿产资源保证程度论证的结果,对45种主要矿产的可供规划利用的储量潜在价值进行一次计算。计算结果连同该年度矿产储量表一起报部。

经过前述5次的修改、完善、深化,我国关于矿产资源潜在价值的计算方法日臻完善,使之能够更好地综合反映我国或某一地区的矿产资源国力,比较矿产勘查的工作业绩。但我们也不能就此满足,现在计算方法还有待实践检验并完善,计算参数还有很多不尽人意的地方,操作上还有待改进。矿产资源潜在价值的研究、测算与应用,对促进我国矿产资源的管理由实物型向价值型转变具有重大意义,是矿产资源核算并纳入国民经济核算体系的重要技术基础。因此,我们应在开展这方面工作时总结经验,不断完善矿产资源潜在价值的计算方法体系。

309 评论

相关问答

  • 矿产资源论文参考文献

    矿山固体废弃物的处理与利用论文本文主要从我国矿山固体废弃物的现状进行探讨,分析目前对矿山固体废弃物的处理方法,提高矿山固体废弃物的回收利用率,以期对当前的矿山开

    迪士尼0918 2人参与回答 2023-12-06
  • 资产评估方法研究论文

    一、绪言 中资资产评估有限公司接受济南柴油机股份有限公司、咸阳石油钢管钢绳厂委托,根据国家有关国有资产评估的规定,本着客观、独立、公正、科学的原则,按照公认的资

    秀之美adahe 2人参与回答 2023-12-06
  • 矿产资源综合利用期刊

    只在找资料,还是找了之后要投稿。

    李嘉图路 4人参与回答 2023-12-11
  • 矿产资源价值评估与对策研究论文

    2001年国土资源部科技发展报告 近20年来,地球科学的许多新概念、新理论、新方法和高新技术在矿产资源评价与勘查中的广泛应用,大大提高了成矿理论和找矿预测的研究

    吃吃吃货小两口 2人参与回答 2023-12-11
  • 矿产资源加权计算方法研究论文

    邵长高梁建陈宏文曾文娟 (广州海洋地质调查局 广州 510760) 第一作者简介:邵长高(1983—),男,硕士,主要研究方向:3S技术在资源调查和生态环境动态

    莮Renissodifficult 2人参与回答 2023-12-05