健康&平安
摘要:根据多方资料查证,得到了中国油气田特征及其分布规律。指出,中国大中型油田主要分布在裂谷型盆地中,大中型油田主要分布在克拉通盆地和山前盆地中;陆相生烃岩是中国大中型油气田的主要生烃岩,生烃岩从早古生代到新生代都有,南中国海和东中国海的古近系和新近系,中国北方的侏罗系和石炭系--二叠系是中国的主要生气层,古近系,新近系,白垩系,侏罗系,三叠系,二叠系是中国的主要生油层;大中型气田的储集层主要为陆源层(中砂岩,细砂岩和砂砾岩),其成因类型为扇三角洲和三角洲体系,碳酸盐储集层主要为裂缝型、风化壳型;油气藏盖层主要为均质泥岩,油气成藏期较晚,绝大多数大中型油气田形成于新生代,在早生代地层中仍有相当储量的油气田未被发现。中国油气资源潜力丰富,大多数盆地的油气田处于开发的早中期,发现大中型油气田的可能性是很大地。中国的油气储量和世界大多数国家一样主要分布在大中型油气田中。自上世纪50年代初期以来,我国先后在82个主要的大中型沉积盆地开展了油气勘探,发现油田500多个。以下是我国主要的陆上石油产地。大庆油田:位于黑龙江省西部,松嫩平原中部,地处哈尔滨、齐齐哈尔市这间。油田南北长140公里,东西最宽处70公里,总面积5470平方公里。1960年3月党中央批准开展石油会战,1963年形成了600万吨的生产能力,当年生产原油439万吨,对实现中国石油自给自足起到了决定性作用。1976年原油产量突破5000万吨成为我国第一大油田。目前,大庆油田采用新工艺、新技术使原油产量仍然保持在5000万吨以上。胜利油田:地处山东北部渤海之滨的黄河三角洲地带,主要分布在东营、滨洲、德洲、济南、潍坊、淄博、聊城、烟台等8个城市的28个县(区)境内,主要开采范围约4.4平方公里,是我要第二大油田。辽河油田:主要分布在辽河中上游平原以及内蒙古东部和辽东湾滩海地区。已开发建设26个油田,建成兴隆台、曙光、欢喜岭、锦州、高升、沈阳、茨榆坨、冷家、科尔沁等9个主要生产基地,地跨辽宁省和内蒙古自治区的13市(地)32县(旗),总面积10万平方公里,产量居全国第三位。克拉玛依油田:地处新疆克拉玛依市。40年来在准噶尔盆地和塔里木盆地找到了19个油气田,以克拉玛依为主,开发了15个油气田,建成了792万吨原油配套生产能力(稀油603.1万吨,稠油188.9万吨),从1900年起,陆上原油产量居全国第四位。四川油田:地处四川盆地,已有60年的历史,发现油田12个。在盆地内建成南部、西南部、西北部、东部4个气区。目前生产天然气产量占全国总量近一半,是我国第一大气田。华北油田:位于河北省中部冀中平原的任丘市,包括京、冀、晋、蒙区域内油气生产区。1975年,冀中平原上的一口探井任4喷出日产千吨高产工业油流,发现了我国最大的碳酸盐岩潜山大油田任丘油田。1978年原油产量达到1723万吨,为当年全国原油产量突破1亿吨做出了重要贡献。直到1986年,保持年产量原油1千万吨达10年之久。目前原油产量约400多万吨。大港油田:位于天津市大港区,其勘探地域辽阔,包括大港探区及新疆尤尔都斯盆地,总勘探面积34629平方公里,其中大港探区18628平方公里。现已在大港探区建成投产15个油气田24个开发区,形成年产原油430万吨和天然气3.8亿立方米生产能力。目前,发现了千米桥等上亿吨含油气构造,为老油田的增储上产开辟了新的油气区。中原油田:地处河南省濮阳地区,于1975年发现,经过20年的勘探开发建设,已累计探明石油地质储量4.55亿吨,探明天然气地质储量395.7亿立方米,累计生产原油7723万吨、天然气133.8亿立方米。现已是我国东部地区重要的石油天然气生产基地之一。吉林油田:地处吉林省扶余地区,油气勘探开发在吉林省境内的两大盆地展开,先后发现并探明了18个油田,其中扶余、新民两个油田是储量超亿吨的大型油田,油田生产已达到年产原油350万吨以上,形万了原油加工能力70万吨特大型企业的生产规模。河南油田:地处豫西南的南阳盆地,矿区横跨南阳、驻马店、平顶山三地市,分布在新野、唐河等8县境内。已累计找到14个油田,探明石油地质储量1.7亿吨及含油面积117.9平方公里。长庆油田:勘探区域主要在陕甘宁盆地,勘探总面积约37万平方公里。油气勘探开发建设始于1970年,先后找到了油气田22个,其中油田19个,累计探明油气地质储量54188.8万吨(含天然气探明储量2330.08亿立方米),目前已成为我国主要的天然气产区,并成为北京天然气的主要输送基地。江汉油田:是我国中南地区重要的综合型石油基地。油田主要分布在湖北省境内的潜江、荆沙等7个市县和山东寿光市、广饶县以及湖南省境内衡阳市。先后发现24个油气田,探明含油面积139.6平方公里、含气面积71.04平方公里,累计生产原油2118.73万吨、天然气9.54亿立方米。江苏油田:油区主要分布在江苏的扬州、盐城、淮阴、镇江4个地区8个县市,已投入开发的油气田22个。目前勘探的主要对象在苏北盆地东台坳陷。青海油田:位于青海省西北部柴达木盆地。盆地面积约25万平方公里,沉积面积12万平方公里,具有油气远景的中新生界沉积面积约9.6万平方公里。目前,已探明油田16个,气田6个。塔里木油田:位于新疆南部的塔里木盆地。东西长1400公里,南北最宽外520公里,总面积56万平方公里,是我国最大和内陆盆地。中部是号称“死亡之海”的塔克拉玛干大沙漠。1988年轮南2井喷出高产油气流后,经过7年的勘探,已探明9个大中型油气田、26个含油气构造,累计探明油气地质储量3.78亿吨,具备年产500万吨原油;100万吨凝折、25亿立方米天然气的资源保证。吐哈油田:位于新疆吐鲁番、哈密盆地境内,负责吐鲁番、哈密盆地的石油勘探。盆地东西长600公、南北宽130公里,面积约5。3万平方公里。于1991年2月全面展开吐哈石油勘探开发会战。截止1995年底,共发现鄯善、温吉桑等14个油气油田和6个含油气构造探明含油气面积178.1平方公里,累计探明石油地质储量2.08亿吨、天然气储量731亿立方米。玉门油田:位于甘肃玉门市境内,总面积114.37平方公里。油田于1939年投入开发,1959生产原油曾达到140.29万吨,占当年全国原油产量的50.9。创造了70年代60万吨稳产10年和80年代50万吨稳产10的优异成绩。誉为中国石油工业的摇篮。除陆地石油资源外,我国的海洋油气资源也十分丰富。中国近海海域发育了一系列沉积盆地,总面积达近百万平方公里,具有丰富的含油气远景。这些沉积盆地自北向南包括:渤海盆地、北黄海盆地、南黄海盆地、东海盆地、冲绳海槽盆地、台西盆地、台西南盆地、台西南盆地、台东盆地、珠江口盆地、北部湾盆地、莺歌海——琼东南盆地、南海南部诸盆地等。中国海上油气勘探主要集中于渤海、黄海、东海及南海北部大陆架。1966年联合国亚洲及远东经济委员会经过对包括钓鱼岛列岛在内的我国东部海底资源的勘察,得出的结论是,东海大陆架可能是世界上最丰富的油田之一,钓鱼岛附近水域可以成为“第二个中东”。据我国科学家1982年估计,钓鱼岛周围海域的石油储量约为30亿~70亿吨。还有资料反映,该海域海底石油储量约为800亿桶,超过100亿吨。南海海域更是石油宝库。中国对南海勘探的海域面积仅有16万平方千米,发现的石油储量达52.2亿吨,南海油气资源可开发价值超过20亿万元人民币,在未来20年内只要开发30,每年可以为中国GDP增长贡献1~2个百分点。而有资料显示,仅在南海的曾母盆地、沙巴盆地、万安盆地的石油总储量就将近200亿吨,是世界上尚待开发的大型油藏,其中有一半以上的储量分布在应划归中国管辖的海域。经初步估计,整个南海的石油地质储量大致在230亿至300亿吨之间,约占中国总资源量的三分之一,属于世界四大海洋油气聚集中心之一,有“第二个波斯湾”之称。据中海油2003年年报显示,该公司在南海西部及南海东部的产区,截至2003年底的石油净探明储量为6.01亿桶,占中海油已探明储量的42.53。到目前为止,渤海湾地区已发现7个亿吨级油田,其中渤海中部的蓬莱19-3油田是迄今为止中国最大的海上油田,又是中国目前第二大整装油田,探明储量达6亿吨,仅次于大庆油田。至2010年,渤海海上油田的产量将达到5550万吨油当量,成为中国油气增长的主体。从以上来看,我国石油资源集中分布在渤海湾、松辽、塔里木、鄂尔多斯、准噶尔、珠江口、柴达木和东海陆架八大盆地,其可采资源量172亿吨,占全国的81.13%;天然气资源集中分布在塔里木、四川、鄂尔多斯、东海陆架、柴达木、松辽、莺歌海、琼东南和渤海湾九大盆地,其可采资源量18.4万亿立方米,占全国的83.64%。从资源深度分布看,我国石油可采资源有80%集中分布在浅层(<2000米)和中深层(2000米~35 00米),而深层(3500米~4500米)和超深层(<4500米)分布较少;天然气资源在浅层、中深层、深层和超深层分布却相对比较均匀。从地理环境分布看,我国石油可采资源有76%分布在平原、浅海、戈壁和沙漠,天然气可采资源有74%分布在浅海、沙漠、山地、平原和戈壁。从资源品位看,我国石油可采资源中优质资源占63%,低渗透资源占28%,重油占9%;天然气可采资源中优质资源占76%,低渗透资源占24%。截至2004年底,我国石油探明可采储量67.91亿吨,待探明可采资源量近144亿吨,石油可采资源探明程度32.03%,处在勘探中期阶段,近中期储量发现处在稳步增长阶段;天然气探明可采储量2.76万亿立方米,待探明可采资源量19.24万亿立方米,天然气可采资源探明程度仅为12.55%,处在勘探早期阶段,近中期储量发现有望快速增长
桃大大仙
周小芬
(西北石油局规划设计研究院中心实验室,乌鲁木齐830011)
摘要 运用统计学原理,对塔河不同产层油田水的初步研究,取得以下几点认识:①塔河油田的各区块与西达里亚具有相同的烃源岩条件;塔河不同区块、不同产层油田水主要离子含量及离子浓度的变化关系均表明其来自海相;② 及密度之间具有相当好的线性关系,地层时代越老,直线的斜率越大;③塔河油田产层时代越新,油田水总矿化度、密度、Cl-及Na+浓度越大,而Ca2+浓度则恰好相反。主要特征离子的图解结果表明,海相灰岩储层的油田水与海陆交互相和陆相的砂岩储层的油田水分布区域明显不同,因而能很容易区分开;而三叠系和石炭系砂岩储层的油田水则关系密切,区分比较困难。
关键词塔河油田油田水溶液离子特征离子溶解度
塔河油田位于新疆轮台县与库车县交界处、塔里木河以北的地区,构造位置为塔里木盆地沙雅隆起阿克库勒凸起的南部。
自1990年沙23井和沙29井分别在石炭系和三叠系试获工业油气流以来,通过进一步的勘探,先后发现了塔河1、2号区块三叠系油气藏,3、4、6号奥陶系及石炭系油气藏。塔河油田的油源为寒武系—奥陶系,油气主要来自东南部的满加尔克拉通坳陷盆地和台地边缘斜坡。由于构造运动的影响,塔河油田的油气藏具有多期成藏的特点,不同成藏期的原油性质有较大的不同。早期(海西晚期—印支期)成藏的原油比重较大,这类油藏有塔河4、6号区块的奥陶系、3号区块奥陶系的下部,塔河1号区块三叠系下油组;中期(燕山—喜马拉雅早期)成藏的原油为中等密度,油气藏有塔河2号三叠系,塔河3号、4号区块石炭系和塔河3号区块奥陶系中上部;晚期(喜马拉雅早期以后)成藏的原油为轻质油,油气藏有塔河1号区块三叠系中油组。
塔河油田投入开发和试采的产层有奥陶系碳酸盐岩和石炭系、三叠系砂岩。塔河油田水化学成分和含量的变化较大,主要表现在同一井同一层位水,其化学分析结果变化较大;同一层位不同井的水,其化学分析结果变化也较大。通过对塔河油田水分析资料的整理和研究,认为塔河油田不同产层的油田水总体矿化度、密度较高,封闭条件较好,为苏林CaCl2型水。通过对比油田水的化学成分和含量较容易区别,其与产层及产层的岩性和原油性质有较为密切的关系。
在油气勘探中,油田水中化学成分和含量的变化,可用来描述同一地层中的分层油贮,定性评价油气藏保存条件的好坏,研究油气的运移聚集方向,指示出潜在的地层圈闭。在一次、二次采油中,根据不同产层油田水的化学特征,可辨认侵入水的来源。可为设计注水的处理盐水方案提供指导。可溶固体浓度和间隙水的组分对电测井的数据影响较大,因此,在电测井解释中,可以根据不同地区、不同层位地层水的特征,校正测井解释公式或解释图版。因此,研究油田水的特征及分布规律,对于油气的勘探、开发具有重要的意义。
1实验分析方法
本文所引用的塔河油田水分析资料,均由新星石油公司西北石油局规划设计研究院中心实验室按照规范要求进行化学分析所取得。
采样方法:主要由井口分离器取样阀采取地层水样,或采取钻杆取样腔,钻杆反循环等地层水样。
实验分析方法:对于Cl-、Ca2+、Mg2+、 采用滴定分析法; Fe(T)(全铁)、Fe2+、I-、Br-采用目测比色法;Na+和K+的合量是由阴、阳离子平衡法推算求出,Fe3+含量由Fe(T)全铁量减去Fe2+量计算求出。主要离子Cl-、Ca2+、Mg2+、 采用化学滴定法,滴定法的置信度远大于目测比色法的置信度。而由计算推算出的Na+,K+含量及Fe3+含量,由于误差的传递叠加,其置信度最差。
在进行分析数据之前,通过对水样样品的采样时间、方式、测试条件等分析,剔除了某些明显不能反映产层水化学性质的分析数据。另外,为了使油田水的化学性质具有代表性,分析数据尽量选用油田开发中生产水时间比较长、产水比较稳定井的水分析资料。对于奥陶系产层,由于钻井过程中的井漏及储层的酸化压裂改造,测试和初期生产所获得的油田水化学分析结果很可能受到钻井液和酸液的改造,因此,在数据筛选中,选取产水时间长及产水量比较稳定井的水化学分析结果。
2塔河油田水的化学特征
塔河3、4号构造上的原油和天然气主要位于井深4300~5500m的碳酸盐岩或碎屑岩中。塔河油田水均为保存条件较好的苏林CaCl2型水,为弱酸性质,pH值为5.5~5.7。
统计结果表明,塔河油田各油藏油田水的主要离子平均含量变化较小,总矿化度为195.2×103~222.1×103mg/L,平均为208.65×103mg/L;密度为1.126~1.147g/cm3,平均为1.137 g/cm3;Ca2+含量为173000~9100mg/L,平均13200mg/L;Mg2+含量为2138~51 1mg/L,平均2105mg/L;Na+和K+含量为74000~56600mg/L,平均为65300mg/L;Cl-含量为13600~12500mg/L,平均为127mg/L; 含量为187~441mg/L,平均为243mg/L;Br-含量为13.8~4.2mg/L,平均为9mg/L;I-含量为371~89.3mg/L,平均为302mg/L; 含量为138~258mg/L,平均为218mg/L(见表1)。
塔河油田水总矿化度、密度及主要离子含量平均值与塔北其他油田的油田水平均值相比,具有以下特点:①塔河油田各区块油藏油田水总矿化度、密度以及Cl-、Ca2+及Mg2+等主要离子的平均含量与西达里亚油田水的比较接近,而与雅克拉下白垩统油田水和巴什托、亚松迪油田水的差别较大。例如,塔河3、4号区块奥陶系灰岩产层的油田水总矿化度、密度和Cl-、Ca2+及Mg2+等主要离子的平均含量远高于巴楚隆起亚松迪和巴什托石炭系小海子组白云岩产层油田水;②塔河3、4号区块的石炭系砂岩油藏和塔河1、2号三叠系砂岩油藏的油田总矿化度、密度和Cl-、Ca2+及Mg2+等主要离子的平均含量远高于雅克拉下白垩统砂岩油藏(见表1)。塔河油田水及西达里亚油田水的总矿化度、密度和Cl-、Ca2+及Mg2+等主要离子的平均含量基本一致。以上对比结果,从一个侧面反映塔河油田和西达里亚油田具有相同的油气源条件(包括烃源岩的岩性、岩相及油气的生成期次等)和基本相似的油气藏保存条件。塔河油田水与雅克拉下白垩统油田水和巴楚油田水所存在的明显差别,可能一方面与烃源岩的沉积相带的差别有关,另一方面可能与雅克拉下白垩统油田水和巴楚油田烃源岩成熟较高,油气藏为凝析气藏,所取的样品中带有一定量的凝析水而使得水分析结果的主要指标降低有关。
表1塔河油田不同区块不同产层油田水主要离子质量分数平均值Table1Fractional average value of leading ion quality of oil field water in different area and formation in Tahe oil field
3塔河油田水成因分析
油气从烃源岩通过运移聚集于圈闭中,无论是以压差,还是以扩散等运移方式,水都是油气运移的主要载体。尽管油气从烃源岩到圈闭的运移过程中,水这一载体要受到运移路线上储层和油气聚集层水体的影响,但油田水在很大程度上仍保留了源岩的水化学特征,通过研究油田水中的可溶解物质百分含量,可定性判别油气藏烃源岩的沉积相态(MaSon,1952)。
塔河油田水中各可溶组分百分含量的平均结果与河水、海水各可溶组分百分含量统计结果比较,发现3者间的化学特点如下:
(1)虽然3者的各组分浓度差别较大,海水的矿化度大致为30.9×103mg/L,塔河油田水矿化度大致为210×103mg/L,但塔河油田水和海水在某些离子的百分含量上有相近性的变化趋势,特别是阴离子的百分含量变化趋势一致(表2)。
表2塔河油田水、河水、海水的可溶解物质组分质量分数对比Table2Correlation on quality and fraction of soluble matter for water.river and sea in Tahe oil field
(2)塔河3、4号油田水、海水与河水的化学特征几乎是逆向的。
塔河油田水:阳离子 阴离子
海水:阳离子 阴离子
河水:阳离子 阴离子
从各离子组分含量看,塔河油田水中可溶物质主要成分与海水一致,主要为 NaCl。海水中含Na+为11 000mg/L左右,塔北油田水中的Na+含量为56 600~74 000mg/L,海水和塔北油田水中的Na+比河水和减去循环盐的河水中的Na+含量要高得多,另外就海水和塔河油田水本身来说,Na+含量远高于其他任何阳离子。塔河油田水中阳离子 Na+、Ca2+、Mg2+和阴离子Cl-、 具有相同的离子含量变化特征,这一特征与河水的变化特征相反。另外,依据大量统计资料,海水与塔河3、4油田水中都含I-、Br-这两种河水中几乎不含或含量极其微量的元素。由此认为塔河油田水是海相成因的。
4塔河油田水中主要离子浓度变化与地层的关系
塔河油田的烃源岩虽然相同,油田水的化学成分比较接近,但由于油田的成藏期及经历的后期改造过程不同,以及产层的岩性和沉积相不同,因而,不同区块和不同产层的油田水,其化学特征也存在一定的差别。
由表1可以看出,塔河奥陶系灰岩油田水以相对较低的平均总矿化度、密度和Cl-、Na+和K+含量和相对较高的Ca2+、Mg2+、 以及I-、Br-含量,特别是相对较高的Ca2+、Br-、I-含量而明显区别于砂岩储层的石炭系、三叠系油田水。砂岩储层(石炭系和三叠系)的油田水离子含量比较接近,从总矿化度、密度、Cl-、Na+和 K+浓度看,地层越新离子浓度越高,而Ca2+浓度则恰好相反。
油田水中各种可溶物质的含量变化必然与油田水的形成条件和环境有着必然的联系。下面主要探讨一下塔河不同层位油田水主要离子组成(Ca2+、Mg2+、 )与共存地层的关系。
我们知道,离子型化合物在水中的溶解度主要决定于①其晶格力的大小;②离子的水合能。
一种水溶盐,它的离子和水分子间的吸引力大于相反电荷彼此间的吸引。而微溶盐的特征是强的晶格力和离子有小的水合倾向。下面根据溶解度大小列出了地层水中常见物质的溶解度和难溶物质的溶度积(表3)。
表3地层水中常见物质的溶解度和某些难溶物质的溶度积鲁利耶,化学工作者计算手册,表内未标明温度处均为25℃。Table3Solubility of common matter and solubility product of some refractory matter in formation water
表3列出某些物质的溶解度及难溶物质的溶度积常数是在纯水中的,而油田水中由于溶液的高盐度及地层环境中的复杂性,存在着许多影响溶解度或溶度积Ksp的因素,如增大溶解度的盐效应、减少溶解度的同离子效应、溶液的pH、氧化-还原状态Eh及高温、高压等不同因素的影响,也就是说,油田水中可溶物质的组成与浓度是pH、Eh、各物质的溶解性及地层中温度、压力及共存岩层化学组成等的函数。当各种影响因素确定时,其达到动态平衡。对于不同的平衡状态,很难用一个简单的固定数学公式来描述,只能用统计的方法描述地层水中的主要离子特点。
由表3中Ksp知,由于CaCO3、MgCO3和FeCO3为难溶物质,而塔河油田不同时代地层水中又大量存在着Ca2+,其浓度在9.1×103~17.3×103g/L范围内(理论上Ca2+浓度大于6.9mg/L时, 就不存在)。所以,塔北油田水中不存在 ,与测定结果一致。由于Na+和K+合量为推算值,误差较大,在统计过程中我们不加考虑。但事实上,地层中由于K+易与粘土矿物发生离子交换反应,K+占很小部分,主要阳离子为Na+。而地表水中K+含量比例相对较高。由于Fe3+、Fe2+存在的复杂性,Fe2+在空气中极易被氧化为 Fe3+,其含量、状态与采样方法、样品分析时间有着密切关系,再加之管道腐蚀等因素带入的Fe3+,其真实值较难测出,故这里对Fe与地层关系不做仔细研究。油田水中含铁化合物的数量和类型的资料,主要被用于估计生产系统中产生腐蚀的程度,及用来注水时,所需采取的措施,根据亚铁和高价铁的浓度比,还可推测水体所处的氧化-还原环境。
4.1 浓度及密度与地层的关系
在石油的产生过程中,会发生有机质的氧化分解,产生CO2及作为细菌生命的主要副产物CO2,溶于水后产生 。
在水溶液中存在着下述平衡关系:
塔里木盆地北部油气田勘探与开发论文集
即 含量与溶液中的H+浓度有着直接关系,从平衡关系可知,当pH=6.3左右时,达到平衡。如果增加酸度(pH值的变小),则使平衡朝着生成水和二氧化碳的方向进行;减小酸度,则使 转化为H+和 在封闭系统中,增高CO2气体压力,则上述反应向右移动。在有机组分参加的情况下,则平衡方程有变动,而pH值范围可从2、3增加到12。塔河3、4号油田水的pH测定值普遍在5~6之间,在该酸度下有利于 存在。由于油田水的酸度与取样时间和方式有着密切关系,因此,其与 严格关系不易确定。再者,影响油田水 浓度因素是溶液的可溶物浓度及溶液组成。而溶液的浓度与密度有着直接的正比关系;溶液组成变化又直接与地层矿物的化学成分有关。塔河油田水中 与密度存在相当好的线性关系,相关系数0.9949~1。不同地层其直线的斜率各不相同(图1、2、3)。
塔里木盆地北部油气田勘探与开发论文集
4.2 Ca2+、Mg2+、 的浓度与地层的关系
油田水中的Ca2+、Mg2+是由难溶矿物CaCO3、MgCO3风化后,经溶于水中CO2的作用转变为易溶于水的Ca(HCO3)2、Mg(HCO3)2而进入到溶液,其浓度大小一方面取决于溶液的pH值和 浓度等,另一方面与储层矿物的化学组成及溶液中的其他离子的化学性质有关。在二氧化碳水溶液中,难溶的碳酸钙发生 +2HCO3-化学反应,在与含钙矿物石灰岩、白云岩、石膏(CaSO4·2H2O)或含石膏岩层接触,则增加溶液中Ca2+的含量。化学风化时镁被溶解,主要是以氯化物和硫酸盐的形式进入溶液。火成岩中的铁镁矿物和碳酸盐岩中的碳酸镁通常被看作是天然水系镁的主要来源,镁从硅酸盐和碳酸盐矿物中溶解出来,二氧化碳起着重要作用。这时镁以重碳酸镁Mg(HCO3)2的形式而溶解。由于碳酸钙和碳酸镁在溶解过程中都与溶解在水中的二氧化碳有着密切的关系,而在某一地层水的平衡体系中,由于所溶解的二氧化碳即 量是有限的,故溶液中的Ca2+和Mg2+浓度之间有一定的制约关系,通常是溶解的Mg2+降低,则溶解的Ca2+增加。
塔里木盆地北部油气田勘探与开发论文集
塔里木盆地北部油气田勘探与开发论文集
塔河油田水中的Mg2+浓度在511~2138mg/L之间,远小于Ca2+浓度。
地层水中硫酸盐的含量是受细菌活动影响的,硫氧化细菌可将H2S氧化成 为生物提供硫源。另一类硫酸盐还原菌可将水体和孔隙水中的硫酸盐还原成H2S造成强还原环境,有利于有机质保存。并且,地层水中的硫酸盐含量也受Ca2+、Sr2+和Ba2+存在的影响,假如这3种阳离子存在的浓度相当高,则硫酸盐的浓度就低。Ca2+、Mg2+和 3者间相互制约、相互影响。塔北不同油田水中Ca2+、Mg2+和 浓度有较大的差别,不同地层中Ca2+、Mg2+和 浓度见图4。
图4塔河油田地层水硫酸根离子浓度与钙、镁离子浓度关系图Fig.4Relation between concentration of sulfate ion and Ca and Mg ion in formation water of Tahe oil field
图5塔河油田水钙、镁离子浓度与密度关系图Fig.5Relation between concentration and density of Ca and Mg ion in formation water of Tahe oil field
从图4可以看出,Ca2+、Mg2+和 浓度与地层、主要与岩性之间有着密切的对应关系,奥陶系灰岩Ca2+、Mg2+较高, 浓度变化范围较小,石炭系、三叠系油田水Ca2+、Mg2+浓度变化很小,而 浓度变化很大,奥陶系灰岩与石炭系、三叠系砂岩储层的油田水图解分析,其点的分布区域明显不同。奥陶系灰岩与石炭系、三叠系砂岩储层的油田水Ca2+、Mg2+浓度与密度的图解分析结果,其区分更为明显(图5)。
4.3塔河油田不同地层油田水的I-特点
作为油田水中特征离子的I-,主要来源于海藻和其他海相有机物。其在地层水中的浓度高低,反应了该地层古代海水中海藻和其他海相有机物的多少。对塔河油田水来说,虽然均为海相水,但由于地层岩性及油气运移的路径不同,I-离子的含量相差较大,含量最高的是奥陶系,I-含量为8~20mg/L,平均为13.8mg/L;石炭系变化较大,I-含量为1.5~9mg/L,平均为4.2mg/L;三叠系I-含量变化较小,含量较低,从2.5~6mg/L,平均为4.3mg/L。从统计结果与相对应油气田原油性质及地层岩性看,I-含量与地层岩性及沉积相有关,海相灰岩I-含量高;海陆交互相的石炭系砂岩油藏油田水的I-含量变化较大,与海关系密切的潮坪砂岩中I-含量相对较高,与陆相关系密切的三角洲砂岩中I-含量相对较低;陆相三叠系砂岩的I-含量变化小、含量低。塔河油田水中I-离子浓度与Ca2+浓度的图解分析结果表明,奥陶系灰岩与三叠系、石炭系砂岩的油田水很容易区分,但三叠系和石炭系油田水则不能区分(图6)。
图6塔河油田水钙离子与碘离子关系图Fig.6Relation between Ca and I ion in information water of Tahe oil field
5 结论
从上述统计分析及研究可得出以下结论:
(1)塔河油田水的离子组分特征表明,塔河油田水与西达里亚油田水比较接近,而与雅克拉下白垩统油田水和巴楚油田水差别较大,表明塔河油田的各区块与西达里亚具有相同的烃源岩条件;塔河油田水主要离子含量及离子浓度的变化关系均表明其来自海相;
(2) 浓度及密度之间具有相当好的线性关系,不同地层其直线的斜率各不相同,地层时代越老,直线的斜率越大;
(3)塔河油田产层时代越新,油田水总矿化度、密度、Cl-、Na+和K+浓度越大,而Ca2+浓度则恰好相反。
(4)Ca2+、Mg2+与 及Ca2+、Mg2+与密度的图解结果、Ca2+与Ⅰ-的图解结果均表明,海相灰岩储层的油田水与海陆交互相和陆相的砂岩储层油田水分布区域明显不同,因而能很容易区分开;而三叠系和石炭系砂岩储层的油田水则关系密切,区分比较困难。
参考文献
[1]柯林斯A G.油田水地球化学.北京:石油工业出版社,1984
[2](日)大森昌衡,茂木昭夫,星野通干.浅海地质学.北京:科学出版社,1980
[3]王启军,陈建渝 .油气地球化学.武汉:中国地质大学出版社,1988
[4]内博盖尔W H.朱仲涛,陈复译.普通化学(2、3、4),北京:人民教育出版社,1979
[5]Ideal solution,W.A.Oates,J.Chem.Educ,46,501(1969)
[6]Reactions in Under Pressure,W.J.Le Noble,J.Chem,Educ,44,729(1967)
[7]Chemiluminescent Reaction in Solution,J.W.Haas,Jr.,J.Chem.Educ.,44,396(1967)
Relation between water chemical characteristics and formation in Tahe oil field,Tarim basin
Zhou Xiaofen
(Academy of planning & Designing,Northwest Bureau of Petroleum,Urumqi 830011)
Abstract:Water chemical characteristics of each formation prove that the relation between Tahe oil field water chemical characteristics and its corresponding formation is complicated,which is hard to describe by mathematical formula.Graphically analyzing oil field water in Tahe payzones,from which we get the following results(1) Blocks in Tahe oil field have the same hydrocarbon source rock condi-tion with West Daliya;water ion characteristics in each blocks and payzones prove they all come from marine facies; (2)there is perfect linear relationship between 3 and density,that is,the older the formation age is,the bigger the value of linear slope is;(3)to water total salinity,density,concentration of Cl-,Na+,K+,the younger the formation age is,the bigger they are,but the concentration of Ca2+is just on the contrary.The diagrams of the main characteristic ions prove that field water distribution of marine facies limestone reservoir is greatly differ from that of marine and continental interactive facies and continental facies sandstone reservoir,so it's easy to tell apart;the relationship between Triassic field water and carboniferous reservoir field water is so close that it's difficult to differentiate.
Key words:Tahe field water solution ion characteristic ion solubility
小豆包么么
尚明忠孙伟孟新华王兴科苏映宏
摘要介绍了新井经济极限初产油量、老井经济极限含水量及经济极限产油量、措施增产油量经济政策界限的研究方法,制作了胜利油区不同类型油田的开发经济政策界限图版,为避免油田开发中的低效工作量和提高油田开发的整体经济效益提供了依据。
关键词经济政策界限经济极限含水量措施经济极限产油量经济效益胜利油区
一、引言
在油田开发过程中,随着油田含水量的上升和开发难度的加大,其产量也会不断下降。当产量降低到一定界限,其产值不能平衡必要的投资和成本时,油田或油井的开采就会没有效益,甚至亏本。因此,研究油田开发经济政策界限,对于提高油田开发经济效益具有非常重要的意义。
1.计算原理及方法
二、新井经济极限初产油量
新井经济极限初产油量是指在一定的技术、经济条件下,当油井在投资回收期内的累积产值等于同期总投资、累积年经营费用和必要的税金之和,即单井投资回收期内的经济效益为零时井对应的产油量,称为新井经济极限初产油量。
单井投资回收期内经济效益表达式为
胜利油区勘探开发论文集
当投资回收期内累计经济效益为0,即Pp=0时,得出新井经济极限初产油量的计算公式为
胜利油区勘探开发论文集
式中:Pp——投资回收期内生产井单井累计效益,104元;
Sp——投资回收期内生产井单井累计总产值,104元;
K——投资回收期内生产井单井累计总投资,104元;
Cp——投资回收期内生产井单井累计年经营成本,104元;
τ0——油井开井时率,小数;
qmin——新井单井经济极限初产油量,t/d;
w——原油商品率,小数;
P——原油价格,元/t;
Rt——吨油税金,元/t;
T——投资回收期,a;
B——油井在投资回收期内产量平均年递减余率,小数;
Ib——单井地面建设投资,104元/井;
Id——单井钻井投资,104元/井;
β——油水井系数,小数;
i——经营成本年上涨率,小数;
C0——单井经营成本,104元/井。
2.参数的确定[1]
(1)投资
投资可分为钻井投资和地面建设投资两部分。
钻井投资是指油气田开发建设期所钻的开发井投资,包括钻前准备工程、钻井工程、测井和完井工程投资。其投资定额主要和井深有关。胜利油区每米钻井投资CM与井深H有如下回归公式(不包括海上油田)
胜利油区勘探开发论文集
油田地面建设投资主要包括油气集输、注水、供排水、供电、通讯、道路等。根据“九五”期间实际发生的油田地面建设投资,可以确定陆上老区新井、陆上新区新井、海上油井的平均单井地面建设投资。
(2)经营成本及费用
经营成本和费用是油气田企业在生产经营活动中按规定发生的一切消耗和费用的总和,包括油气开采成本、管理费用、销售费用和财务费用。原油开采成本包括生产过程中实际消耗的直接材料、直接工资、其他直接支出等。油气勘探开采过程发生的管理、销售和财务等三项费用作为当期损益,直接从当期销售收入中扣除。
按现行会计报表,油气开采成本由15项构成,包括动力费、材料费、燃料费、生产人员工资、福利费、驱油物注入费、热采费、油气处理费、轻烃回收费、井下作业费、测井试井费、修理费、制造费用、折耗及摊销、勘探费用。
(3)税金
主要税金包括增值税、城建税、教育费附加税和资源税。为简化步骤,计算了不同油价下的吨油综合税金。在原油价格为800~1800元/t时,吨油综合税金为99~220元/t。
(4)递减率
为了确定新井产量递减率,统计分析了胜利油区1990~1995年新井的变化规律,按日产油水平分为小于4t、4~6t、6~8t、8~10t和大于10t五个级别进行跟踪分析。统计结果表明,递减率的大小与单井初产油量的高低有关,单井初产油量越高,递减率越大。单井初产油大于10t/d的井递减率约为15%,单井初产油量为8~10t/d、6~8t/d、4~6t/d的井递减率分别为12%、10%、5%左右,小于4t/d的井基本不递减。
3.新井经济极限初产油量计算
通过分析“九五”以来胜利油区的投资、成本,结合单井日产油量的变化规律,分别计算了不同井深、不同油价条件下陆上老区、陆 上新区和海 上新区新井的经济极限初产油量。
根据计算的经济极限初产油量,对胜利油区“九五”以来的新区进行了评价,在综合分析的基础上得出了不同地区不同油价下的低效产量比例。
(1)陆上新区新井经济极限初产油量计算
以井深为1000~3500m,原油价格取900~1700元/t为条件,测算了陆上新区低渗透油田和高渗透油田新井经济极限初产油量,并制作了图件(图1、图2)。从图中可看出,井深相同时,油价越高,新井经济极限初产油量越低;在相同油价情况下,井越浅,对新井初产油量要求越低。
图1陆上新区低渗透油田新井经济极限初产油量图
图2陆上新区高渗透油田新井经济极限初产油量图
高渗透油田对新井的初产要求低于低渗透油田。油价为1000元/t,井深为2000m时,高渗透油田新井经济极限初产为5.65t/d,低渗透油田为6.12t/d。
根据陆上新区新井经济极限初产油量图,对胜利油区1996~1998年所钻陆上新区新井进行了跟踪分析。1996年共钻新区新井317口,平均单井产量11.43t/d,其中低效井78口,平均单井产量3.35t/d,低效井井数占24.6%,但产量仅占4.1%;1997、1998年低效井井数分别占当年钻新井的25.6%、20.2%,产量分别占6.1%、3.5%。
(2)陆上老区新井经济极限初产油量计算
陆上老区井深取1000~3500m,原油价格取900~1700元/t,其低渗透、高渗透油田新井经济极限初产油量计算结果分别见于图3、图4。由于低渗透油田钻井投资、地面建设投资及经营成本等均高于高渗透油田,其新井经济极限初产油量要高于高渗透油田。油价为1000元/t,井深为2000m时,高渗透油田新井经济极限初产为5.3t/d,低渗透油田为5.5t/d。
图3陆上老区低渗透油田新井经济极限初产油量图
图4陆上老区高渗透油田新井经济极限初产油量图
根据陆上老区新井经济极限初产油量图,对胜利油区1990年以来的陆上老区新井进行了跟踪分析,得出了不同油价下其新井低效产量的比例。油价为1000元/t时,1990~1995年陆上老区新井低效产量比例从4.5%上升到13.4%,高于陆上新区新井低效产量的比例,且低效产量的比例上升较快。1995年以后,通过应用精细油藏描述等新技术,不断优化新井井位设计,使得低效产量比例上升的趋势得到控制,基本保持在13%左右。
(3)海上油田新井经济极限初产油量计算
依据海上油田经济参数分析结果,计算了不同油价、井深情况下海上油田新井经济极限初产油量,并制作了图件(图5)。在原油价格为1000元/t时,海上油田新井经济极限初产油量为35.7t/d(井深2200m)。1999年,胜利油区的平均原油销售价格为931元/t,所对应的海上新井经济极限初产油量为36t/d。
图5海上油田新井经济极限初产油量图
根据上述经济极限初产,统计了海上油田近几年新井低效产量的比例。当油价为1000元/t时,1995~1998年低效产量比例分别为11.08%、7.87%、4.36%、7.36%。海卜油田自1995~1996年馆陶组油藏全面投入开发以来,不断应用地震约束反演、油层保护等新技术,优化方案设计,钻井成功率高,新井低效产量的比例明显降低。随着动用储量难度加大,1998年以后低效产量比例上升。
三、老井经济极限含水及经济极限产油量
研究油田的经济极限含水量及经济极限产油量,可以及时判别低效井,并对之采取关闭或转注、改层等措施,以提高经济效益。
1.计算原理及方法
经济极限含水量及经济极限产油量,是指油田(油井)开发到一定的阶段,其含水量上升到某一数值或产油量下降到某一数值,投入与产出达到平衡,含水如再升高、产油量如再下降,油田开发就没有利润了,油田(油井)此时的含水量称为经济极限含水量,其对应的产量称为经济极限产量。
老井经济极限含水量、新井经济极限初产油量的计算都是采用盈亏平衡原理,但不同的是,新井经济极限初产油量的计算是指一定阶段(投资回收期)的投入产出平衡,而老井经济极限含水量的计算是指瞬时(一般取一年)的投入产出平衡。
由于老井一般都认为经历了8年以上的开采时间,在计算老井经济极限含水量及经济极限产油量时,可以不考虑其投资,仅计算它的经营成本。对原油经营成本不同的考虑方法,可以得出不同概念的经济极限含水量及经济极限产油量。常规成本分析法是考虑老井开采时所需的全部经营成本;而最低成本分析法,则是按油井主要的维持生产的费用来计算的。
计算老井经济极限含水量及经济极限产油量的投入产出平衡式为:
胜利油区勘探开发论文集
由(4)式可导出求老井经济极限含水量及经济极限产油量的表达式:
胜利油区勘探开发论文集
式中:qo,min——经济极限产油量,t/d;
fw,min——经济极限含水,小数;
qL——单井产液量,t/d;
Cv——吨液可变成本,元/t;
Cg——固定成本,104元/井;
t——预测年相距基础年的年数,a。
2.吨液成本与平均单井产液量关系
单井生产成本分固定成本和可变成本。(5)、(6)式中准确求取单井生产成本非常关键。为提高该方法的可操作性和实用性,经研究可简化成本分析项目,直接通过平均单井产液量、吨液成本求取单井生产成本。
按最低成本统计分析了1998年胜利油区40个陆上水驱开发油田的吨液成本 CL和油田的平均单井产液量qL有很好的相关关系,其回归关系式为:
胜利油区勘探开发论文集
将(7)式代入(5)、(6)式,可得新的经济极限产油量和经济极限含水量的表达式:
胜利油区勘探开发论文集
3.老井经济极限产油量及经济极限含水量计算
(1)陆上老井经济极限产油量及经济极限含水量计算
油价选800~2400元/t,单井产液量取10~160t/d,利用式(8)、(9)计算了老井的经济极限产油量和经济极限含水量(图6,图7)。从图中可以看出,在相同单井产液量条件下,油价越高,单井经济极限产油量越低;相同油价下,单井产液量越高,单井经济极限产油量越高。油价为1000元/t,单井产液量为10t/d时,单井经济极限产油量为1.15t/d,经济极限含水量为88.5%;单井产液量为160t/d时,单井经济极限产油量为1.68t/d,经济极限含水量为98.9%。
(2)海上老井经济极限含水量及经济极限产油量计算
由于资料所限,海上油田未建立起吨液成本与单井产液量的关系,其原油成本通过分项统计获得。利用公式(5)、(6),油价为1000元/t,单井产液量为30t/d时,计算得老井经济极限含水量为87.2%,经济极限产油量为3.8t/d;单井产液量为80t/d时,计算得老井经济极限含水量为89.1%,经济极限产油量为8.7t/d。从计算结果看,海上油田由于原油生产成本高,其经济极限含水大大低于陆上油田,而经济极限产量大大高于陆上油田。
(3)胜利油区老井低效井情况
依据绘制的老井经济极限产油量及经济极限含水量判别图,对2000年6月开井的13028口老井进行了分析,其中低效井有1293口,占总井数的9.9%;月产油1.94×104t,占全部老井产量的0.83%;平均单井日产油0.5t;综合含水量98.2%。这批低效井2000年6月的最低生产成本为3365×104元,同比产值为1982×104元,亏损1383×104元,建议该部分井进行关停并转。
图6陆上老井经济极限产油量图
图7老井经济极限含水量图
四、措施增产油量经济界限[2]
1.计算原理及方法
措施增产油量经济界限是当油井在措施有效期内的投入与产出平衡时,措施后比措施前累积增产的油量,其计算公式为:
胜利油区勘探开发论文集
式中:Ic——措施新增投入,104元;
Tc——措施有效期,a;
Cc——措施成本,元/t;
qc——措施增油量经济界限,t/d。
2.计算实例
利用公式(10)测算了埕东油田下电泵、防砂、补孔改层、下大泵、卡堵五项措施的日增油量经济界限值。其下电泵措施的有效期为半年至两年,单井日增油界限值为2.29~0.57t,累计增油量经济界限值364t;防砂、补孔改层、下大泵、卡堵的累计增油量经济界限值分别为111t、158t、95t、142t。
五、稠油蒸汽吞吐热采井经济极限油汽比
1.计算原理及方法
对于稠油注蒸汽开采来说,设备工艺的要求要比稀油开采高,设备投资额较大,原油成本也较高。因此,应特别注意蒸汽吞吐热采井开采中的经济界限问题。当油汽比达到某一数值,使总成本高于总销售收入时,注蒸汽开采便无经济意义了,收入与支出平衡时的油汽比即为经济极限油汽比。
测算经济极限油汽比的公式为:
胜利油区勘探开发论文集
式中:OSRmin——经济极限油汽比,小数;
Cig——平均每注1m3蒸汽的成本,元/m3;
Cwdf——单井平均分摊的固定成本,元/d;
Cg——吨油可变成本,元/t;
qo——平均单井产油量,t/d。
2.计算实例
据1998年孤岛油田稠油成本实际发生值,与注汽量有关的费用按注汽费和部分热采费计算,按照公式(11)测算的孤岛稠油油田单井日产分别为4t、5.2t、6t、7t、8t、10t情况下,当油价为948元/t时,经济极限油汽比分别为0.71、0.25、0.19、0.16、0.14、0.12。
六、结论
本文分析研究了不同类型油藏成本、投资分类,建立了老井吨液成本与单井产液量的函数关系,简化了老井经济极限含水量的计算方法和步骤,提高了方法的实用性。
全面而系统地研究了新井、老井、热采井及措施井的经济界限值,并制作了胜利油区不同类型油田开发的经济界限图件,为关停并转低效和无效井提供了依据。
致谢本文集中了地质科学研究院开发综合规划室最近几年在经济政策界限方面的主要成果,是集体智慧的结晶。胜利有限公司副总地质师、地质院院长孙焕泉和开发管理部总地质师方开璞给予了悉心指导。参加本文工作的还有凡哲元、杨勇、邴绍献、吴作舟、侯春华、王道祯、王星等,在此一并致谢。
主要参考文献
[1]中国石油天然气总公司计划局,中国石油天然气总公司规划总院编.石油工业建设项目经济评价方法与参数(第二版).北京:石油工业出版社,1994.
[2]岳立,岳登台.老油田高含水期可采储量及增产措施经济评价方法.石油学报,2000,21(5).
西部甘肃的玉门、新疆的克拉玛依和兰州炼化公司都是我国石油开采和炼制的发源地和老基地。目前,克拉玛依、独山于、兰州、乌鲁木齐、延安都有一定的石油一次加工能力并具有
浅谈电梯智能数据采集系统研究论文 电梯智能数据采集系统采用传感器采集电梯运行数据,通过微处理器进行数据分析,由网络传输至数据处理服务器,实现电梯困人救援、故障报
统计学专业是一门处理大量数据的学科,在社会中的重要性越来越不可忽视。下文是我为大家搜集整理的统计学论文的内容,欢迎大家阅读参考!统计学论文篇1 谈农
给的资料和方向还是比较明确的,相对来说是第二个好写一些,所谓的好写是指相对第一个而言,毕竟关于网站平台开发的资料铺天盖地,你可以按照平台开发的步骤进行一步步论述
统计数据质量作为衡量统计工作绩效水平的重要依据,社会各界对其给予了更多的关注,也提出了更高的要求。下文是我为大家搜集整理的关于统计方面论文范文的内容,欢迎大家阅