五爷威武
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。708字
望天的猪
教育专业论文答辩自述范文
毕业论文答辩是答辩老师和撰写毕业论文的学员面对面的,由答辩老师就论文提出有关问题,让学生当面回答的活动。下面是我为您搜集整理的教育专业论文答辩自述范文,希望能对您有所帮助。
各位老师、同学:
大家好!我的论文题目是《高中立体几何空间向量教学实践探索》,本篇论文是在xx教授的指导下完成的。
在此,我十分感谢他长期以来对我的精心指导和大力帮助,同时也感谢各位评审老师对我这篇论文的审阅并出席本次答辩。
一、选题缘由、目的
向量进入中学数学教材,是近几十年来国内外教学改革的一个主要特征。空间向量引入立体几何是数学课程改革的重点之一,它是一个具有几何和代数双重身份的概念,具有特别广泛的教育价值。用它来解决部分立体几何问题,可以大大降低难度,激发学生的学习兴趣,有利于学生在学习中获得成功的体验。我们的教师在空间向量这一部分的教学中的难点和焦点在于:空间向量在立体几何中如何运用?空间向量在立体几何教材中怎样安排?如何在立体几何的教学中,正确处理好空间向量和传统方法的关系?怎样设计这部分知识的教学才能帮助学生更好地理解本部分的内容?为此我进行了高中立体几何空间向量教学实践探索。
二、资料收集准备工作
自选定题目后,本人结合自身教学实践,阅读资料,拟定提纲,问卷调查与分析,写开题报告初稿、定稿,硕士论文初稿、修改等一系列程序,于3月正式定稿。
三、论文的结构
本文从空间向量引入高中数学的必要性入手,研究了空间向量的基础知识和空间向量在高中立体几何中的应用,对高中教材中的立体几何空间向量进行了教学分析。本研究主要采用文献分析法、问卷调查法和行动研究法,对泸县二中数学教师和高二年级的二十七个班级的学生样本进行调查,集中研究空间向量对立体几何教与学产生的影响。
全文总共分为七个部分,约四万七千多字:
第一部分是绪论
阐述本研究的时代背景和现实背景;通过文献查阅研究,了解国内外空间向量引入立体几何的教学研究前沿的状况;从而界定核心概念、择取研究视野与方法、确立本研究设计与核心观点。
第二部分是空间向量进入高中立体几何教学的必要性
基于两点:高中立体几何引入空间向量的现实意义和深远影响
第三部分是空间向量的基础知识和空间向量在高中立体几何中的应用
回顾高中立体几何教材中的空间向量的基础知识:包括向量的起源和发展、空间向量的相关概念及表示、空间向量的基本定理和空间直角坐标系的建立。
阐述了空间向量在高中立体几何中的主要应用:确立空间位置关系、解决角和距离问题,体现空间向量是处理立体几何问题的强有力工具,相比于传统方法更具优越性。
第四部分是研究教材:高中教材中的立体几何空间向量教学分析
首先对高中立体几何新旧两种教材进行对比,分析 “空间向量”这部分内容在立体几何这一章中的安排,进而研究高中立体几何空间向量教材教学方法。
第五部分是对高中立体几何空间向量教与学的调查与分析
我于今年2月对我校高二年级进行了问卷调查--学生学习空间向量和教师对空间向量教学的调查。
调查的目的:了解普通高中立体几何空间向量教与学的现状,发现:高中生在运用空间向量来解决立体几何问题时所犯的主要错误。
有:(1)建系不合理;(2)求错点坐标;(3)不会求法向量;(4)思路不清晰;(5)计算错误,等。因此,他们在建系、求点坐标以及利用向量求空间角和空间距离等方面存在着不同程度的困难。此外,由于受到“向量解题简单”思想的误导,在什么情况下选用向量法解决立体几何问题,也是学生遇到的困难之一。
同时,存在着部分教师对空间向量持回避态度。
总之教学中要注意以下几点:
(1)空间向量方法在解决立体几何问题时要发挥其优越性的前提是要求学生有足够的向量知识储备。
(2)在教学中,教者不能有意无意地给学生传递这么一个错误信息--空间向量解决立体几何问题是万能的。
(3)在教学中,除了要教给学生必要的'数学知识,更为重要的是要传授给他们关于数学学习的能力方面的东西。
第六部分是高中立体几何空间向量教学设计与教学实施及实践效果分析
我针对高中立体几何空间向量作了教学设想,进行了教学方式探索,以启发式和探究式学习的教学方式作出立体几何空间向量部分的教学过程设计,以《空间向量的夹角》为例作了教学设计案例,最后进行了教学实践效果分析。
从中数据分析可以得出,笔者对立体几何空间向量的教学设想、教学方式和教学设计的教学实践效果是比较好的,能在空间向量教学这一知识板块的研究上,能给予同行以帮助或是提供参考,这也是本研究的主要目的所在。
第七部分是关于立体几何空间向量教学的基本结论和建议
(一)研究的基本结论
1.空间向量引入立体几何很有必要,还需要加大普及。教学上基于以下两点:
(1)空间向量的引入降低了学生学习的难度。
(2)空间向量的引入降低了对学生空间想象能力训练的要求。
2.用空间向量方法在立体几何题的教学实用性上明显优于传统方法,但不能完全摒弃传统方法,正确处理传统方法与空间向量法之间的关系,二者有机结合、相得益彰。
(二)教学建议
1.注重以新的理念指导教学
2.注重向量概念的教学
3.注重空间向量运算的教学
4.注重空间向量法与传统方法的对比
5.注重向量应用的教学
经过本次论文写作,本人学到了许多有用的东西,也积累了不少经验,但由于本人能力有限,在许多内容表述、论证上存在着不当之处,请各位老师多多指教,我将虚心接受,进一步深入学习研究和教学实践,既使该论文得到完善和提高,也提高教学实践水平。
以上是我对自己的论文简单介绍,请各位老师提问,谢谢。
百叶书店
新课改下的高中数学教学论文
引导语:本论文是一篇关于新课改下的高中数学教学的优秀论文范文,对正在写有关于学生论文的写作者有一定的参考和指导作用,下面我为您整理了一篇新课改下的高中数学教学论文,希望对您能有所帮助!
新课改下的高中数学教学论文
摘 要 : 高中数学新课标对高中数学课堂教学要求很高,要教好高中数学,教师首先要对高中数学知识有全面的掌控;其次要了解学生的目前状况和认知结构;最后要处理好课堂教学中教师的教和学生的学的关系。
关键词 : 高中数学教学 教学目标 教学策略 课堂练习
课堂教学是学生在校期间学习科学文化知识的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基,而且要提高智力;不但要发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学,尤其是在课堂上,不但要充分挖掘学生的智力因素和非智力因素,而且要提高学生的学习效率,尽量在有限的时间里出色地完成教学任务。
一、新课标要求每节课要有明确的教学目标
教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、策略和媒体,对内容进行必要的重组。在数学教学中,要通过师生共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,提高学生的综合素质。如《向量及其运算》是整个向量一章的第一课,在备课时应注意,通过这一课的教学,使学生能利用辩证唯物主义的观点解释向量的产生和发展过程,体会到向量存在我们的生活中,激发学生的求知欲望,提高学生自己分析理由和解决理由的能力。
二、新课标要求每节课要能突出重点、化解难点
每一堂课都要有一个重点,整堂课的教学都是围绕着这个重点逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,引起学生的重视。讲授重点内容,是整堂课教学的高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,还可以适当地插入与此类知识有关的笑话,对所学内容在大脑中留下深刻的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。
三、新课标要求每节课能善于应用现代化教学手段
随着科学技术的飞速发展,对教师来说,掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段有其显著的特点:一是能有效增大每一堂课的容量,从而把原来四十分钟的内容在三十五分钟内就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课临近结束时,教师引导学生总结本堂课的内容、学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等都可以借助投影仪完成。教师可以自编课件,借助电脑生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑作演示。
四、新课标要求教师每节课要根据具体内容选择恰当的教学策略
每一堂课都有每一堂课的教学任务,目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活地应用教学策略。数学教学的策略很多,对于新授课,我们往往采用讲授法向学生传授新知识。而在立体几何中,我们还时常穿插演示法,向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的.位置关系时,就可以通过这些几何模型直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学策略。在一堂课上,可以同时采用多种教学策略。“教无定法,贵在得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,就是好的教学策略。
五、处理好课堂偶发事件,及时调整课堂教学
尽管教师对每一堂课都做了充分准备,但有时也可能遇到一些预料不到的事情。如一次我在讲授《向量及其运算》第二课时时,教材中有“两向量不能比较大小”这一结论,但没有给出证明,教学计划中也没有提出证明的要求。在课堂教学中当提到这个理由时,有一位成绩较好的学生要求我写出解答过程。我就因势利导,向学生介绍了数的大小比较的原则,并利用这一原则说明了向量具有的特性,即大小和方向,不能成立的理由就是多了一个方向。然后,话锋一转,对那位同学说,关于详细的证明过程,我课后再与你面谈。这样,虽然增加了课时内容,但保护了学生的学习主动性和积极性,满足了学生的求知欲。
六、精讲例题,多做课堂练习,腾出时间让学生多实践
根据课堂教学内容的要求,教师要精选例题,可以按照例题的难度,从结构特征、思维策略等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量。解答过程视具体情况,可以由教师完整写出,也可部分写出,或者请学生写出。关键是讲解例题的时候,要能让学生也参与进来,而不是由教师一个人承包,对学生进行“满堂灌”。教师应腾出十来分钟时间,让学生做练习或深思教师提出的理由,或解答学生的提问,进一步巩固本堂课的教学内容。若课堂教学任务相对轻松,则可以指导学生进行预习,提出适当的要求,为下一次课做准备。
七、切实重视基础知识、基本技能和基本策略
近年来,数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对忽视了基础知识、基本技能、基本策略的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目训练学生。其实定理、公式推证的过程本身就蕴含重要的解题策略和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生做题,试图通过让学生通过大量地做题“悟”出某些道理。结果是多数学生“悟”不出策略、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单理由复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,就会导致学生在考试中判断错误。不少学生说,现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本策略的熟练程度及能力的高低。
总之,在数学课堂教学中,要提高学生的课堂学习效率,提高教学质量,我们就应该多深思,多准备,充分做到备教材、备学生、备教法,提高教学机智,发挥主导作用。
几何图形在生活中的应用金华四中 初一(9)班 毛以华 指导老师:方云兵在这个科技高速发展的时代中,几何图形已经成了生活中的”常客”,处处都有几何图
数学教学的知识具有抽象性、严谨性、广泛性、辩证性等基本特征,相比于其他的学科,数学教学知识素养具有更高的要求。下面是我为大家整理的高中数学小论文,供大家参考。
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子
关于高中数学立体几何学习的研究与实践如需要全文,可以再联系
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它