• 回答数

    4

  • 浏览数

    214

小白黄条条猫
首页 > 学术期刊 > 经济数学模型论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

~Miss.Q~

已采纳

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

347 评论

小L快跑

无忧在线有很多数学建模论文,你去搜一下就行

345 评论

杨梅的果实000

经济学的核心的统计学,经济的通过统计进行计量和分析的。

85 评论

流星又来临

如何认识经济研究中数学方法的运用在学术界历来争议很大。自从1969年首届诺贝尔经济学奖授予将数学和统计方法应用于经济分析的荷兰经济学家丁伯根以后,在世界范围内出现了一股经济研究数学化的热潮。经济研究中这种倾向性的风气,对我国经济理论界产生了很大影响,一些经济理论文章出现了大段大段数学公式的推导,个别学术性经济类杂志(并非是计量经济学或统计学杂志)此类文章甚至占了1/2到2/3,对此不少经济学家产生了疑惑:难道这就是经济理论研究的方向,这类研究可以解决或阐明我国经济体制改革中的一些现实问题吗? 一、经济研究离不开数学 一部科学史揭示了这样一个事实:凡属“科学”范畴的各个学科,都是在人类社会活动实践的基础上产生的。学科的划分和不同学科各自特征的归纳都是“人为”因素作用的结果,就内在本质而言,各学科之间相互作用、相互影响、相互渗透的关联性极为明显,不惟自然科学与社会科学各自内部的学科,就是两类学科之间也是如此。 经济学是研究社会资源配置及社会经济关系的一门科学。基于资源存量与流量的可度量性,为了使资源配置更加公平、效率更高,经济学有必要借助于数学这一严密、精确、实用的思维工具。基于在资源配置过程中所形成的经济关系涉及到经济制度、社会心理、价值观念等难以量化的因素,经济学作为一种以思辨定性分析为主的实证性科学,不可能以数学作为经济研究中基本的或者说万能的工具。 关于数学方法在经济学中的作用问题,在理论界历来争议就很大,这种论争至少已有100年之久。从“反对数学的蒙昧主义”,到断言没有数学就没有任何科学,见仁见智,意见可谓大相径庭。 作为实际经济活动的理论概括和抽象的经济学,从其萌发到形成始终没有离开过数学。一方面,数的概念是在漫长的生产活动过程中产生的,另一方面生产活动也总是需要经济类的不同学科,诸如人口学、市场学、劳动工资学、价格学、财政学、金融学、会计学等等无一不与计数、计量、计算有关。离开数的概念,离开算的方法,可以说就不会有这些学科。 经济活动的实践决定了经济理论的研究也离不开数量,并且在经济学中运用数学的程度与数学本身的发展密切相关。纵观数学的历史,其可分为有质的区别的四个基本阶段。第一阶段,计数、算术时期(终止于纪元前5世纪);第二阶段,初等数学即常量数学时期(终止于17世纪);第三阶段,变量数学时期(终止于19世纪);第四阶段,现代数学时期。现代数学时期突出的特点是,多种多样的数学分支不断成长,数学的对象和应用范围大大扩展,并且以更高的理论抽象和概括揭示出了数学中最一般的统一的概念。 尽管数学的概念和结论极为抽象,但是它们都是从现实中来的,并且能在其他学科中、在社会生活实践中得以广泛应用,这也许是数学不仅具有无限的生命力且对于各个学科都有巨大影响和吸引力的根由所在。正如恩格斯在《反杜林论》中所说,应用数学来研究现实世界的这种可能性的根源在于:数学从这个世界本身提取出来,并且仅仅表现这个世界所固有的关系的形成部分,因此才能够一般地加以应用。 经济学对数学的应用范围伴随着数学的发展在不断扩大。在19世纪之前,经济学主要运用的是初等数学。从威廉·配第的《赋税论》(1662)、《政治算术》(1676),到魁奈的《经济表》(1758),都是利用数字、图表和简单的计算去描述分析国民财富的状况和变化。从19世纪起,经济学的研究引入了变量和函数的概念,数学方法的运用更为普遍。其中,考纳德的《财富理论的数学原理研究》(1838)是一本有意识地运用数学公式来说明经济问题的著作。此后,屠能的以实际数量为根据的经验公式(1850)、瓦尔拉的均衡交易理论(1874)、哈罗德的经济增长模型(1948)、丁伯根的包括48个方程式的大型经济增长模型(1939)、刘易斯的“二元经济”模型(1954)、托宾的中值—变量模型(1958)以及20世纪70年代至90年代索洛和罗曼的经济增长模型等等,一大批运用数学方法研究经济问题的论著纷纷问世。这些著作的共同特点是既使用了一般经济概念和传统经济方法,同时又使用了从最简单的数学符号到最新的数学方法。 从经济学与数学形影相随的发展历程可以获知,数学能为经济学提供特有的、严密的分析方法,它同定性分析中常用的逻辑学一样,是一种认识世界的工具。但是数学的应用只有与具体现象的深刻理论和严格的“质”的规定性相结合才有意义,否则经济研究会陷入毫无实在内容的公式与数学的游戏之中。 二、经济研究中运用数学方法出现的偏差 现在关于数学在经济研究中运用问题的争论焦点,不是经济学要不要运用数学方法,而是如何运用数学方法问题。对于前者,经济活动中对数学广泛应用的实践和经济理论运用数学方法研究成果的不断推出已经作出了肯定回答,而对于后者却众说纷纭,莫衷一是。由此使得经济学在运用数学方法时出现了严重偏差,影响了研究效果,发展下去有可能使我国经济研究步入歧途。 经济研究中应用数学方法存在的主要问题有: 1.运用范围过泛过滥。数学运用的界域是可以量化的事物,经济研究的视野是人类一切经济活动和社会关系。并非所有的经济活动和经济关系都是可以量化的,尤其是社会经济关系,它受到制度的、道德的、文化的、历史的诸多社会因素的影响,这些因素几乎大部分是无法量化的。如若硬是将不可量化的因素用数学公式将它们的关系表达出来,似乎怎么说都有道理,因为它们根本不存在运算关系,也无法运用数量的计算去考证对错。尽管数学也是反映人的思维的一种语言,但并非所有的科学都能转化为数学的语言。像物理学、化学、生物学这些与数学紧密关联的学科也是如此,有些问题即使将其转化为数学关系式,也不一定具有可解性。而以人类社会活动为研究对象的社会科学对数学的运用所受的限制就更多了,试图将经济学非人性化,以至将经济活动中的人“机械化”,将人的活动程序化、公式化,这无疑是经济研究的一种自我毁灭。 不看对象、不问条件、一门心思运用数学方法去求解经济问题,很容易使经济学沉湎于方法论的探寻,拘泥于微观经济体的研究,而对于涉及宏观经济体制变革、机制设计以及社会关系调整等全局性的问题有所轻视和忽略。正如理查德·布隆克所说,现代经济学越来越热衷于复杂的数学计算,沾沾自喜于美妙的数学模型,玩弄神秘。其结果是导致经济学逐步地与每日生活的丰富性、复杂性和非理性相脱离。近几年的经济研究动态已显露出这方面的一些令人忧虑的迹象。 2.对数学模型约束条件的取舍过于随意。几乎所有的理论都是在设定若干前提和假设条件的基础上确立的。如会计学中会计主体、持续经营、会计期间和货币计量等四个会计假定,西方经济学中“经济人”及“完全市场化”的假定等。数学方法逻辑严密性和计算准确性的性质决定了任何一个数学模型都要受到若干条件的约束,只有假定这些条件满足,该数学模型才能成立。方程越复杂所受的约束条件越多。现在一些经济学家建立数学模型对于约束条件,一是根本不去考虑,二是过于简化,三是约束条件的确定十分随意,仅从模型本身的需要出发而不考虑是否符合客观实际要求

161 评论

相关问答

  • 经济数学模型论文

    数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社

    小白黄条条猫 4人参与回答 2023-12-06
  • 经济论文的数学模型

    下面我要介绍的三篇论文,来自于同一个人,或者我只是想介绍一下这么一个人——弗兰克.普兰顿.兰姆塞(FrankPlumptonRamsey)。Ramsey一生有三

    海诺地暖 3人参与回答 2023-12-12
  • 学术型经济学论文选题

    1.4.1.2税收的分配职能税收的分配职能简单的来说就是国家在借助政治权利参与社会产品分配的过程中,需要将一部分社会产品或者国民收入转化为国家所有。从整体的角度

    土耳其电信 5人参与回答 2023-12-09
  • 宏观经济学模型课程论文

    题目是新冠疫情对我国经济的影响,写论文参考以下几点: 大一的论文应该不难,只要用心,很快就可以完成,加油年轻人!

    逍遥石子 4人参与回答 2023-12-08
  • 宏观经济学好写的论文模型

    宏观经济学的主要理论模型:1、简单国民收入模型,该模型不考虑利率2、ISLM模型,该模型考虑利率 ;3、ADAS模型 (衍生关于失业:菲利普斯曲线),该模型考虑

    超能力小怪兽 2人参与回答 2023-12-07