• 回答数

    3

  • 浏览数

    151

夏日风清凉
首页 > 学术期刊 > 全等三角形论文题目

3个回答 默认排序
  • 默认排序
  • 按时间排序

我有歼击机

已采纳

还有一个方法,对于直角三角形,可用HL,即一条直角边和斜边对应相等的三角形是全等三角形。

149 评论

zhang小美123

在平常学习中,有许多关于证明全等三角形的问题。 据我现在知道,证明全等三角形的方法就有四种:SSS,SAS,ASA,AAS。唯独不能用的就是SSA,用这种方法证明是完全错误的。现在,我就先分别每一种证明方法列一个题目。 SSS是指有三边对应相等的两个三角形全等。 第一题是SSS证明方法里最简单的。 如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由。 证明:∵AF=DC(已知) E ∴AF+FC=DC+FC ∴ AC=DF 在△ABC与△DEF A F ∵ AC=DF(已证) C D AB=DE(已知) DC=EF(已知) ∴△ABC≌△DEF(SSS) B ∴∠EFD=∠BCA(全等三角形的对应角相等) 这是最基础的一道题。。SAS是指有两边和它们的夹角对应相等的两个三角形全等。第一题还是SAS证明方法中最简单的题目。 如图,AC与BD相交于点O,已知OA=OC,OB=OD,说明△AOB≌△COD. 证明:在△AOB与△COD中 A B ∵OA=OC(已知) ∠AOB=∠COD(对顶角相等) O OB=OD(已知) ∴△AOB≌△COD(SAS) D C 这一题是非常的简单但是如果前面的对顶角知识没学好的话,这一题就不会这么轻松了。 ASA是指两角和它们的夹边对应相等的两个三角形全等。 第一题是ASA比较简单的。 如图,已知∠DAB=∠CAB,∠EBD=∠EBC,说明△ABC≌△ABD. 证明:∵∠EBD=∠EBC(已知) D ∴∠ABC=∠ABD(等角的补角相等) 在△ABC与△ABD中 A B E ∵∠DAB=∠CAB(已知) AB=AB(已知) ∠ABC=∠ABD(已证) C △ABC≌△ABD(ASA)这一题我说它简单是因为有许多已知的条件,但是有一条件是要记得等角的补角相等这一知识。还有最后一种是运用AAS的方法来证明题目。如图,已知∠B=∠C,AD=AE,说明AB=AC. B证明:在△ABE与△ACD中 ∵∠B=∠C(已知) D ∠A=∠A(公共角) A AE=AD(已知) E ∴△ABE≌△ACD(AAS) C ∴AB=AC(全等三角形的对应边相等)这也只是一种,还有一种不仅用AAS方法证明全等三角形,其中还用了角平分线的知识。如图,点P是是∠BAC的平分线上的一点,PB⊥AB,PC⊥AC,说明PB=PC。证明:∵AP是∠BAC的平分线(已知) ∴∠CAP=∠BAP(角平分线的定义) ∵PB⊥AB,PC⊥AC(已知) ∴∠ABP=∠ABP(垂线的定义) 在△APB与△APC中 C ∵∠PAB=∠PAC(已证) P ∠ABP=∠ABP(已证) AP=AP(公共边) V A B ∴△APB≌△APC(AAS) ∴PB=PC(全等三角形的对应边相等) 在这些所以的证明全等三角形的题目中,有一类题目最让我头痛,经常让我做错,就像下面这题:如图△ABC和△AB’C’中,AB=AB’,要使△ABC≌△AB’C’,再添加一个条件________ B’ C A C’ B在这种情况下,我们可以用SAS,ASA,AAS.唯独不能用来证明的就是SSA的方法,可我有时就偏用SSA的方法去证明,填入BC=B’C’,这是完全错误的,在这个空内我们可以选填∠B’=∠B或∠ACB=∠AC’B’,或AC=AC’.这就是我在生活中发现的关于证明全等三角形的问题。

279 评论

不忘初心258

我们已经具备了有关线的初步知识,转而探索具有更美妙更复杂性质的形。对于三角形,一方面要研究一个图形中不同元素(边、角)间的性质,另一方面要关注两个图形间的关系。两个图形关系的有关全等的内容,则是平面几何中的一个重点,是证明线段相等、角相等以及面积相等的有力工具。 那么如何学好三角形全等的证明呢?这就要勤思考,小步走,进行由易到难的训练,实现由模仿证明到独立推理、由实(题目已有现成图形)到虚(要自己画图形或需要添加辅助线)的升华。具体可分为三步走: 第一步,学会解决只证一次全等的简单问题,重在模仿。这期间要注意模仿课本例题的证明,使自己的证明格式标准,语言准确,过程简练。如证明两个三角形全等,一定要写出在哪两个三角形,这既方便批阅者,更为以后在复杂图形中有意识去寻找需要的全等三角形打下基础;同时要注意顶点的对应,以防对应关系出错;证全等所需的三个条件,要用大括号括起来;每一步要填注理由,训练思维的严密性。通过一段时间的训练,对证明方向明确、内容变化少的题目,要能熟练地独立证明,切实迈出坚实的第一步。 第二步,能在一个题目中两次用全等证明过渡性结论和最终结论,学会分析。在学习直角三角形全等、等腰三角形时逐步加深难度,学会一个题目中两次证全等,特别要学会用分析法有条不紊地寻找证题途径,分析法目的性强,条理清楚,结合综合法,能有效解决较复杂的题目。同时,这时的题目一般都不只一种解法,要力求一题多解,比较优劣,总结规律。 第三步,学会命题的证明,初步掌握添加辅助线的常用方法。命题的证明可全面锤炼数学语言(包括图形语言)的运用能力,辅助线则在已知和未知间架起一座沟通的桥梁,这都有一定的难度,切勿放松努力,前功尽弃。同时要熟悉一些基本图形的性质,如“角平分线+垂直=全等三角形”。证明全等不外乎要边等、角等的条件,因此在平时学习中就要积累在哪些情况下存在或可推出边等(或线段等)、角等。烂熟于心,应用起来自然会得心应手。

298 评论

相关问答

  • 关于解三角形论文范文写作

    “数学小论文”是让学生以 日记 的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。下面是我整理的关于小学六年级的数学小论文,供大家

    格桑之门 3人参与回答 2023-12-09
  • 关于三角形的研究论文

    在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的

    蓝Luckyclover 4人参与回答 2023-12-10
  • 有关小学数学三角形论文范文

    教育 教学的最终目的就是实现课堂教学的有效性,培养学生的综合能力。小学数学学科是小学阶段的基础学科,学好小学数学对于学生的发展具有至关重要的作用。下面是我为大

    喵星队长 4人参与回答 2023-12-09
  • 数学小论文四年级三角图形

    我我一直有一个梦想,那就是当一个数学家,但是我发现我是一个弱智,四年级了连5400+38=?都不会,你们谁能把答案大声读出来吗,如果你能读出来,那么你就是一个天

    Lemonice柠檬冰 6人参与回答 2023-12-05
  • 三角形的毕业论文

    论文发表写作指导:

    sunjinghong 3人参与回答 2023-12-12