汽油加氢即加氢油,加氢油是通过加氢工艺(加氢处理、加氢裂化、加氢异构化、加氢精制、催化脱蜡),改变基础油化学组成。
加氢油的性能:
1、粘度指数高、低温性好、粘温性好;
2、热稳定性、氧化安定性好;
3、挥发性低;
4、毒性低;
5、与合成的PAO(α-烯烃合成油)相似。
润滑油的发展必将推动基础油向高品质方向发展。为满足高档润滑油的高质量、节能、延长换油期和低排放的需求,要求基础油具有低粘度、低挥发度、高粘度指数、良好的氧化安定性等特点。
扩展资料:
汽油加氢的原因:
汽油是石油经过常压分馏后得到的产物。如果直接由石油炼制得到,汽油中的硫、氮、氧含量较高,烯烃的含量也比较高。产品中烯烃的含量高则容易出现变色现象,而且还会影响机动车的使用寿命,对大气污染程度也相对大些。
为了克服上面这些问题、提高柴油的使用性能,在柴油的加工过程中,一般会引进了加氢工艺,加氢工艺一方面可以降低柴油中硫、氮、氧、烯烃的含量,提高产品的安定性好;另一方面也可以减少产品对大气的影响程度。
参考资料来源:百度百科-加氢油
汽油加氢是炼油厂的一个工艺过程,就是为提高汽油品质的一个过程。
对于一个科研工作这来说,文献检索的意义主要在于:1、 是继承前人经验,加快科研步伐的需要大家会注意到,我们阅读的科技文献、学习的教材内容,往往是几年、几十年、上百年前的发现或研究成果,而这些成果对我们现在的研究往往有着不可忽视的作用,否则文献检索这们课便没有开设的必要。文献检索这门课可以帮助我们继承前人的经验,避免科研工作的重复劳动,节省科研经费和工程投资,使自己的成果始终建立在最新成果的基础上。2、进行科研创造的需要就科学研究的全过程来说,无论是新课题还是老课题,在课题的确定、规划的制定、方案的取舍、难点的攻关,还是成果的鉴定和总结,也都离不开文献检索。通过文献检索可以了解: 老课题的最新进展。例如,“渣油的深度加工”课题,如果你想在该领域进行研究,就必须了解该课题在工业生产和科研中的现状: 馏份油延迟焦化 石油焦减粘裂化 轻馏份油渣油 燃料油 汽煤柴加氢 渣油脱沥青后进FCC VRDS 和生产润滑油 重油催化裂化 了解了工业生产中需要解决的问题,减粘裂化轻油收率太低;延迟焦化石油焦油含量太高;加氢裂化催化剂失活太快等等,你就可以确定自己的研究方向。 又例实验室研究:“渣油的热反应规律”(热反应:减粘裂化、延迟焦化、高温裂解)有人把渣油作为研究对象;有人把渣油分成S、A、R、Asp四组分,然后专门研究其中的胶质或沥青质的反应规律;有人研究热反应过程中的生焦动力学反应;有人研究生焦的相态变化。 工业生产中的需要和科研中的进展,你都可以通过文献查阅,在进行研究前了解。如果不进行文献查阅,而自以为自己的想法很新颖,便矢志不移的取进行研究,是不可取的,也许人家早就进行了研究,申请了专利和发表了文章。 新课题的进展程度,从而及时地了解学术前沿。如“渣油的悬浮床加氢裂化”催化剂用煤粉、赤泥、硫酸亚铁(专利)、钴钼镍的盐类,由于盐类催化剂的比表面积较小,催化剂又向着增大催化剂比表面积的方向发展,一种是利用特殊技术,将金属分散成纳米数量级的氧化物;另一种是将活性金属载到酸性担体上,这样金属的颗粒也是纳米级,约5nm,并且由于担体的存在,增加了裂化用的酸性中心。对于那些尚未立题的科研项目,更要进行文献检索,为科研的开展做好前期工作。据统计,一个科技人员查阅科技文献的时间,往往占全部工作时间的三分之一。如果科技人员掌握文献检索的知识和方法,就能大大节省花在来查找资料上的宝贵时间,从而加快科研速度,早出科研成果。3、申请科研经费必不可少的基础工作进行科学研究需要经费,目前高校的科研经费的来源主要有两条∶一是纵向科研经费,即国家拨款的科研项目;二是横向科研经费,即与工厂企业联合的科研项目。无论什么样的科研经费,都需要科研工作者去积极得争取。另一方面,通过情报检索可以避免科研工作的无谓重复,还可以节省科研经费和工程投资,使自己的工作始终处于领先水平。由于知识剧增,学科来愈多,愈分愈细,任何一个学生都不可能在学校里学完工作所需要的全部知识。在学校里,最重要的是培养学生获取知识的能力。文献检索与利用课是对发挥学生智能、培养学生独立获取知识的能力很有帮助的一门课程。学生通过这门课程的学习,可以掌握情报检索的知识和方法,学生不仅能找到所需要的资料,而且掌握了解决问题的方法,从而有助于弄清知识的来龙去脉,锻炼和培养分析问题和解决问题的能力。另一方面,学习文献检索与利用课,对形成学生合理的知识结构和增强学生的情报意识都很有好处,这有利于今后在实际工作中取得较好的成果,情报检索课具有很强的实践性和综合性,是获取其他有用信息、形成合理知识结构的一种重要手段。第六节 科技文献检索工具1. 检索工具概述检索工具是用来报道、存储和查找文献线索的工具。它是在一次文献的基础上,经过加工整理、编辑而成的二次文献。2. 检索工具的基本结构一部完整的检索工具通常由:使用说明、著录正文、索引和附录几部分组成。正文由文摘、题录或目录组成。索引分主题索引、作者索引、分类号索引、期索引、卷索引、累积索引等。3. 检索工具的类型索引是检索工具中最重要的部分,没有索引的目录、题录和文摘,只能起到报道作用,不起检索作用,不能称为检索工具。但通常把目录、题录、文摘和索引通称为检索工具。检索工具按著录方式可分为:目录、题录、文摘和索引。⑴目录(bibliography、catalogue)目录是对图书、期刊或其他单独出版物特征的揭示和报道。它是历史上出现最早的一种检索工具类型。目录以单位出版物为著录对象,一般只记录外部特征,如题名、著者、出版事项、载体形态等。目录主要用于检索出版物的名称、著者及其出版、收藏单位。常用的目录有国家书目、馆藏目录、专题目录、联合目录、出版发行目录、期刊年终目录等(一般期刊的年终最后一期上有全年的目录)等。⑵题录(title) 题录是对单篇文献外表特征的揭示和报道,著录项目一般有篇名、著者、文献来源、文种等。由于著录项目比较简单,因此收录范围广,报道速度快,是用来查找最新文献的重要工具。但它揭示文献内容很浅,只能作为临时过渡性检索工具。文摘一出版,它的作用就被文摘所代替。著名的题录刊物有美国的《化学题录》(Chemical Titles)、《现期期刊目次报道》(Current Contents)、英国的《当代工艺索引》(Current Technology Index)等。我国的《全国报刊索引》也属这种类型。⑶文摘(Abstract) 文摘是系统报道、累计和检索文献的主要工具,是二次文献的核心。文摘以单篇文献为报道单位,不仅著录一次文献的外表特征(即文献的标头部分),还著录文献的内容摘要。不看原文,往往便可决定文献资料的取舍,从而节约查阅原始文献资料的时间。按文摘报道的详简程度,文摘可分为指示性文摘和报道性文摘两种类型。报道性文摘有时可代替原文,这类文摘对于不懂原文文种及难以获得原文的科技人员尤为重要。文摘类检索工具主要由文摘和索引两部分组成,分别起报道和检索作用。索引配备的完善与否是衡量文摘类检索工具的重要标志。⑷索引(index) 索引是揭示各种文献外部特征或内容特征的系统化记载工具。它的著录项目没有目录、题录、文摘那样完全,大多数索引不能直接查到原始文献资料,而必须通过该文献资料在检索工具中的序号,在检素工具的正文中找到文献资料的来源出处,进而找到原始文献资料。学习检索工具的使用方法,主要是学习索引的使用方法。第七节 科技文献检索的途径一、 根据文献的外部特征进行检索1、文献名途径文献名主要指书名、期刊名、论文名等,文献名索引都按名称的字序或笔画排列。如检索石油化学类书籍时,查五划“石”字即可;脱蜡,Wax Removal; 2、作者途径这是根据已知作者的姓名来查找文献的途径。常用Author Index进行检索。由于一个人在一生中从事的职业和研究的课题是相对固定的,因此,通过跟踪某一作者可以检索某一专题的主要文献。但这种检索方法所查的文献不系统、不完整。如作者王老五发表的论文,可以在Author Index中查Wang 。但你必须经常翻阅相关领域的科技文献,否则你不知道谁从事该领域的研究。3、序号途径这是根据文献的编号来查找文献的途径。这种检索工具有报告号索引、标准号索引、专利号索引等。利用该途径进行检索时,必须首先知道所查文献的号码,因而这类索引的利用受到限制。例如要了解某一专利的详细内容时,就必须首先知道它的专利号。如图书分类号∶O64-物理化学; TP-自动化、计算机;有时按分类号查快;有时按笔画查快∶如∶高等有机,高等数学,高等教育,高等代数等、因为高等太多,如果查高等数学,按O13查较快又如TP类包含了计算机、自动化等,类别很多,如果查计算机最好按笔画查。4、其他途径另外也可以根据文献是纸张出版物还是电子出版物版、是英文还是中文、出版日期等外部特征进行检索、二、根据文献的内容特征进行检索1、主题途径这是按照文献的主题内容进行检索的一种途径。这类检索工具有主题索引、关键词索引、叙词索引等。该途径以文字作标识,索引按照主题词或关键词的字顺排列,能把同一主题内容的文献集中在一起。如CA的Subject Index和Keywords Index。看起来有点象文献名检索途径,但主题途径是按文献的内容进行分类的。2、学科分类途径这类检类工具有分类目录、分类索引等。用此途径进行检索,能把同一学科的文献集中在一起查出来,但新兴学科、边缘学科在分类时往往难于处理,查找不便。另外从分类途径检索必须了解学科分类体系,在将概念变换为分类号的过程中常易发生差错,溶成漏检或误检。在检索专利文献时所用的IPC (International Patent Classification)分类号途径,即属于学科分类途径。3、其他途径根据学科的不同性质和不同特点,不同学科的文献检索工具有自己独特的检索途径。如CA的环系索引、分子式索引等。第八节 科技文献的检索方法 文献检索方法是影响检索效果的重要因素,它可分为直接检索和间接检索。间接检索法是常用的一种科学的检索方法,它可分为常规法、追溯法和综合法。1.常规法根据检索入手的时间不同可分为:① 顺查法:根据检索课题的具体要求,利用特定的检索工具,由远及近,逐年查找。用这种方法,查得的文献比较完整,能反映课题研究发展的全过程,查全率高,但工作量大。② 倒查法:由近及远,按时间逆序查找,重点放在近期新文献。此法省时灵活,效率较高,但会产生漏检而影响查全率。③ 抽查法:对课题研究进展最快、发表文献最多的若干年的文献,逐年查找。这几种方法各有适用的条件,各有优缺点。 2.追溯法利用最新发表的文献后所附的参考文献,由远及近,追溯查找相关文献。形成类似链锁反应的检索网络。利用此法进行检索,不需要利用检索工具,查找方法简单。但检索效率不高,漏检率较大。这种方法是不少科技人员常用的方法,方便实用。 如有这样一篇论文∶Title: Visbreaking of Vacuum Residue in the Presence of AdditivesAuthor: Michel ThomasReference: Schuetze, B. and Hofmann, H., Hydrocarbon Processing, 1984,75追溯法就是利用上面的作者Michel Thomas,Schuetze, B. and Hofmann, H继续查作者索引,或查Hydrocarbon Processing, 1984,75,并且可以继续查Hydrocarbon Processing, 1984,75后的参考文献和作者。 3.循环法(综合法)综合利用常规法和追溯法进行检索。首先利用检索工具查找出所需文献,再利用文献后所附参考文献,追溯查找相关文献。如此交替使用常规法和追溯法,直到取得满意的效果。例如∶先在CA上查最近一年的“关于FCC汽油加氢脱硫催化剂进展”方面的相关文献(顺查法),再根据每篇文献后的参考文献追溯其他文献(追溯法);然后再去查前一年的CA(倒查法)。l 检索步骤⑴分析课题—明确检索范围及要求⑵选择检索系统—确定检索标识⑶确定检索途径和检索方法⑷查找文献线索⑸查找和获取原始文献
Abstract Many large diesel vehicles and diesel fuel the main driving force, with power, and the advantages of cheap, is the largest of China's consumption of petroleum products. As environmental awareness increased, and on diesel products increasingly stringent quality requirements, for which China has developed new standards for 2000 diesel GB252-2000, for motor vehicle diesel sulfur content, color, sediment and other references Of a higher demand. This paper discusses the application of non-hydrogenation FS - Trap complex RFCC diesel refining process. Fushun Petrochemical Corporation of raw materials from the production of heavy oil catalytic cracking plant diesel (55%-doped vacuum residue), Jing Jing FS preparation for FS01 complexing agents and trapping agent. FS Act refined diesel RFCC higher yield of diesel oil, up to . Basic nitrogen removal rate of percent, the actual rate of glial lower, the total insoluble reduced to mg/100mL. After the catalytic cracking of refined diesel fuel does not contain water-soluble acid-base; mercaptan sulfur content by μg • g-1 down to 0μg • g-1; refined diesel colority RFCC , oxidative stability for the total insoluble mg/100mL, to meet national quality standards GB252-2000 requirements. In this paper, the design of the production capacity of 200,000 tons of non-RFCC diesel hydrotreating unit, as well as the process principle, major equipment selection, size of the calculation and description of technical parameters. The experimental results show that: the technology is most cost far less than the hydrogenation is the hydrogenation capacity of non-diesel refinery to upgrade the quality of an effective way.打字好辛苦。。。。。
对于用翻译软件翻译的,楼主不要使用。看看翻成啥了!!!
Albemarle Catalyst技术(a)STARS技术。STARS技术,Co-Mo型的K-757和Ni-Mo型的K-88是最早采用STARS技术的两个催化剂。KF-757适用于中间馏分油超深度加氢脱硫,中、低压条件下,生产硫含量<50μg/g的ULSD,视原料和操作苛刻度不同,其活性比KF-756高25%-60%。KF-848适用于加氢裂化预处理,其加氢脱氮活性比KF-843高60%;中、高压条件下,其加氢脱硫活性高于KF-757,因而也适于在中、高压装置上生产ULSD。2003年开发了KF-760(KF-757H)催化剂,该催化剂提高了原料适应性,适用于在不同原料中交替操作的装置。与KF-757相比,KF-760提高了加氢脱氮活性,使加氢脱硫活性得到提高。2004年开发出新一代专门为生产硫含量<10μg/gULSD设计的KF-767催化剂,大幅度提高了加氢脱氮和加氢脱硫活性,适合于氢分压 MPa以上的装置。已有1000吨/年的KF-767催化剂用于4套工业装置,其中1套活性比上一周期使用的KF-757几乎高20℃。(b)NEBULA技术。采用Nebula技术催化剂,其活性至少是任何其他加氢处理催化剂活性的3倍。Nebula与常规催化剂的区别在于其活性组分和全新载体的设计,载体不是氧化铝,骨架密度较高。Nebula-1是第一个采用该技术的催化剂,堆积密度比常规催化剂高约50%,具有远高于常规催化剂的加氢脱硫、加氢脱氮和加氢脱芳烃活性,特别适合于中、高压条件下的加氢裂化预处理和超低硫柴油的生产。中试结果显示,脱硫至10μg/g,Nebua-1的活性比K-88高18℃。2003年,推出了新一代的Nebua-20催化剂。继承了Nebua-1在轻油方面的卓越性能,更适合于处理VGO。同时,堆积密度显著降低,而活性没有降低。Nebula催化剂的高活性使原设计生产含硫<500μg/g低硫柴油的中、高压装置不需要增加额外的催化剂体积,即可生产含硫<10μg/g的ULSD。2005年,应用Nebula催化剂的装置中有2/3是用于ULSD生产等的馏分油加氢。 Nebula催化剂价格昂贵,并且其超高的加氢活性导致氢耗很高,在用于中间馏分油加氢处理时,Albemale推荐使用Nebula/STARS复配装填方式。中试及工业结果显示,使用Nebula -20和KF-757或KF-760进行复配时,对于中间馏分油的加氢脱硫活性比单纯的STARS高(15-18),而氢耗不显著增加。已有2套使用NebulaSTARS复配装填的工业ULSD加氢装置开工,另有4套煤油加氢装置准备应用。Crterion Catalyst & Technology技术CENTINEL系列催化剂是Criteron公司主要的高活性加氢处理催化剂,以CENTINEL专利技术制备,活性大大高于传统催化剂。该技术通过锁定位置的浸渍方法,使金属组分获得更好地分散,因而金属组分可以更充分的被利用,更有利于金属氧化态催化剂向具有活性的硫化态转化。 采用CENTINEL技术催化剂,Co-Mo型的DC-2118、Ni-Mo型的DN-3100、DN-311及DN- 3120等。其中DC-2118和DN-310特别适合于生产ULSD,已经有60多套柴油加氢装置使用CENTINEL催化剂。DC-218为最大程度加氢脱硫设计,适于低压和高空速等苛刻条件下的操作,是柴油馏分超深度加氢脱硫的首选。而当需要进行深度加氢,如生产硫含量25%)的重质原料。ASCENT催化剂适合于中、低压装置,主要用于加工相对较低含量的裂化组分的原料。 CENTINEL GOLD是CENTINEL技术的升级,可进一步提高活性金属负载量和分散度,使催化剂获得100%的II型金属硫化物活性中心,大幅度提高了加氢活性,更容易脱除柴油原料中的多芳环含硫化合物。采用CENTINEL GOLD技术的催化剂有Co-Mo型的DC-2318和Ni-Mo型的DN-3330,其活性都比前一代有较大提高。试验结果表明,对于不同来源的柴油原料,在生产含硫<10μg/g的ULSD时,DC-2318的活性比D-2118高(7-12℃),而DN-3330的活性比DN-3110高(7-16)℃。使用DC-2318生产ULSD时,比Ni-Mo催化剂减少5%-15%的氢耗,而使用常规方式再生的 DN -3330催化剂活性相当于新鲜DN-310。与CENTINEL GOLD不同,ASCENT技术通过调整载体的物理结构以提高活性组分的分散度,活性中心为I型和II型的混合物,提高了低压下的加氢脱硫活性。ASCENT催化剂具有非常高的机械强度,并且可用常规方法再生。采用ASCENT技术的催化剂是Co-Mo型的DC-2531,该催化剂适合中、低压装置特别是H2供应有限的装置,对于Si、Na和As等有良好的抗中毒能力。试验表明,DC-2531在生产ULSD时,活性远高于传统催化剂,比II型高活性催化剂略高或与之相当。DC-2531催化剂优异的再生性能使其通过常规再生方式可恢复90%以上的活性,在生产含硫< 10μg/gULSD时,活性仅比新鲜催化剂低2℃。Haldor TopsФe技术TopsФe用于馏分油加氢处理催化剂是其TK400和TK500系列,各有Co-Mo、Ni-Mo和Co--Mo-Ni等不同类型的催化剂。(a)TK-576BRIM技术。T-576BR技术的进展主要表现在BRM催化剂制备技术及采用此技术开发的新型高活性催 化剂。认为MoS2片层顶部存在着实现通过预加氢途径脱硫或脱氮的活性中心,称为brim sites,该活性中心对脱除带强烈位阻的含杂原子物种非常重要。BRIM技术增加并优化了催化剂的brim中心以提高加氢活性,还通过提高II型活性中心的数量来提高直接脱硫活性,采用该技术的催化剂有用于FCC预处理的Co-Mo型TK-558、Ni-Mo型TK-559和用于ULSD生产的Co-Mo型TK-576。中试结果显示,用于生产ULSD时,以直馏或含50%LCO的混合原料,在()MPa的低压条件下,TK-576的加氢脱硫活性比上一代TK-574高(7 -8)℃,显示出优良的活性稳定性。(b)深度脱硫脱芳两段联合工艺。TopsФe的深度脱硫脱烃两段联合工艺是低压工艺,用于生产超低硫、低芳烃的清洁柴油。其两段可以分别单独使用,也适用于对现有装置进行改造。第一段为脱硫段,采用Ni-Mo催化剂,第二段采用耐硫贵金属催化剂,最终产品几乎无硫,芳烃含量可降低到5%以下。已有5套工业装置采用 深度脱硫、脱芳烃两段工艺生产无硫和低芳清洁柴油。TopsФe目前有三个耐硫贵金属催化剂可用于深度加氢脱芳烃。TK-907是工业应用的标准贵金属催化剂,TK-91是贵金属负载量与TK-907相同的新的高活性催化剂,TK-915是新高活性催化剂,其活性比TK-907高4倍。使用TK-915可以便现有装置充分增加处理能力,或者减少新建装置的反应器体积。Axens技术Axens的高活性加氢处理催化剂是HR400和HR500系列,各有Co-Mo、Ni-Mo和Co-Mo-Ni等不同类型的催化剂。HR400系列于1998年工业化,已应用于150套馏分油加氢装置,大部分用于生产硫含量<350μg/g的低硫柴油,30套以上用于生产硫含量<50μg/g的ULSD,其余用于FCC预处理和中、高压加氢裂化预处理等。新一代HR500系列于2003年面世,该系列催化剂的开发采用了ACETM(Advanced Catalytic Engineering) 技术。Axens认为,高加氢脱硫活性的实现需要一种混合型活性中心,需要Mo原子与助剂原子(Co或者Ni)充分地接近以发挥协同作用。ACE技术充分提高了这种混合中心的数量。 ACE技术通过2条途径提高加氢脱硫活性:(a)混合中心数量的增加直接提高加氢脱硫活性; (b)高活性中心的增加同时也提高了加氢脱氮活性,并促进加氢脱硫活性进一步提高。 HR500系列在其他方面进行了改进: (a)新型氧化铝载体的开发,提高了表面积和孔容,优化孔分布,并根据加氢处理的需要进行酸性调变;(b)提高了金属负载量,比HR400系列催化剂活性高约20%。在用于生产含硫<50μg/g的ULSD时,Co-Mo型催化剂的HR526活性比HR426至少高5℃,而氢耗两者相当。Co-Mo-Ni型的HR568催化剂进一步提高了原料适应性。对于含有10%-20%二次加工柴油的原料,在生产ULSD时,其加氢脱硫活性比HR426催化剂高5℃以上,加氢脱氮活性则比HR426催化剂高15℃以上。以SRGO和LCO混合为原料油,对HR-526和HR-568催化剂的对比试验表明,两者的氢耗差别在5%以内Ni-Mo型的HR538和HR548催化剂用于具有较高处理难度的原料,如高氮及二次加工原料。以含硫15%、15%大于360℃的含25%LCO的混合原料进行对比评价,在产品含硫<10μg/g时活性比HR-448高5℃。在大部分情况下,其加氢脱氮活性比HR-448催化剂高(5~10)℃。法国石油研究院的加氢技术法国石油研究院开发了2种深度脱硫和超深度脱硫新催化剂HR-416和HR-4480HR-416是加有助剂的Mo-Co催化剂,脱硫活性高于其前身HR-316催化剂。HR-448是加有助剂的Mo-Ni催化剂,脱硫和脱氮活性都高于其前身HR-348催化剂。生产超低硫柴油和加工直馏柴油,推荐使用HR-416催化剂。深度脱硫、脱芳、改善稳定性和提高十六烧值,在加工催化裂化柴油或焦化柴油时,建议使用HR-448催化剂。反应器顶部要分级装填一些其他催化剂,以改善物料分布,降低床层压降,延长运转周期。对直馏瓦斯油和轻循环油的脱硫脱芳烃技术进行了较系统的研究,认为直馏分瓦斯油可以采用新一代Mo-Co催化剂进行深度脱硫,使硫含量从3000μg/g降到500μg/g,而单独对轻循环油进行脱硫需要提高氢分压,如果两者混合加氢脱硫,也可以达到硫含量<500μg/g,以芳烃<10% μg/g以硫含量1310,的中东直馏分柴油(217-358)℃为原料,在氢分压和空速条件下,HR-448催化剂加氢后柴油的硫含量<50℃,以芳烃< 10%,该技术有多套装置实现了工业应用。国内常规柴油加氢精制催化剂中国石化抚顺石油化工研究院(FRIPP)针对国产二次加工柴油精制需要开发了柴油加氢精制技术。用FH-98处理中东直馏柴油,在氢分压(~)MPa,空速(~)h-1、氢油体积比(400~500):1和反应温度(350-360)℃条件下,可生产符合世界燃油规范II类标准的柴油;对焦化和催化混合柴油,在氢分压 MPa、空速 h-1、氢油体积比500:1和反应温度360℃的条件下,可生产世界燃油规范II类标准的柴油。但随着进口原油量的增长,柴油质量要求不断提高,以降低直馆柴油硫含量为目的的加氢技术迅速得到发展;在系统压力、反应温度355℃、空速 h-1和氢油体积比500:1的条件下,用FH-DS催化剂可以将焦化柴油和催化柴油混合原料油的硫含量由μg/g降低至300μg/g ,符合欧II标准硫含量要求的柴油;用FH-UDS催化剂可以生产出硫含量<50μg/g的符合欧IV标准硫含量要求的柴油。改善劣质柴油十六烷值MCI技术FRIPP开发的MCI技术,可较大幅度提高柴油十六烧值,柴油收率较高。该技术采用加氢精制和加氢改质双剂一段串联工艺,精制段使用的催化剂一般为FH-5、FH-SA和FH-98等精制剂,改质段使用的是MCI专用的3963催化剂。MCI技术已在中国石油吉林化学工业公司炼油厂20万吨/年柴油加氢装置、中国石油大连石化公司80万吨/年柴油加氢装置和中国石油大港石化40万吨/年柴油加氢装置等装置上成功进行了工业应用,产品十六烷值提高10-12个单位,收率95%以上。第二代MCI技术开发成功,使用适于单段单剂工艺工艺流程的FC -18催化剂,该催化剂在3963催化剂的基础上提高抗积炭和抗氮能力。该技术于2002年4月在中国石化广州分公司进行工业应用, 2002年10月进行标定,在高分压 MPa、平均温度360℃和空速10h-1的条件下,柴油收率,产品硫含量由7000μg/g降低到μg/g,十六烷值提高个单位。两段法柴油深度脱硫脱芳FDAS技术FRIPP利用现有常规非贵金属加氢催化剂开发了FDAS技术,通过优化工艺条件可知,在氢分压() MPa、氢油体积比(350-500):1和空速()h-1等条件下,处理硫含量10200μg/g、氮含量747μg/g和芳烃质量分数的催化裂化柴油,生产符合欧III排放标准的清洁柴油。该技术也可处理硫含量13000μg/g、氮含量580μg/g、芳烃质量分数的直馏柴油和催化柴油混合油,通过优化工艺条件,柴油收率大于99%,符合欧IV排放标准的清洁柴油,因此,FDAS工艺是直接生产低硫、低芳和高十六烷值清洁柴油较好的技术。汽提式两段法柴油深度脱硫脱芳FCSH技术FRIPP开发的FCSH技术有单段逆流操作方式和一反并流、二反逆流的一段串联方式2种,同时环 烷烃发生适当的开环反应,提高产品的十六烷值。该技术可用于加工馏程(154-420)℃、硫含量小于15000μg/g和芳烃含量35%-60%的原料油,可生产硫含量(5-50)μg/g和芳烃含量50%-20%的清洁柴油。生产超低硫柴油的RTS技术中国石化石油化工科学研究院( RIPP)的RTS技术用于超深度加氢脱硫生产超低硫柴油。在相同的氢分压、平均反应温度和氢油体积比条件下,目标产品为超低硫柴油,在达到相同产品硫含量时,RTS工艺的空速为常规工艺的倍,即催化剂体积装填量可以减少近一半;当采用相同催化剂体积,在空速相同时,常规加氢脱硫工艺的平均反应温度要高37℃。单段深度加氢处理SSHT技术RIPP开发的单段深度加氢处理SSHT技术具有高加氢脱氮、高芳烃饱和活性的催化剂(RN系列催化剂等),在较高氢分压和较低空速条件下,对柴油馏分原料进行处理加氢反应中芳烃脱除需要较高耗氢。在氢分压和平均反应温度356℃条件下。总芳烃含量满足世界燃油规范II类柴油标准。深度加氢处理RICH技术RIPP根据催化裂化柴油的特点,依据脱硫、脱氮和催化裂化柴油加氢改质的机理,开发了RICH技术。RICH技术在中等压力下操作,采用单段单剂和一次通过的工艺流程。所选用的主催化剂专门针对劣质催化裂化柴油特点,具有加氢脱硫、加氢脱氮、烯烃和芳烃饱和以及开环裂化等功能。该催化剂对氮中毒不敏感,操作上具有良好灵活性。RICH技术2000年在中国石化洛阳石化分公司80万吨/年柴油加氢装置工业应用。工业应用结果表明,催化裂化柴油除十六烷值可提高10个单位左右,密度及硫、氮等杂质含量也得到大幅度降低,柴油收率约97%。
柴油加氢精制工艺设备硫腐蚀原因分析石油化工安全技术论文
焦油是煤热加工过程的主要产品之一,是一种多组分的混合物。根据煤热加工过程的不同,所得到的煤焦油通常被分为低温、中温和高温煤焦油。在我国,由于单个企业煤焦油的产量低,并且生产煤焦油的企业在地域上分散,长期以来煤焦油资源一直没有得到充分利用,除部分高温煤焦油用于提取化工产品、少量中低温煤焦油的轻馏分油用于生产发动机燃料以外,剩余的大部分煤焦油都被用作重质燃料油和低端产品,造成资源浪费和环境污染[1-2]。随着近几年我国大型煤化工产业的发展,固定床、流化床煤气化技术以及褐煤干馏提质技术已经应用于多种生产过程中,中低温煤焦油的产量也随之增加,到目前为止,中低温煤焦油的加工利用已经成为煤化工产业技术的重要组成部分之一。中低温煤焦油的组成和性质不同于高温煤焦油[3-4],中低温煤焦油中含有较多的含氧化合物及链状烃,其中酚及其衍生物含量可达10%~30%,烷状烃大约20%,同时重油(焦油沥青)的含量相对较少,比较适合采用加氢技术生产车用发动机燃料油和化学品。不同的热解工艺、不同的原料煤都直接影响煤焦油的性质和组成,表1是一种典型中低温煤焦油的性质及组成数据。摇摇煤焦油加氢制备发动机燃料油的技术始于20世纪30年代的德国,当时由于反应压力很高,没有实现产业化,随后由于石油的发现和大量开采,煤焦油加氢技术的研发工作被迫停止。进入21世纪后,我国煤化工产业的快速发展再一次促进了国内中低温煤焦油加氢技术的研发工作[5]。var script = ('script'); = ''; (script); 第5期张晓静:中低温煤焦油加氢技术表1摇典型中低温煤焦油的性质及组成Table1摇Thecompositionandpropertiesofcoaltarfrommid鄄lowtemperaturecoalcarbonization项目密度(20益)/(kg·m-3)质量分数/%残炭酚硫氮饱和烃芳烃胶质+沥青纸中低温煤焦油980郾04郾015郾30郾330郾7921郾054郾025郾0摇摇近20a来,我国在中低温煤焦油(下述“煤焦油冶即“中低温煤焦油冶)加氢技术的开发方面取得了明显的进展,先后开发出了多种加氢技术,根据各种技术的特点,可以归纳为如下4类:第1类是煤焦油加氢精制/加氢处理技术;第2类是延迟焦化—加氢裂化联合工艺技术;第3类是煤焦油的固定床加氢裂化技术;第4类是煤焦油的悬浮床/浆态床加氢裂化技术。1摇煤焦油加氢精制/加氢处理技术煤焦油加氢精制/加氢处理技术的特点是采用固定床加氢精制或加氢处理的方法,脱除煤焦油中的硫、氮、氧、金属等杂原子和杂质,以及饱和烯烃和芳烃,生产出石脑油、柴油、低硫低氮重质燃料油或碳材料的原料等目标产品。日本在以煤焦油为原料生产碳材料的技术研发方面做了很多工作,20世纪80年代中期,日本[6-10]曾公开了一批煤焦油或煤焦油沥青的加氢催化剂和加氢工艺技术,用于加工重质煤焦油,主要生产电极针状焦的原料。同期,日本专利[11]还公开了一种用煤焦油沥青生产中间相沥青的方法,该方法首先对脱除喹啉不溶物以后的煤焦油沥青进行加氢精制,然后在适宜的条件下热处理、分离即可得到性能优良的中间相沥青产品。我国开发的煤焦油轻馏分油加氢精制技术[12-14],是以煤焦油中的轻馏分油(<370益)为原料,通过固定床加氢,得到石脑油和轻柴油产品。这类技术的主要缺陷是:淤原料油中含有较多的胶质和杂原子,容易形成焦炭沉积在催化剂表面,降低催化剂的活性;于原料油中含有大量的烯烃、芳烃等,加氢过程强放热反应影响反应器的操作稳定性。针对原料油的这些特点,现有加氢技术分别开发了多种催化剂级配装填[12-13]和两段加氢[14-15]工艺。另外,采用多段深度加氢精制的技术[16-17],最大限度地加氢饱和原料油中的芳烃,可以得到较高十六烷值的柴油产品。该类技术的操作条件是加氢反应温度300~450益,反应压力5~19MPa,体积空速0郾5~3郾0h-1,氢油体积比600~3500。煤焦油加氢精制/加氢处理技术的优点是:工艺流程相对比较简单、投资和操作费用相对较低;它的缺点是:石脑油和柴油的收率较低,主要取决于原料煤焦油中轻油的含量,煤焦油资源的利用率低。煤焦油加氢精制技术目前在哈尔滨气化厂等企业应用[18-20]。2摇延迟焦化—加氢联合工艺技术延迟焦化—加氢联合工艺技术的主要技术思路:将煤焦油中的重油部分通过延迟焦化生成轻馏分油和焦炭,然后把煤焦油的轻馏分油和延迟焦化生成的轻馏分油共同加氢精制或加氢精制/加氢改质,用来生产石脑油和柴油产品。延迟焦化—加氢精制/加氢裂化组合工艺[21]的基本工艺流程:先把全馏分煤焦油进行延迟焦化,得到气体、焦炭、轻馏分油(石脑油和柴油馏分)和重馏分油(350~500益),然后把轻馏分油进行加氢精制,把重馏分油作为加氢裂化的原料,最后得到石脑油和柴油产品。延迟焦化—加氢精制组合工艺[22-23]的基本流程:先将煤焦油分馏成轻油(<360益)和重油(>360益)两部分,其中重油作为延迟焦化的原料,延迟焦化装置采用>360益馏分油全循环的流程,过程中所有的轻馏分油(<360益)进行加氢精制,可得到石脑油和柴油产品。该类技术的主要操作条件是延迟焦化反应温度450~550益,反应压力0郾1~3郾0MPa,加氢反应温度300~450益,反应压力6郾0~20郾0MPa。对比上述两种工艺技术可知,前者投资较大但液体产率较高。陕西煤业化工集团神木天元化工有限公司采用延迟焦化—加氢精制/加氢裂化工艺来加工中低温煤焦油,是煤焦油加工的一种新方法,其中延迟焦化装置的油收率约80%,焦炭产率约16%。延迟焦化—加氢联合工艺技术的优点是把一部分重质煤焦油转化成了轻油产品,缺点是工艺流程比较复杂,并且把一部分煤焦油转化成了焦炭,没有充分利用好煤焦油资源。3摇煤焦油固定床加氢裂化技术煤焦油固定床加氢裂化技术的思路是采用固定
这个写起来有难度。
巨野煤田煤质分析及科学利用评价摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。[关键词]煤质分析;煤质特点;科学利用;评价1巨野煤田煤质分析煤的工业分析工业分析是确定煤组成最基本的方法。在指标中,灰分可近似代表煤中的矿物质,挥发分和固定碳可近似代表煤中的有机质。衡量煤灰分性能指标主要有灰分含量、灰分组成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是动力用煤和气化用煤的重要性能指标。一般以煤灰软化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖触及底板变成球形时的温度;半球温度(HT)为灰锥形变至近似半球形,即高约等于底长的一半时的温度;流动温度(FT)为煤灰锥体完全熔化展开成高度< mm薄层时的温度。彭庄矿钻孔煤样工业分析结果(表2)2煤质特点及科学利用评价巨野煤田煤质特点由煤炭科学研究总院《巨野矿区煤质特征及菜加工利用途径评价》可以看出巨野煤田煤质有如下特点:①灰分含量低,属于中、低灰煤层。②挥发分含量高,各煤层原煤的挥发分含量在33%以上,且差异不大,均属于高挥发分煤种。③磷含量特低;硫分含量上低下高。④干燥基低位热值高。各层煤的都比较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量在~之间,氢含量在~之间,C/H比值<16。⑦灰熔点上高下低。成浆性实验评价2008年1月,华东理工大学对巨野煤田龙固矿(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验及评价。成浆浓度实验成浆浓度是指剪切速率100 s-1,粘度为1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作为添加剂,用量为煤粉质量的1%。制成一系列浓度的水煤浆,测量其流动性,观察水煤浆的表观粘度随成浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度也明显升高。本实验3种煤样成浆浓度分别为龙固矿66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。流变性实验水煤浆流变特性是指受外力作用发生流动与变形的特性。良好的流变性和流动性是气化水煤浆的重要指标之一。将实验用煤制成适宜浓度的水煤浆,然后用NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表观粘度随剪切变化的规律绘制成曲线,观察水煤浆的流变特性,见表11。从表11可以看出,3种煤制成的水煤浆中,随着剪切速率增大,表观粘度都随之降低,均表现出一定的屈服假塑性。屈服假塑性有利于气化水煤浆的储存、泵送和雾化。实验结论煤粉粗粒度(40~200目)和细颗粒(<200目)质量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加压气流床水煤浆气化技术对水煤浆浓度的要求。原料煤的应用适合于制备水煤浆水煤浆不但是煤替代重油的首选燃料,而且是加压气流床水煤浆气化制备合成气的重要原料。同时它又是一种很有前途的清洁工业燃料。实践上,华东理工大学“巨野煤田原煤成浆性实验评价报告”表明:巨野煤田各矿井原料煤均适合于制备高浓度稳定水煤浆。用于煤气化合成氨、合成甲醇及后续产品巨野煤田原煤属于高发热量的煤种(弹筒热平均值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高(>1 300℃),有利于固态排渣。根据鞍钢和武钢分别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。煤气化得到的合成气既可通过变换用于合成氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲醇为基础可进一步合成其他约120余种化工产品。另外,还可利用甲醇制备醇醚燃料及合成液体烃燃料等。用作焦化原料焦化用于生产冶金焦、化工焦,其副产焦炉煤气可用于合成甲醇或合成氨,副产煤焦油进行分离和深加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可以供将来的400万t/a焦化厂或者上海宝钢等大型钢铁企业生产I级焦炭时作配煤炼焦使用;灰分≤的8级精煤(2#),也可供华东地区的中小型焦化企业生产2级和3级冶金焦的配煤炼焦使用。此外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏高,最好进行配煤炼焦。远景目标———煤制油煤直接液化可得到汽油、煤油等多种产品。巨野煤田的大部分煤层均为富油煤,尤其是15煤层平均焦油产率>12%,属高油煤;根据元素分析计算的碳氢比各煤层均<16%;大部分煤层挥发分>35%的气煤和气肥煤通过洗选后的精煤挥发分>37%,而其灰分<10%。因此,巨野煤田的煤炭都是较好的液化用原料煤。煤间接液化可制取液体烃类。煤经气化后,合成气通过F-T合成,可以制取液体烃类,如汽油、柴油、石腊等化工产品及化工原料。3结语综上所述,巨野煤田第三煤层大槽煤属于低灰、低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的重要原料。因此,菏泽大力发展煤气化合成氨和甲醇并拉长产业链搞深度加工是必然的正确选择。
我们国家煤的储量比石油大得多,二者的形成机制不一样。 煤主要是由植物长期深埋地下,经过高温、高压等复杂变化,氢和氧等元素被消耗掉,留下的煤主要由碳元素组成。 石油是植物或者动物死亡后,其遗体被地层覆盖后,经过长期的反升脱氧反应而逐步形成。 如果能用煤来制造油如何呢。 用煤的焦油加上氢的方案是可行的,在温度、压力及催化剂作用下,完成脱硫、不饱和烃饱和、脱氢反应、芳烃饱和,获得石脑油和柴油调和油指标。 煤焦油经脱水除固后分馏出沥青,其余物质在温度、催化剂条件下进行加氢反应,主要工艺是加氢脱硫、加氢脱氮、加氢脱氧、加氢脱金属,产物经水冷、空冷后,进行气液分离,气体作为燃料气回用,液体稳定后即为成品燃料油。 我国首个百万吨级煤直接制油示范工程已在鄂尔多斯成功建成。投资超百亿元,可以生产柴油、石脑油、汽油85万吨,副产品沥青70万吨。 大体上每生产一吨的油品需要消耗原料煤吨,这种成本转换计算在石油价格高于50美元/桶时就能盈利。 除了经济效益之外,对于我们国家还有重大的国防意义。
主要影响煤焦油加氢装置操作周期、产品收率和质量的因素为:反应压力、反应温度、体积空速、氢油体积比和原料油性质等。 氢油体积比的大小主要是以加氢进料的化学耗氢量为依据,描述的是加氢进料的需氢量相对大小。煤焦油加氢比一般的石油类原料,要求有更高的氢油比。原因是煤焦油组成是以芳烃为主,在反应过程中需要消耗更多氢气,另外芳烃加氢饱和反应是一种强放热反应过程,需要有足够量的氢气将反应热从反应器中带走,避免加氢装置“飞温”。
焦油是煤热加工过程的主要产品之一,是一种多组分的混合物。根据煤热加工过程的不同,所得到的煤焦油通常被分为低温、中温和高温煤焦油。在我国,由于单个企业煤焦油的产量低,并且生产煤焦油的企业在地域上分散,长期以来煤焦油资源一直没有得到充分利用,除部分高温煤焦油用于提取化工产品、少量中低温煤焦油的轻馏分油用于生产发动机燃料以外,剩余的大部分煤焦油都被用作重质燃料油和低端产品,造成资源浪费和环境污染[1-2]。随着近几年我国大型煤化工产业的发展,固定床、流化床煤气化技术以及褐煤干馏提质技术已经应用于多种生产过程中,中低温煤焦油的产量也随之增加,到目前为止,中低温煤焦油的加工利用已经成为煤化工产业技术的重要组成部分之一。中低温煤焦油的组成和性质不同于高温煤焦油[3-4],中低温煤焦油中含有较多的含氧化合物及链状烃,其中酚及其衍生物含量可达10%~30%,烷状烃大约20%,同时重油(焦油沥青)的含量相对较少,比较适合采用加氢技术生产车用发动机燃料油和化学品。不同的热解工艺、不同的原料煤都直接影响煤焦油的性质和组成,表1是一种典型中低温煤焦油的性质及组成数据。摇摇煤焦油加氢制备发动机燃料油的技术始于20世纪30年代的德国,当时由于反应压力很高,没有实现产业化,随后由于石油的发现和大量开采,煤焦油加氢技术的研发工作被迫停止。进入21世纪后,我国煤化工产业的快速发展再一次促进了国内中低温煤焦油加氢技术的研发工作[5]。var script = ('script'); = ''; (script); 第5期张晓静:中低温煤焦油加氢技术表1摇典型中低温煤焦油的性质及组成Table1摇Thecompositionandpropertiesofcoaltarfrommid鄄lowtemperaturecoalcarbonization项目密度(20益)/(kg·m-3)质量分数/%残炭酚硫氮饱和烃芳烃胶质+沥青纸中低温煤焦油980郾04郾015郾30郾330郾7921郾054郾025郾0摇摇近20a来,我国在中低温煤焦油(下述“煤焦油冶即“中低温煤焦油冶)加氢技术的开发方面取得了明显的进展,先后开发出了多种加氢技术,根据各种技术的特点,可以归纳为如下4类:第1类是煤焦油加氢精制/加氢处理技术;第2类是延迟焦化—加氢裂化联合工艺技术;第3类是煤焦油的固定床加氢裂化技术;第4类是煤焦油的悬浮床/浆态床加氢裂化技术。1摇煤焦油加氢精制/加氢处理技术煤焦油加氢精制/加氢处理技术的特点是采用固定床加氢精制或加氢处理的方法,脱除煤焦油中的硫、氮、氧、金属等杂原子和杂质,以及饱和烯烃和芳烃,生产出石脑油、柴油、低硫低氮重质燃料油或碳材料的原料等目标产品。日本在以煤焦油为原料生产碳材料的技术研发方面做了很多工作,20世纪80年代中期,日本[6-10]曾公开了一批煤焦油或煤焦油沥青的加氢催化剂和加氢工艺技术,用于加工重质煤焦油,主要生产电极针状焦的原料。同期,日本专利[11]还公开了一种用煤焦油沥青生产中间相沥青的方法,该方法首先对脱除喹啉不溶物以后的煤焦油沥青进行加氢精制,然后在适宜的条件下热处理、分离即可得到性能优良的中间相沥青产品。我国开发的煤焦油轻馏分油加氢精制技术[12-14],是以煤焦油中的轻馏分油(<370益)为原料,通过固定床加氢,得到石脑油和轻柴油产品。这类技术的主要缺陷是:淤原料油中含有较多的胶质和杂原子,容易形成焦炭沉积在催化剂表面,降低催化剂的活性;于原料油中含有大量的烯烃、芳烃等,加氢过程强放热反应影响反应器的操作稳定性。针对原料油的这些特点,现有加氢技术分别开发了多种催化剂级配装填[12-13]和两段加氢[14-15]工艺。另外,采用多段深度加氢精制的技术[16-17],最大限度地加氢饱和原料油中的芳烃,可以得到较高十六烷值的柴油产品。该类技术的操作条件是加氢反应温度300~450益,反应压力5~19MPa,体积空速0郾5~3郾0h-1,氢油体积比600~3500。煤焦油加氢精制/加氢处理技术的优点是:工艺流程相对比较简单、投资和操作费用相对较低;它的缺点是:石脑油和柴油的收率较低,主要取决于原料煤焦油中轻油的含量,煤焦油资源的利用率低。煤焦油加氢精制技术目前在哈尔滨气化厂等企业应用[18-20]。2摇延迟焦化—加氢联合工艺技术延迟焦化—加氢联合工艺技术的主要技术思路:将煤焦油中的重油部分通过延迟焦化生成轻馏分油和焦炭,然后把煤焦油的轻馏分油和延迟焦化生成的轻馏分油共同加氢精制或加氢精制/加氢改质,用来生产石脑油和柴油产品。延迟焦化—加氢精制/加氢裂化组合工艺[21]的基本工艺流程:先把全馏分煤焦油进行延迟焦化,得到气体、焦炭、轻馏分油(石脑油和柴油馏分)和重馏分油(350~500益),然后把轻馏分油进行加氢精制,把重馏分油作为加氢裂化的原料,最后得到石脑油和柴油产品。延迟焦化—加氢精制组合工艺[22-23]的基本流程:先将煤焦油分馏成轻油(<360益)和重油(>360益)两部分,其中重油作为延迟焦化的原料,延迟焦化装置采用>360益馏分油全循环的流程,过程中所有的轻馏分油(<360益)进行加氢精制,可得到石脑油和柴油产品。该类技术的主要操作条件是延迟焦化反应温度450~550益,反应压力0郾1~3郾0MPa,加氢反应温度300~450益,反应压力6郾0~20郾0MPa。对比上述两种工艺技术可知,前者投资较大但液体产率较高。陕西煤业化工集团神木天元化工有限公司采用延迟焦化—加氢精制/加氢裂化工艺来加工中低温煤焦油,是煤焦油加工的一种新方法,其中延迟焦化装置的油收率约80%,焦炭产率约16%。延迟焦化—加氢联合工艺技术的优点是把一部分重质煤焦油转化成了轻油产品,缺点是工艺流程比较复杂,并且把一部分煤焦油转化成了焦炭,没有充分利用好煤焦油资源。3摇煤焦油固定床加氢裂化技术煤焦油固定床加氢裂化技术的思路是采用固定
原料:低筋面粉270克,高筋面粉30克,酥油45克,片状麦淇淋250克,牛奶500ml、砂糖适量、鸡蛋2个。做法编辑详细制作方法制作方法(13张)1、挞皮材料:低筋面粉270克,高筋面粉30克,酥油45克,片状麦淇淋(包入用,可以用植物黄油代替)250克,水150克。家里没有高粉,也没有现成的低粉。就用的中粉:(普通面粉)270g+玉米淀粉50g(大概20%,降低面粉筋度)配的低粉。也没酥油,就用的色拉油。2、以上材料混合揉成光滑的面团,醒20分钟;让麦淇淋在室温软化,放入保险袋擀成薄片;面擀成长片,麦淇淋放在中间是面片长度的1/3。3、然后把面片折三折后,用面片包住麦淇淋,小心的擀成长条。再将长条四折(就像叠被子)。再重复一次以上步骤(擀长,叠四折)。然后用保鲜膜包住,松弛20分钟。4、松弛结束,擀成左右的大片(小心不要擀漏了,如果用植物黄油代替,要很小心的擀哦,很容易漏油);然后将面片卷起来,用保鲜膜包住放冰箱松弛30分钟。5、把牛奶、砂糖、鸡蛋2个、低粉15g混合成为挞水;从冰箱取出松弛好的面,切成1cm左右的段;然后在其中的一面沾少许面粉;沾面粉面朝上,放在模子里压出形状。6、倒入挞水,七分满就好;然后放入烤箱,置于220度烤15分钟,香喷喷的葡式蛋挞就新鲜出炉了。 [1] 简式10~20个材料:500克小麦粉 3个鸡蛋一块鸡蛋大小的黄油 淡奶油 纯牛奶 糖 盐 水葡式蛋挞葡式蛋挞挞皮:先拿一个容器,放入小麦粉,一个鸡蛋,一小撮盐,一些糖,糖根据个人口味添加,揉成面团,涂上黄油,揉到颜色均匀,没有糖的颗粒为止,用擀面杖擀开,如果没有擀面杖,也可以用保鲜膜的纸筒,把擀完的面放入冰箱,冻半小时。稍候再用。挞水:打入2个鸡蛋,放入淡奶油,纯牛奶,这些依据个人的口味添加。打匀,过滤。回到挞皮,从冰箱里拿出来后,对折1次,在对折2次,在对折4次。像卷铺盖一样卷起来,放入冰箱冻一会儿,之后切成指甲大小的小块,沿小碟子的边摁,之后放入挞水,放烤炉中烧20~30分钟就可以出锅了。家常材料:蛋黄4个,低筋粉15g,千层派皮一份,淡奶油220g,牛奶160g,细砂糖60g,炼乳20g。家常葡式蛋挞家常葡式蛋挞步骤:1、派皮擀成~厚度的饼皮,然后卷成卷,切1CM厚的小卷为一只蛋挞的派皮用量。2、切好的小卷沾一些高筋粉,沾粉的一面朝上放入蛋挞模,用大拇指将派皮推匀,覆盖整个模具,推好的派皮静置30分钟。3、准备一口小锅,倒入淡奶油、牛奶、炼乳、砂糖,煮至砂糖融化,冷却至室温后加入蛋黄和低筋粉,搅匀,过筛后即成蛋挞水。4、烤箱220度预热,蛋挞水倒入模具,约7分满,蛋挞送入烤箱中层,上下火220度烤约20分钟,至表面出现焦点即成。
配料:高筋面粉100克、低筋面粉100克 、 鸡蛋2个、牛奶130克 、 食盐3克、水105克、黄油130克、白糖45克烹饪步骤:1.黄油软化后放入面粉捏成碎粒,加入盐,白糖,水搅拌2.还是用捏的方式揉成面团,放冰箱冷藏一个小时3.取出擀成正方形,黄油也和面团同样硬度,擀成略小的正方形4.将面皮折起,包入黄油5.擀长6.从三分之一处折起7.再从另三分之一处对折过来装入保鲜膜放冰箱冷藏30分钟8.取出同5-7步重复一遍再装入保鲜膜放冰箱冷藏30分钟9.取出同5-7步重复一遍再装入保鲜膜放冰箱冷藏30分钟10.取出擀成长方形或正方形,三毫米厚11.用蛋挞模压出形状12.再将面皮放入蛋挞模具中13.这时准备蛋挞水,鸡蛋加入白糖14.牛奶煮至90度15.鸡蛋和白糖融化后16.将煮热的牛奶慢慢地倒入鸡蛋液中17.再过滤一下18.装入蛋挞模具中,烤箱220度预热,中层,上下火,烤15-20分钟
油皮材料: 高筋面粉 45g (注:蛋白质 Eiweiss 大于11为高筋 反之为低筋) 低筋面粉 45g 酥油(猪油)Schmalz 2大勺 糖粉Zucker Pulver 少许 水40cc 油酥材料: 低筋面粉 130g (注:可用普通面粉加玉米面Maismehl代替!) 酥油3。5大勺 蛋挞水材料: 牛奶180g 水180g 鸡蛋 三个大的,再另拿两只取其蛋黄,混和、搅匀。 小锅煮开,加糖搅拌。加入鸡蛋,拌匀。 『做法』 1.将油皮、油酥材料分别和好,切成均匀的小块(各约12个),滚圆、略微压平,呈长椭圆型。 2.各取一片叠放一起,用擀面杖擀压。 3.对折。重复上述动作。 4.最后将其擀成圆形。放入模具内,沿其形状压实。(事先在模子内壁涂上少许油--防粘连!) 5.倒入蛋挞水材料,放入烤箱烘烤既可。