海豹糯米糍
麻省理工学院(MIT)的天文学家发现了以前的研究所忽略的新的和不寻常的星系邻域。他们的结果于3月26日发表在《天体物理学杂志》上,表明大约有1%的星系团看起来不典型,很容易被误认为是一个单一的明亮星系。 当研究人员启动新的星系团望远镜时,他们必须注意这些发现,否则就有可能获得一幅不完整的宇宙图景。
银河系团包含数百到数千个星系,它们被引力束缚在一起。它们在被称为星团内介质的高温“气体汤”中移动,其中包含的质量超过了其中所有星系的所有恒星。这种热气体在冷却时为恒星的形成提供了燃料,并发出X射线辐射,我们可以用天基望远镜观测到。
这种明亮的气体云在星系团周围形成了一个模糊的X射线光环,使它们与恒星或类星体等产生的更离散的X射线点源区别开来。然而,正如麻省理工学院副教授Michael McDonald 9年前了解到的那样,一些星系附近的星系打破了这种模式。
2012年, McDonald发现了一个不同于其他星系的星团,它在X射线下像一个点光源一样闪亮。它的中心星系容纳了一个贪婪的黑洞,它消耗物质,喷出的X射线明亮得足以淹没星团内介质的漫射。在它的核心,星团形成恒星的速度大约是大多数其他星团的500倍,使它具有年轻恒星群体的蓝色光芒,而不是典型的“年迈”恒星的红色色调。
"几十年来,我们一直在寻找这样的系统," McDonald在谈及“凤凰星团”时表示。然而,它在多年前就已经被观测到,被认为是一个单一星系而不是一个星团。“它的资料已经在档案馆里呆了几十年,但没有人看到它。他们看过去是因为它看起来不对劲。”
因此,McDonald想知道,还有哪些不寻常的星团可能潜伏在档案中,等待被发现?于是,"隐藏在普通视域中的星团"(CHiPS)调查应运而生。
Taweewat Somboonpanyakul是McDonald实验室的一名研究生,他在读博期间一直投入到CHiPS调查中。他首先从几十年的X射线观测中挑选出潜在的星团候选者。他利用夏威夷和新墨西哥州的地面望远镜的现有数据,并访问了智利的麦哲伦望远镜,对剩余的星源拍摄新的图像,寻找能够揭示星团的邻近星系。在最有希望的情况下,他用更高分辨率的望远镜,如天基钱德拉X射线天文台和哈勃太空望远镜进行放大。
经过六年的时间,CHiPS调查现在已经接近尾声。近日,Somboonpanyakul在《天体物理学杂志》上发表了该调查的累积结果,其中包括发现了三个新的星系团。其中一个星系团CHIPS1911+4455与快速形成恒星的凤凰星团相似,并在1月份的《天体物理学杂志通讯》上发表论文进行了描述。这是一个令人兴奋的发现,因为天文学家只知道其他几个类似凤凰星团的星团。然而,他们需要对这个星团进行进一步的研究,因为它的形状是扭曲的,有两个延伸的悬臂,而所有其他快速冷却的星团都是圆形的。研究人员认为,它可能与一个较小的星系团相撞。“与我们现在知道的所有星系团相比,它是超级独特的,”Somboonpanyakul说。
总的来说,CHiPS调查显示,旧的X射线调查错过了大约1%的星系邻域,因为它们看起来与典型的星系团不同。这可能会产生重大影响,因为天文学家研究星系团以了解宇宙如何膨胀和演变。“我们需要找到所有的星团,才能把这些事情做好,”McDonald解释说。“如果你想推动前沿,99%的完成度是不够的。”
随着科学家发现和研究更多的这些不同寻常的星系团,他们可能会更好地理解它们是如何融入更广泛的宇宙图景中的。在这一点上,他们不知道少数星系团是否总是处于这种奇怪的、像凤凰星团一样的状态,或者这也许是所有星系团在短时间内经历的典型阶段--大约2000万年,以时空标准来看,这只是一个短暂的瞬间。天文学家很难分辨,因为他们只能得到每个星团几乎凝固在时间中的单一快照。但有了更多的数据,他们就可以对支配这些星系附近的物理学做出更好的模型。
CHiPS调查结束的同时,一个新的X射线望远镜eROSITA也将启动,它的目标是将我们的星团目录从几百个增加到几万个。但除非他们改变寻找这些星团的方式,否则他们将错过数百个偏离常规的星团。“正在为这个新的X射线望远镜构建出星团搜索的人需要意识到这项工作,”McDonald说。“如果你错过了1%的星团,那么你对宇宙的理解就会有一个基本的限制。”
好吃好喝好玩i
据外媒报道,石墨烯通常被称为“神奇材料 ”--因其具有超薄、超强及一些奇怪的电学特性。 麻省理工学院的研究人员之前发现,在“扭曲”的石墨烯结构中出现了一种特别奇怪的图案,现在他们对它进行了更仔细的研究,发现它的层数越多,效果越好。
石墨烯是由是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。这使得它们在功能上是二维的,因为通过它们移动的电子只能向前/向后和侧向移动,而不能在上面和下面互相移动。这使得石墨烯的导电性能非常好。
当石墨烯层叠加在一起时,它们的电学特性就会发生变化。而在2018年,麻省理工学院的一个团队发现,当其中两层石墨烯层稍稍歪斜地堆叠在一起时,会发生一些不可思议的事情。通过将顶层扭曲到1.1度的 "魔力角",双层结构可以在成为电绝缘体和超导体之间突然发生转变。
在两项新的研究中,同一团队现在已经对这些扭曲的双层石墨烯结构进行了更仔细的研究。在第一项研究中,该团队测试了不同角度的影响,使用一种精确到可以测量到0.002度的角度差异的扫描技术。该团队发现,当角度范围卡在接近1.1度时,奇怪的绝缘和超导特性更加明显。这些效应似乎在角度范围较大的堆栈中会减弱。
“这是第一次对整个结构进行映射,看看在器件中的特定区域的扭曲角是什么,”该研究的作者Pablo Jarillo-Herrero说。“而且我们看到,你可以有一点点的变化,仍然可以显示出超导和其他奇特的物理现象,但不能太多。我们现在已经确定了你能有多少扭曲变化,以及有太多的扭曲变化会产生什么降解效应。”
在第二项研究中,研究人员进行了更多层的实验。当他们将四层石墨烯堆叠在一起,并将其扭曲到神奇的角度时,结构就像两层的版本一样,变成了绝缘体。但这一次,研究小组能够利用电场来微调绝缘能力,这在以前是不可能实现的。
这项工作仍处于早期阶段,但该团队表示,最终这些扭曲的石墨烯系统可以制造出一些不寻常的电子设备。
这两篇论文均发表在《自然》杂志上。
3月5日,《自然》连刊两文报道石墨烯超导重大发现,第一作者均为中国科大10级少年班校友曹原。曹原本科毕业于中科大少年班,令人惊讶的是,这位博士生今年年仅21岁。
农业类从业人员在评职称时需要在国家级期刊发表论文,而大多数的农业作者对于期刊级别,期刊种类知识掌握的并不牢靠,选择的期刊如果有误,那么对于评职是毫无用处的,学术
这么说可能让您不爽,但是实情是,即使您能被录取,以您中专生的实际情况,您也无法适应MIT的高强度学习的,毕业堪忧,甚至第一个学期就会被强制退学。祝好。
学位论文不能当作期刊文章发表。因为学位论文和期刊文章是有区别的,单纯是篇幅上,学位论文动辄数百页,期刊文章则有字数限制,需要就文献研究方面进行精炼,呈现出的是经
努力在努力开玩笑的啦!可以发E-MAIL申请了 麻省理工学院(Massachusetts Institute of Technology,缩写:MIT)是美国一