• 回答数

    5

  • 浏览数

    220

~逛吃逛吃
首页 > 论文发表 > 论文发表数据的方法

5个回答 默认排序
  • 默认排序
  • 按时间排序

空想城城主

已采纳

建议你看看(数据挖掘)这本刊物吧~找下自己的写作灵感

126 评论

荷叶圆圆1980

发表一篇学术论文(特别是SCI、SSCI)不是一件很简单的事情,往往需要经历一个相对漫长的过程。对于科研新手而言,可能比较好奇发表一篇学术论文需要经过哪些步骤,今天就以理工科生发表SCI为例来谈一谈。第一步,数据收集要想发论文,首先得有拿得出手的东西,对理工科生来说,就必须有值得发表的数据,因此收集数据是发表一篇学术论文的第一步(此处忽略选题、文献调研等前期工作)。一般来说,理论性的论文可以将一些理论计算、仿真分析等结果作为数据,构成一篇论文;工程性的论文,往往需要实验数据,如果再结合一些理论分析(增加实验结果的可信度),会给文章加分不少。看过这么多文献,我发现比较牛逼的文章往往有深厚的理论分析。收集数据是第一步,也是最难、最耗时间的一步,因为你的数据是否漂亮一定程度决定了论文的创新性和价值。为了获得好的数据,好课题的重要性不言而喻,但更需要的是潜心钻研、经得住磨炼的精神。实验往往是残酷的,可能10次实验里前9次都是失败的,只有最后一次成功了,可能干脆全崩了,这时我们的心态也有可能跟着崩了。因此,不能害怕失败,就算失败了也要稳住心态,分析失败的原因,从而找出解决办法,一步一步完善实验。理论计算和仿真分析,有时比做实验更有挑战,因为往往只有具备深厚的数学和专业基础才能做好这一块,这不是一日之功就能完成的,往往需要长期的知识积累和很强的学习能力。当接触了一个新的方向时,我们对其理论背景往往不是非常熟悉,这时大量阅读文献,特别是英文书籍就很有必要,这个过程是痛苦且漫长的。第二步,数据处理/科研绘图数据很重要,数据分析也不能轻视。运用适当的数据分析方法有助于我们掌握数据的特点和内在规律,引发我们新的思考。因为论文的讨论(discussion)部分都是围绕数据展开的,数据的特点更丰富,值得说的点就更多,写起文章来也更容易。论文中的图(Figure)除了数据图还有示意图,炫酷的示意图能给论文增加不少印象分,相信审稿人看到一篇作图水平非常高的论文心情都会好很多吧。像CNS这种级别的论文的作图那叫一个赏心悦目,据说有个学者为了将一颗白菜的三维图做的更漂亮,买了一车的白菜来研究!因此掌握一定的数据处理/科研绘图能力非常重要,平时可以学一下相关的软件,知乎上有个相关的帖子打击可以点击“阅读原文”看一下。第三步,论文撰写数据处理好了,下一步自然就是撰写论文了。有了好东西,得把它说得漂亮才行,就像你开发了个好产品,但是卖得不好也没用。学术论文的结构总是差不多,相信文献看多了之后就发现,总是少不了摘要(abstract)、前言(introduction)、结果(results)、讨论(discussion)、总结(conclusion)等几个部分。在写论文初稿时,不要想着论文的排版,只管把该写的内容写下来就好(word单栏即可,或者LaTeX)。初稿完成后,再根据想要投稿的期刊的格式要求对论文进行排版,一般来说期刊会在官网提供投稿模板(template),按照要求修改格式即可。其实,投稿论文(manuscript)的格式要求和最后发表的格式往往并不一样,涉及到的都是一些比较简单的排版(字体大小、论文结构、图表等 ),因此完全不用为排版担心。因为发表前,期刊编辑会按照发表格式的要求对论文进行重新排版的。总之记住一点,写论文时把重点放在内容上,而不是格式上。论文撰写过程中,英文的表达非常重要,因此平时在文献阅读过程中,要养成积累优秀句型的习惯,做好笔记,拿来即用。前面有几期介绍过一些有助于论文写作的网站,如《论文写作时,堪称神器的网站!》。如果对自己的英文写作不够自信,最好请外国人或者相关的机构润色一下。

305 评论

guodong930

论文数据处理方法

论文数据处理方法,相信绝大部分的小伙伴都写过毕业论文吧,当然也会有正准备要写毕业论文的小伙伴要写毕业论文了,那么论文数据处理方法大家都知道是什么吗?接下来让我们一起来看看吧。

一是列表法。列表法就是将一组实验数据和计算的中间数据依据一定的形式和顺序列成表格。列表法可以简单明确地表示出物理量之间的对应关系,便于分析和发现资料的规律性,也有助于检查和发现实验中的问题,这就是列表法的优点。设计记录表格时要满足以下几点:

1、表格设计要合理,以利于记录、检查、运算和分析。

2、表格中涉及的各物理量,其符号、单位及量值的数量级均要表示清楚。但不要把单位写在数字后。

3、表中数据要正确反映测量结果的有效数字和不确定度。列入表中的除原始数据外,计算过程中的一些中间结果和最后结果也可以列入表中。

此外,表格要加上必要的说明。通常情况下,实验室所给的数据或查得的单项数据应列在表格的上部,说明写在表格的下部。

二是作图法。作图法是在坐标纸上用图线表示物理量之间的关系,揭示物理量之间的联系。作图法既有简明、形象、直观、便于比较研究实验结果等优点,它是一种最常用的数据处理方法。作图法的基本规则是:

1、根据函数关系选择适当的坐标纸(如直角坐标纸,单对数坐标纸,双对数坐标纸,极坐标纸等)和比例,画出坐标轴,标明物理量符号、单位和刻度值,并写明测试条件。

2、坐标的原点不一定是变量的零点,可根据测试范围加以选择。,坐标分格最好使最低数字的一个单位可靠数与坐标最小分度相当。纵横坐标比例要恰当,以使图线居中。

3、描点和连线。根据测量数据,用直尺和笔尖使其函数对应的实验点准确地落在相应的位置。一张图纸上画上几条实验曲线时,每条图线应用不同的.标记符号标出,以免混淆。连线时,要顾及到数据点,使曲线呈光滑曲线(含直线),并使数据点均匀分布在曲线(直线)的两侧,且尽量贴近曲线。个别偏离过大的点要重新审核,属过失误差的应剔去。

4、标明图名,即做好实验图线后,应在图纸下方或空白的明显位置处,写上图的名称、作者和作图日期,有时还要附上简单的说明,如实验条件等,使读者一目了然。作图时,一般将纵轴代表的物理量写在前面,横轴代表的物理量写在后面,中间用“~”联接。

实验数据的处理离不开绘制成表,列表法和作图法还是有一定区别的。科研工作者在处理数据时,要注意根据实验数据的特点,选择是用列表法还是作图法。

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

257 评论

我不是小痴

首先,你需要写出像样的论文,文章肯定不能是炒冷饭的那种,需要有自己的创新点。所以在写文章之前,需要查阅大量的文献,以确保此前没人发过类似的文章。多看一些好文章,从中能够学到很多东西,比如一些观点或者写作方法。文章撰写完成之后,一定要反复修改,避免出现口语化的句子。如果是英文,还要注意语法,一定要按照英文惯用的表达方式来撰写文章。当文章经过反复修改之后,可以开始找期刊投稿。为了提高文章的接收率,找一个合适的期刊非常关键。所以一定要多看文章,这样才能知道自己写的文章大概在什么样的水平,然后选择相应档次的期刊进行投稿。中文期刊包括中文核心期刊、非核心期刊、学报,英文期刊包括SCI收录期刊、EI收录期刊,其中中文核心期刊和SCI收录期刊在中文和英文中是档次较高的期刊,也是很多人的投稿目标。此外,中科院把SCI收录期刊分为四区:一区、二区、三区和四区,档次和难度依次降低。在确定要投哪个期刊之后,按照该期刊的要求把论文的格式改好。然后,通过电子邮件把文章投出去。切忌,不要一稿多投!这样的做法只会降低你的信用,不利于以后的投稿,毕竟这个圈子不大。文章投出去之后,就是等待同行评审的结果。一般至少有两个审稿人评审同一篇文章,如果审稿人给出的意见都是修改(可能是大修或者小修),那么,只要按照要求修改好文章,最终一般都会被接收。如果其中有个审稿人给出的审稿意见是拒稿,那么文章就不会被接收。但你也可以根据审稿人的意见修改文章,然后再找一个更合适的期刊进行投稿。

293 评论

ANATOMY坂崎琢磨

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

327 评论

相关问答

  • 万方数据库发表的论文查找

    :第一步,进入万方期刊检索主页,第二步,点击更多选项。如下图所示。第三步,收录地区选择四川省即可。此外,还可以对期刊核心收录情况、出版周期等进行设置。问:万方上

    不是我的白云 3人参与回答 2023-12-09
  • 发表的论文数据无法重复

    大学毕业,写论文是完成学业的必经之路。文章的查重也是很多人必须经历的问题。不仅毕业生要进行论文查重,教师和其他需要职称评审的人员也需要进行论文查重,。已经发表的

    喵小萌103 5人参与回答 2023-12-09
  • cart数据能发表的论文方向

    数据科学专业的表示NLP需要的训练集太大了,也不好找。只能拿预训练模型针对特殊应用做二次开发,而且对硬件要求很高。图像/视频较NLP来说开放的训练集也好找,而且

    艾米Amysweety 3人参与回答 2023-12-10
  • 大数据方向发论文

    毕业论文不用发表吧,除非是自己的特别需要啊,像补学分,或者是获得一些推免的资格之类的,像你说的这个方向可以看看《金融》里面的文章

    shirleycci 2人参与回答 2023-12-11
  • 万方数据穆劲卫发表的论文

    万方数据库可以通过相应的管理界面进行论文撤销操作,具体步骤如下:1.登录万方数据库,进入个人账户,在学术搜索中找到需要撤销的论文,点击“撤销”。2.点击“撤销”

    欠我一场爱情 2人参与回答 2023-12-06