蚊防四宝
扫描版(部分文字乱码)分子生物学技术在动物营养学上的应用及其发展前景(上)摘要:本文从营养与基因表达调控、基因工程、转基因等三个方面综述了分子生物学技术在动物营养学中应用的最新进展,并对动物营养学的发展前景作了展望。自从发现双螺旋结构以来,分子生物学取得了飞跃性的发展,形成了以基因工程为主要内容的的现代分子生物学技术@在生物学、医学等研究中得到广泛的应用,几乎渗透到生命科学的每一个领域,成为研究和揭示生命现象本质和规律的一种重要工具。当前,世界各国都将分子生物学纳入本国科技发展的重点,可以预见,"21世纪将是生命科学的世纪,全世界所共同面临的许多重大问题,诸如饥饿与营养、疾病、能源与环境污染等问题的根本解决,在很大程度上将依赖于分子生物学技术的发展和应用。及时全面的了解和掌握分子生物学理论和技术的发展动态及研究热点,将具有重要的意义。就目前来看,我国动物营养学方面的研究工作基本尚处在机体水平:即在机体水平上研究各种营养素对机体的作用、在机体内的代谢与平衡、影响机体吸收营养素的因素等问题。分子水平方面的研究还刚刚起步,尚处于初级阶段。动物机体的生理病理变化,如生长发育、新陈代谢、遗传变异、免疫与疾病等,就本质而言,都是动物基因的表达调控发生了改变的结果,许多生理现象的彻底阐明,最终需要在基因水平上进行解释,所以动物营养学的各方面研究应与分子生物学技术,尤其是基因工程技术相结合,从分子水平上来解释各种营养素对机体的作用机制、动物机体的生理病理变化等问题,这也是动物营养学今后发展的必然趋势之一。*营养与基因的表达调控随着分子生物学技术不断发展,越来越多与代谢有关的动物基因被克隆和鉴定,人们对营养与基因调控的关系越来越感兴趣。营养与动物基因表达调控的研究已成为当今动物营养学研究的一个热点领域;如何通过改变日粮组成成分来调节体内相关基因的表达,从而使动物体处于最佳生长状况已成为现代动物营养学研究的重点;通过营养对动物基因表达的调控途径及其机制的研究,将为人们如何更加有效地对某些特定有益基因的表达提供理论依据。已有大量证据表明,主要的营养物质如糖、脂肪酸、氨基酸以及一些微量元素(如锌)对动物体内许多基因的表达都有影响。!"!营养对磷酸烯醇式丙酮酸激酶基因表达的调控PEPCK是动物肝和肾中糖元异生作用的关键酶,目前较为研究清楚的是日粮中糖含量对PEPCK基因表达的调控。糖类对PEPCK的调控主要是通过对其启动子的作用,当动物进食含有大量糖类的饲料时,PEPCK的启动了就会关闭,从而导致ABA8C水平大幅度下降,而当禁食或饲喂高蛋白质低糖的饲料时,PEPCK的启动子就会处于打开状态,从而PEPCK水平得到大幅度提高,其具体调控机制大致如下:?556D4(*0)#)等通过对大鼠ABA8C基因的分析表明,ABA8C基因启动子位于1 E+.至F#,之间,其中包含了大多数激素调控基因转录所必需的组织特异性调控元件。日粮中糖的含量水平会影响胰岛素、;?GA等激素的相对水平,而胰岛素与;?GA等激素相对水平又会影响到特异性!"#!转录因子的活性,特异性转录因子与$%$&’启动子上的相应调控元件结合与否,又会影响$%$&’基因的表达(,)。现有大量证据表明,$%$&’基因一系列复杂的调控元件中,有包括胰岛素、甲状腺激素、糖皮质激素、视黄酸对$%$&’基因转录的正调控元件和胰岛素对$%$&’基因转录的负控调元件,在上述调控元件中,*+,$调控元件-&.%/和$(-0/调控元件是最重要的两种,*+,$对$%$&’基因的诱导和胰岛素对$%$&’基因的抑制作用就是通过这两个调控元件来进行调控的。因此,当进食含大量糖类的饲料时,由于*+,$水平的急剧下降以及胰岛素水平的急剧上升,从而抑制$%$&’基因的表达,导致肝中$%$&’水平大幅度下降,当禁食或饲喂高蛋白低糖的饲料时,则情况恰好相反。!"#营养对脂肪酸合成酶($%&)基因表达的调控1+2是脂肪酸合成的主要限制酶,存在于脂肪、肝脏及肺等组织中,在动物体内起催化丙二酰&3+连续缩合成长链脂肪酸的反应,其活性高低将直接控制着体内脂肪合成的强弱,从而影响整个机体中脂肪的含量。有关营养与1+2基因的表达调控,2!4!&56789-:;;(/曾报道:糖类能诱导1+2基因的转录,而脂肪则抑制这种诱导的表达。&3<=9等(:;;>)试验研究也表明,当给禁食后的成年鼠饲喂含高糖低脂肪的饲料时,1+2基因的表达就增强,而且相应的?.@+含量的增加幅度与碳水化合物的摄入量也成正比。糖类对1+2基因表达的影响。为区分活体中激素水平变化的协同作用,13
rachelkong
给楼主论文:分子细胞基因组的研究随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。1 植物体细胞杂交后代胞质基因组重组的多样性体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。2 创制胞质杂种的方法2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。2.3 其它的可能途径(1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。3 胞质杂种中双亲胞质基因的传递遗传学3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。4 植物胞质基因组控制的重要性状目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。
不算难发,找准定位还是比较容易的。当然离不开导师和第三方的帮助。特别是生物、医学科研投入高,涉及的知识、技能庞杂,科研主战场是博士和博后阶段。但是SCI并不全都
家人们朋友们,我的SCI论文终于被接收了,耗时9个月,每天图书馆实验室跑来跑去,现在目标终于实现了。感谢我的导师不厌其烦的教导,感谢师兄的陪伴,还要继续加油。
首先注册,在里面依次把论文题目,作者顺序,审稿人,图片所用的版本,还有一些有关于学术道德的画对勾,最后上传手稿,只要把图片也放在手稿里面即可,字体两倍行距,随后
第一步:找到投稿网址。ACS的投稿网址是:第二步:登陆投稿系统。如果没有账户,请先注册; 有用户的话,使用账户密码登陆第三步:选择一个你要投稿的期刊,比如说JA
生命的化学杂志社简介1.来稿要求论点明确、数据可靠、逻辑严密、文字精炼,每篇论文必须包括题目、作者姓名、作者单位、单位所在地及邮政编码、摘要和关键词、正文、参考