casa1363007
新智元报道
编辑:袁榭 拉燕
【新智元导读】 2022年5月26日,牛津大学和Devanthro公司的研究团队在Nature子刊上发表论文,称首次在机器人骨架上生成弹性的人类肌腱细胞。
机器人不仅能完成人类的工作,现在还能生成能使用的人类器官了。
牛津大学与Devanthro开发的机器人骨架,其上生成的人造人类肌腱组织可以被拉伸、按压和扭曲,这为未来更成功的医学移植铺平了道路。
挑战20年来难题:生成可用的人造韧带
人工培养用于医学的人体细胞的组织制造技术,现在很大程度上处于起步阶段。当下只有实验室培养的最简单细胞能够用于有限实验性治疗。
尽管这个研究领域现在仍然是高度实验性的,但到目前为止,由人类细胞样本培育的皮肤细胞、软骨、甚至气管都已经成功植入病人体内。
但事实证明,培养可用的人类肌腱细胞更为棘手。
也就是说,在实验室里,做不出能被反复拉伸和扭曲的人造人类韧带。
在过去的二十年里,研究者们反复探索能生成、培育被反复拉伸的人造肌腱细胞的方法。然而,到此前为止,未能产生可用于临床移植的、有完全功能的研究成果。
不过研究人员称,一种新的组织制造方法有可能改变这些探索的前景:在一个可移动的人形机器人骨架上培养肌腱细胞。
通常情况下,用于这种再生医学的人造人体细胞是在静态环境中生长的。一般是在培养皿和微型三维支架上。
过去的一些实验表明,人造细胞可以在像铰链这样的移动结构上生长,但这些实验只在单一方向上拉伸或弯曲人造组织。
不过来自牛津大学和机器人公司Devanthro的研究者们认为,如果你想制造像肌腱或肌肉一样多方向移动和弯曲的人体组织,最好是尽可能准确地重现它们的自然生长环境。
当然,在一个真实的人身上培养各种供他人使用的可移植组织,会引发各种法律上、技术上、道德上的困难。
因此,他们决定仿造人体的移动关节部位的肌肉-骨骼构造,制造一个能和关节同样运动的机器人骨架结构。
2022年5月26日,牛津大学和机器人公司Devanthro的研究团队在Nature子刊上发表论文,阐述了此项目的成果。
研究者们改编了Devanthro公司出品的开源人形机器人骨架,并为细胞生成任务开发了一个特别定制的生物反应器,该生物反应器可以安装在机器人骨架上,根据需要扭转和弯曲。
牛津大学的研究团队领头人Pierre-Alexis Mouthuy表示:「临床需求显而易见,如果我们能在体外创造出质量足够好的移植物来用于临床,这将对改善患者的治疗效果有很大帮助。任何改进都是非常受欢迎的。」
软性反应器+升级机器人,长出能用的人类肌腱
实验第一步是重新设计容纳人造细胞生成物的生物反应器,使其可以连接到一个人形机器人的肩部结构上。
该机器人结构可以仿效人类肩关节移动,这样就可以用真实的方来式弯曲、拉推、抻展人造的肌腱组织。
过去的生物反应器都是坚固结构的盒状物,而研究团队创造了一个弹性的生物反应器结构。
反应器中,人体细胞在一个软性塑料支架上生长,而支架悬挂在两个刚性块锚点之间。
直观的视觉效果是,软性塑料支架就是一串串可生物降解的细丝,在两个锚点之间伸展开,就像一束头发。整个结构被包裹在一个类似气球的外膜中,构成弹性生物反应器。
然后,研究者在这些毛发状的软性塑料导管中播种了人类成纤维细胞(结缔组织中的修长细胞),并在生物反应器腔室内注入了旨在促进细胞生长的营养液。
研究者将这个弹性生物反应器腔室连接到机器人肩膀上,开始培育人造细胞生长。
本研究中所使用的柔性生物反应器的设计与性能
而运动软件代码升级过的机器人,会每天用半小时复制人类会做出的各种抬高、降低和旋转动作。如此持续14天,用科学的方式长出能伴随这些动作的人造肌腱组织。
如此操作的效果是,研究人员发现弹性生物反应器中的细胞,比未被拉伸的样本繁殖得更快,而且二者表达的基因也不同,尽管供体源头是相同的。
研究人员还不知道这意味着移植物的品质将会如何。
研究团队打算的下一步,是观察在新型弹性生物反应器中生长的细胞,与在传统刚性生物反应器中生长的,各种生物功能表现相比如何。
有望拯救过去只有6成治愈率的韧带撕裂患者
如果连人类的韧带组织都能生成了...
那估计像什么韧带拉伤、肌腱撕裂在未来可能都不叫事儿了。
专家指出,该项技术可以用来生成人体组织来修复撕裂的肩袖肌腱,这算是一种非常常见的肩部损伤。
而这种伤势产生的方式也有很多,运动时稍不注意、或是患有肌腱炎等疾病都有可能导致肩袖肌腱撕裂。
在之前,外科医生都是用缝合线来将断裂的肌腱重新接回到骨骼上去。但是,因为肌腱可能会出现愈合不良的问题,所以传统的方式大概只有60%的成功率。
而新技术的到来将能显著提高手术成功率——机器人结构上现在能长出可直接移植的肌腱组织了。
在组织的培养过程中所应用的人形生物反应器系统与相应的加载机制
但是,这项技术在距离完全投入临床使用之前,还有一段路要走。
不过,该技术还有别的应用空间。比方说,在生物反应器中生成更好的肌肉和弹性组织。
研究人员表示,机器人可以根据每个病人不同的生理机能生成各种弹性的身体组织,类似于「定制」自己的韧带。
但这里存在一个隐患。那就是,虽然研究团队已经观察到了生物反应器中不断被施力运动的细胞,与在静态环境中培养出来的细胞存在一些差异,但他们并不确定这些差异究竟是好是坏。
该项目的首席研究员、牛津大学的Pierre-Alexis Mouthuy表示,他的团队记录了二者间存在的某些特定基因的差异。
但如果想把这些观察到的结果应用在临床上,用最乐观的口吻来说,也欠明晰。
细胞材料结构的生物学特性
Mouthuy表示,「我们确实发现,机器人肩部的不同动作模式,会给生成的细胞带来差异。但谁也不敢保证这些差异是不是意味着带来更好的产物。
我们并没有说这套系统比其它的要强,或是有一套特定的运动模式比其它的好。我们只是在展示概念的可行性。」
但是,话说回来,该团队确实已经证明了在机器人骨骼中生长细胞肯定是可行的。目前的问题就是,是否值得花时间来这样做。
不过,在论文中,研究人员还是对该技术的前景做了一些比较乐观的猜测。
他们认为,在未来,医生可以先对患者的身体进行详细的扫描,获得每个病人关节的详细细节。这样就可以更好的获得更精确的关节结构,以此生成更契合的人体肌腱等组织,然后进行手术。
sanyuan617
在一项新的研究中,来自美国普林斯顿大学的研究人员惊奇地发现,他们以为是对癌症如何在体内扩散---癌症转移---的直接调查却发现了液-液相分离的证据:这个生物学研究的新领域研究生物物质的液体团块如何相互融合,类似于在熔岩灯或液态水银中看到的运动。相关研究结果作为封面文章发表在2021年3月的Nature Cell Biology期刊上,论文标题为“TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis”。
论文通讯作者、普林斯顿大学分子生物学教授Yibin Kang说,“我们相信这是首次发现相分离与癌症转移有关。”
他们的研究不仅将相分离与癌症研究联系在一起,而且融合后的液体团块产生了比它们的部分之和更多的东西,自组装成一种以前未知的细胞器(本质上是细胞的一个器官)。
Kang说,发现一种新的细胞器是革命性的。他将其比作在太阳系内发现一颗新的星球。“有些细胞器我们已经认识了100年或更久,然后突然间,我们发现了一种新的细胞器!”
论文第一作者、Kang实验室博士后研究员Mark Esposito说,这将改变人们对细胞是什么和做什么的一些基本看法,“每个人上学,他们都会学到‘线粒体是细胞的能量工厂’,以及其他一些有关细胞器的知识,但是如今,我们对细胞内部的经典定义,对细胞如何自我组装和控制自己的行为的经典定义开始出现转变。我们的研究标志着在这方面迈出了非常具体的一步。”
这项研究源于普林斯顿大学三位教授实验室的研究人员之间的合作。这三位教授是Kang、Ileana Cristea(分子生物学教授,活体组织质谱学的领先专家);Cliff Brangwynne(普林斯顿大学生物工程计划主任,生物过程中相分离研究的先驱)。
Kang说,“Ileana是一名生物化学者,Cliff 是一名生物物理学者和工程师,而我是一名癌症生物学家和细胞生物学者。普林斯顿大学刚好是一个让人们联系和合作的美妙地方。我们有一个非常小的校园。所有的科研部门都紧挨着。Ileana实验室实际上与我的实验室在Lewis Thomas的同一层楼! 这些非常紧密的关系存在于非常不同的研究领域之间,让我们能够从很多不同的角度引入技术,让我们能够突破性地理解癌症的代谢机制--它的进展、转移和免疫反应--也能想出新的方法来靶向它。”
这项最新的突破性研究,以这种尚未命名的细胞器为特色,为Wnt信号通路的作用增加了新的理解。Wnt通路的发现导致普林斯顿大学分子生物学教授Eric Wieschaus于1995年获得诺贝尔奖。Wnt通路对无数有机体的胚胎发育至关重要,从微小的无脊椎动物昆虫到人类。Wieschaus已发现,癌症可以利用这个通路,从本质上破坏了它的能力,使其以胚胎必须的速度生长,从而使肿瘤生长。
随后的研究揭示,Wnt信号通路在 健康 的骨骼生长以及癌症转移到骨骼的过程中发挥着多重作用。Kang和他的同事们在研究Wnt、一种名为TGF-b的信号分子和一个名为DACT1的相对未知的基因之间的复杂相互作用时,他们发现了这种新的细胞器。
Esposito说,把它想象成风暴前的恐慌购物。事实证明,在暴风雪前购买面包和牛奶,或者在大流行病即将到来时囤积洗手液和卫生纸,这不仅仅是人类的特征。它们也发生在细胞水平上。
下面是它的作用机制:惊慌失措的购物者是DACT1,暴风雪(或大流行病)是TGF-ß,面包和洗手液是酪蛋白激酶2(CK2),在暴风雪面前,DACT1尽可能多地抓取它们,而这种新发现的细胞器则把它们囤积起来。通过囤积CK2,购物者阻止了其他人制作三明治和消毒双手,即阻止了Wnt通路的 健康 运行。
通过一系列详细而复杂的实验,这些研究人员拼凑出了整个故事:骨肿瘤最初会诱导Wnt信号,在骨骼中传播(扩散)。然后,骨骼中含量丰富的TGF-b激发了恐慌性购物,抑制了Wnt信号传导。肿瘤随后刺激破骨细胞的生长,擦去旧的骨组织。( 健康 的骨骼是在一个两部分的过程中不断补充的:破骨细胞擦去一层骨,然后破骨细胞用新的材料重建骨骼)。这进一步增加了TGF-b的浓度,促使更多的DACT1囤积和随后的Wnt抑制,这已被证明在进一步转移中很重要。
通过发现DACT1和这种细胞器的作用,Kang和他的团队找到了新的可能的癌症药物靶点。Kang说,“比如,如果我们有办法破坏DACT1复合物,也许肿瘤会扩散,但它永远无法‘长大’成为危及生命的转移瘤。这就是我们的希望。”
Kang和Esposito最近共同创立了KayoThera公司,以他们在Kang实验室的合作为基础,寻求开发治疗晚期或转移性癌症患者的药物。Kang说,“Mark所做的那类基础研究既呈现了突破性的科学发现,也能带来医学上的突破。”
这些研究人员发现,DACT1还发挥着许多他们才开始 探索 的其他作用。Cristea团队的质谱分析揭示了这种神秘细胞器中600多种不同的蛋白。质谱分析可以让科学家们找出在显微镜玻片上成像的几乎任何物质的确切成分。
Esposito说,“这是一个比控制Wnt和TGF-b更动态的信号转导节点。这只是生物学新领域的冰山一角。”
Brangwynne说,相分离和癌症研究之间的桥梁仍处于起步阶段,但它已经显示出巨大的潜力。
他说,“生物分子凝聚物在癌症---它的生物发生,特别是它通过转移进行扩散---中发挥的作用仍然不甚了解。这项研究为癌症信号转导通路和凝聚物生物物理学之间的相互作用提供了新的见解,它将开辟新的治疗途径。”(生物谷 Bioon.com)
参考资料: 1.Mark Esposito et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nature Cell Biology, 2021, doi:10.1038/s41556-021-00641-w. 2.Kiran D. Patel et al. Condensing and constraining WNT by TGF-β. Nature Cell Biology, 2021, doi:10.1038/s41556-021-00649-2.
因为他从小就很聪明,很爱思考,再加上良好的家庭氛围和家庭条件,以及他自身对学习的兴趣和以及对学习的钻研,自然就厉害了
上面的仁兄回答得挺细,其实《科学》有中文版网站,你看看就知道啦,《自然》和《科学》他俩的原则都差不多,投稿不需要稿费,至少在初期如此,不象国内许多期刊要审稿费,
中国“天才少年”曹原又发Nature了,这是他的第5篇,曾2次一天连发2篇Nature。2018年曹原曾一天连发2篇Nature,2020年5月7日,他再次一天
不错呀,是个不错的选择呀,望采纳
这是因为Nature上面要求的专业性比较高,而且一旦在上面发表过文章之后,就说明自己非常的有成就,同时这个专栏主要针对的就是一些西方的国家。