旭子如风
2017年发表在顶级学术期刊《人类生殖学快讯》上的一篇论文显示,生物学家针对人类男性精子数量变化展开了一次大规模的调查;
在对来自欧洲、澳洲等各个国家的45000名男性的精子样本进行了多达185项的分析后发现,在过去的40年里,西方男性的精子总数下降了59%以上,精子浓度下降了52.4%。
也就是说现在的男性相对于自己的祖父这一辈人精子数量少了一半,40年前人类男性精子浓度大约为9900万个/毫升,现在为4710万/毫升;
如果按照这样的趋势发展,到了2050年人类男性精子浓度会下降到大约1500万个/毫升。这将在很大程度上会影响人类正常的繁衍,导致更多的生殖问题,以及更严重的生育率下降的问题。
甚至在未来导致人类无法正常的自然生殖,必须依靠科技手段的辅助,例如人工授精、试管婴儿等等。
虽然技术可以帮助我们生殖,但是造成精子数量下降的原因也会给我们的身体健康造成困扰。
那么男性精子为什么会大幅下降呢?
这方面的因素有很多,但都可以归结为现在的生活环境的改变,例如长期的酗酒、吸烟、肥胖缺乏锻炼导致的身体机能下降,还有长期以来的大气环境污染,长期暴露在含有碳颗粒、重金属微粒、有害气体的大气中都会给男性生殖造成影响。
已经有论文显示,这些空气中的有害微粒已经经过我们的呼吸系统进入了人体体内的细胞当中,科学家已经在人类胎盘当中发现了纳米级别的碳颗粒和重金属颗粒,它们来源多为汽车尾气和工业污染。
本次论文的主要作者认为,以上都是显而易见的影响,还有一个更为隐蔽的因素影响,人们每天都会接触到的化学物质添加剂、食品农药残留也会对男性生殖健康产生重要的影响;
因为这些化学物质能够干扰身体正常的激素水平,改变人类的性发育节奏和生殖健康,不仅仅是对男性有影响,对女性来说这些化学物质会导致现在很多的小孩过早的进入青春期,以及成年以后卵子质量的下降和更多不明原因的习惯性流产。
这种日常生活中能够接触到的干扰内分泌的化学物质可能有数百种,但是论文作者研究最多的是邻苯二甲酸盐,这是一大类化学物质的总称;
其中一类例如邻苯二甲酸酯,可以用作塑料的增塑剂,使得塑料变得更加柔软具有弹性;
也可以用在个人护理产品当中,例如护肤品、指甲油、洗发水等等,可以促进护肤品中的某些成分被皮肤快速地吸收,以及长时间的让护肤品中的一些成分保留在皮肤上,持久的留香。
还可以用在塑料玩具、食品外包装、塑料软管,这些和我们的接触最多、甚至入口的产品上,它还会被用在杀虫剂当中,也会跟着食物上农药的残留进入人体。
科学家认为邻苯二甲酸酯具有降低睾丸激素的能力,是引起男性生殖问题的“罪魁祸首”,当然女性也难逃被侵害,毕竟这种东西在指甲油里面的含量是最高的,常用的化妆品当中也有这些东西。
目前各个国家已经对各类具有危害的邻苯二甲酸酯做出了限制使用的规定,在不同产品的添加当中制定了严格的使用规范。
虽然我们无法避免直接接触这些带有添加剂的产品,但为了防止这些化学物质直接从口进入人体,我们平时还是少用塑料器皿,尤其是在加热的时候尽量使用玻璃、陶瓷器皿。
然后是双酚类化学物质,它们添加在塑料当中的作用刚好跟邻苯二甲酸酯相反,它们可以使得塑料强度变高、变硬,随意这种物质常被添加在婴儿奶瓶、饮水瓶和其他硬塑料产品中。
最常见的就是双酚A(BPA),以前双酚A的用途非常广泛,常被添加在奶瓶、医疗器械、食品包装当中,但是后来经过动物实验发现双酚A具有模拟雌激素的作用,会引起雌性动物早熟、精子质量下降,雄性生殖健康等问题,现在已经禁止了在奶瓶当中添加双酚A,
取而代之的双酚s(BPS)、双酚F(BPF)等等。但这些东西是否就绝对安全谁也说不准,因此给婴儿的奶瓶如果没有必要的需求,尽量选用玻璃材质。
去年发表的一篇论文显示,科学家首次在人类胎盘当中检测到了微塑料,这是日常使用的塑料产品上脱落下来的塑料微颗粒和纤维,不仅从口鼻进入了人体的大循环系统,更是侵入到了微循环当中。
可想而知,其中的添加剂早已对人类产生了破坏性的影响。
最后一种令论文作者担心的化学物质就是农药,从滴滴涕一直到草甘膦,这些物质进入人体同样会对我们内分泌系统构成威胁。
现在人类能够彻底避免这些伤害吗?
基本上很难做到,除非你不想过正常生活,不买任何塑料产品,不买任何化妆品,不戴塑料手套吃炸鸡、不喝奶茶等等,整天吃无任何化学残留的有机食品。
相信任何人都办不到,唯一能解决这个问题的就是:我们制造业需要变革,找到更安全的化学物质替代这些有毒的物质。
或者是直接找到一种更环保的材料替代无处不在的塑料,人类在这方面还有很长的路要走。
论文:
Temporal trends in sperm count: a systematic review and meta-regression analysis
doi.org/10.1093/humupd/dmx022
Detection of Various Microplastics in Human Stool
doi.org/10.7326/M19-0618
Evidence for the presence of air pollution nanoparticles in placental tissue cells
doi.org/10.1016/j.scitotenv.2020.142235
以心为马
大名鼎鼎的DenseNet,17年CVPR的best paper(当然有争议是后话),不得不读。黄高博士的扛鼎之作,之前在读他的Snapshot-Ensembles时感觉就很舒服,整个文章逻辑很清楚,实验对比做的也十分全面,相信这篇best paper更是没有问题,会给读者一种爽的感觉。
2019.2.20 2852次。绝对值很高,但相比其他经典网络,ResNet,GoogLeNet之类,有些差距。
本篇在16年8月挂到arXiv上,中了2017年CVPR,是继16年何大神的ResNet之后,第二个华人的best paper, 这里 有个作者本尊的talk,现场讲解。一作Gao Huang(黄高)05年北航的本科生(GPA第一),15年清华博士毕业(读了6年。。),后来在康奈尔待了3年做博后,此刻在清华作青椒,本篇是在康奈尔时的工作。二作刘壮(同等贡献)也是碉堡,现在在伯克利做博士生,之前是清华姚班的(13级),发这篇文章时还在清华,也就是说 本科生 。。。最近以一作的身份新发了一篇《Rethinking the Value of Network Pruning》,中了19年的ICLR,同时也是18年NIPS的best paper award。。这个世界太疯狂了,这都不是潜力股了,而是才华横溢溢的不行了。
官方实现在这里:
黄高个人主页在这里:
刘壮个人主页在这里:
先前的研究中说明只要网络包含短路连接,基本上就能更深,更准确,更有效的训练。本文基于这个观察,引入了密集卷积网络(DenseNet),它以前馈方式将每个层连接到所有层。传统的卷积网络L层有L个连接,而DenseNet有 个直接连接。对于每一层,它前面所有层的特征图都当作输入,而其本身的特征图作为所有后面层的输入(短路连接被发挥到极致,网络中每两层都相连)。DenseNet具有几个引入注目的优点: 可以缓解梯度消失问题,加强特征传播,鼓励特征重用,并大幅减少参数数量。
随着CNN变得越来越深,一个新的研究问题出现了:随着输入信息或梯度通过多层,它在到达网络结尾(或开始)处就消失了。ResNets和Highway Networks通过恒等连接将信号从一层传输到下一层。Stochastic depth通过在训练期间随机丢弃层来缩短ResNets,以得到更好的信息和梯度流。FractalNets重复组合几个并行层序列和不同数量的卷积块,以获得较深的标准深度,同时在网络中保持许多短路径。尽管上述方法的网络结构都有所不同,但它们有一个共同特征:创建从早期层到后期层的短路径。
本文提出一个简单的连接模式:为了确保网络中各层之间的最大信息流, 将所有层(匹配特征图大小)直接相互连接 。为了保持前向传播性质,每个层从所有前面的层获得附加输入,并将其自身特征图传递给所有后续层。
至关重要的是,与ResNets相比,在传递给下一层之前, 不是通过求和来合并特征,而是通过concat来合并特征 。因此, 层有 个输入,包括所有先前卷积块的特征图。其特征图被传递到后续所有 层。这在L层网络中引入了 个连接,而不是传统架构的L个连接。正是因为这种密集连接模式,所以称本文方法为密集连接网络( Dense Convolutional Network DenseNet)。
相比传统卷积网络,这种密集连接模式有有一点可能违反直觉的是,它需要更少的参数,因为无需重新学习冗余的特征图。本文提出的DenseNet架构显式区分了添加到网络的信息和保留的信息。DenseNet的层非常窄(如每层只有12个滤波器),只给网络的"集体知识"增加一小组特征图,并保持其余的特征图不变。
除了更好的参数利用率之外,DenseNet的一大优势是它改善了整个网络中的信息流和梯度,使得网络更易于训练。每层都可以直接访问损失函数和原始输入信号的梯度( 我屮,这不就是GoogLeNet当时为解决梯度消失而在中间层引入分类器那种ugly办法的替代吗 ),从而导致隐式的深度监督。这有助于训练更深的网络。
与DenseNet相似的级联结构早在1989年就提出来了。。Adanet的提出差不多是与DenseNet并行的,跨层连接也相似(话说竞争真激烈。。)
本文作者提出的另一个网络Stochastic depth说明并非所有层都需要,在深度残差网络中存在大量冗余的层。本文的部分灵感也来源于此。
相比从极深或极宽的架构中提取表示能力,DenseNet是通过 特征重用 来利用网络的潜力,得到易于训练和高参数效率的压缩模型。相比从不同层拼接特征的Inception网络,DenseNet更简单有效(看来Inception因其结构复杂性没少被批判)。
定义 为单张输入图像,网络由 层组成,每一层实现非线性变换 ,其中 为层的索引号。 可以是BN,ReLU,Pooling,Conv等操作的复合函数,定义 层的输出为 。
传统的层连接: 。ResNets增加了跳跃连接: 。ResNets的一个优势是梯度可以通过恒等函数直接从后面的层流向前面的层。然而,恒等函数和 的输出通过加法合并,有可能会阻碍网络的信息流。
本文引入与ResNets不同的连接模式:从任意层到所有后续层的直接连接(图1)。结果就是,第 层接收所有之前层的特征图作为输入: 。为了便于实现,concat 的多个输入为单一张量。
受ResNet v2启发,定义 为三个连续运算的复合函数:BN,ReLU,3 x 3 Conv
当特征图的大小改变时,concat运算是不可能的,然鹅,卷积网络的一个关键组成部分就是下采样层,通过它可以改变特征图大小。为了便于在架构中进行下采样,将网络划分为多个密集连接的密集块(dense blocks),如图2所示。
将密集块之间的层称为过渡层(transition layers),它们进行卷积和池化。本文实验中的过渡层由BN,1 x 1卷积和 2 x 2平均池化组成。
如果每个函数 生成 个特征图,它后面跟着的 层有 个输入特征图,其中 是输入层的通道数。DenseNet和现有网络架构的一个重要区别是DenseNet可以有非常窄的层,如 。本文将超参数 定义为网络的成长率(growth rate)。对此的一种解释是,每一层都可以访问其块中所有前面的特征图,即,网络的『集体知识』。可以将特征图视为网络的全局状态。每一层增加自己的 个特征图到这个状态。成长率反映了每层由多少新信息对全局状态有贡献。全局状态一旦写入,就可以被网络中的任何地方访问,而不像传统网络那样,无需从一层复制到另一层。(全文精华应该就是这一段了)
1x1 conv非常有用(提升计算效率),本文也大用特用。本文定义DenseNet-B的 为 BN-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3)
为了使模型更紧凑,可以减少过渡层的特征图数量。如果密集块包含 个特征图,定义接下来的过渡层生成 个特征图,其中 表示压缩率。定义 的DenseNet为DenseNet-C,本位实验中设置为 。当同时使用瓶颈层和压缩过渡层时,定义模型为DenseNet-BC。
非ImageNet数据集采用同一个架构,由3个密集块构成。ImageNet的架构如表1所示
CIFAR SVHN ImageNet
所有网络都用SGD。
CIFAR和SVHN的batch size为64,epoch分别为300和40,初始学习率为0.1,在50%和75%的epoch时分别除10。
ImageNet的batch size为256,90个epoch,初始学习率为0.1,在30和60epoch时分别除10。
weight decay为 ,动量为0.9。用He初始化。
对于CIFAR和SVHN,还在每个卷积层后接了dropout层(除第一个卷积层外),丢失率为0.2。
看表2的最后一行
DenseNet可以利用更大更深模型表示能力的增长。
如图4所示
主要用DenseNet-BC和ResNet作比较。
表面上看,DenseNets和ResNets没什么不同,两个式子的差别仅仅是输入从加法变为concat,然而,这种看似很小的修改导致两种网络架构的行为明显不同。
因为鼓励特征重用,所以得到更紧凑的模型。
如图4所示。
对DenseNets准确率提升的一种解释是各个层通过短路连接从损失函数接收额外的监督(某种深度监督)。DenseNets用隐式的方式执行相似的深度监督:网络顶部的单个分类器通过最多两到三个过渡层为所有层提供直接监督。 然而,由于在所有层之间共享相同的损失函数,因此DenseNets的损失函数和梯度基本上不那么复杂。
和随机深度的对比,随机深度有点类似DenseNet:如果所有中间层都随机丢弃,那么在相同的池化层之间的任意两层都有可能直接连接。
DenseNet就是好,就是好啊就是好。在遵循简单的连接规则的同时,DenseNets自然地整合了恒等映射,深度监督和多样化深度的属性。
又是一篇没有什么数学公式的paper,越来越感觉深度学习像物理,很多结果都是基于做实验得到的。通过对实验的观察对比分析,找出实验中的缺陷不足,从而去改进,然后发paper。黄高博士的写作套路还是非常讨喜的,特别是开头的地方,娓娓道来,一步一步告诉你为什么要这么做,为什么要引入这一步。此外,DenseNets和作者本人的工作『随机深度』也有千丝万缕的关系,看来功夫做扎实了,沿着一条道路是可以出一系列成果的。
这是个好问题。。是要进一步衍生ResNet吗?
提出密集连接结构,将ResNet的跳跃连接发扬光大为两两连接
效果比ResNet还好,通过减少滤波器个数(文中称作成长率),参数量也下来了
感觉效果提升并没有那么明显,被后续出来的ResNeXt超过了
各种网络结构的实现:
黄高本人视频讲解:
作者本人的解答: CVPR 2017最佳论文作者解读:DenseNet 的“what”、“why”和“how”
DenseNet的3个优势:
毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专
CVPR的workshop审稿还是很严格的。虽然reviewers和主会不是一套班子,但也都是来自Google/Facebook的顶级学者。难度上,CVPR w
ei会议论文每年中国有253篇。EI摘要是目前全球最早的工程文摘资源。目前收录了253种中国内地期刊。国际会议,简而言之,就是世界各地不定期举办的学术研讨会,针
2017年发表在顶级学术期刊《人类生殖学快讯》上的一篇论文显示,生物学家针对人类男性精子数量变化展开了一次大规模的调查; 在对来自欧洲、澳洲等各个国家的4500
近期,苏州大学材料与化学化工学部的汪胜教授在国际重量级学术期刊Advanced Materials上发表了题为“Ultrastrong and Tough Gr