karenchao1983
“热寂说”是热力学第二定律的宇宙学推论,这一推论是否正确,引起了科学界和哲学界一百多年持续不断的争论。由于涉及到宇宙未来、人类命运等重大问题,因而它所波及和影响的范围已经远远超出了科学界和哲学界,成了近代史上一桩最令人懊恼的文化疑案。 一、“热寂说”是谁提出来的? 毫无疑问,“热寂说”是热力学第二定律的提出者提出的。热力学第二定律的提出者有两人,一位是英国的开尔文勋爵(Lord Kelvin)(即威廉·汤姆逊,W.Thomson),另一位是德国的克劳修斯(R.Clausius)。那么,谁是“热寂说”的提出者呢?国内学术界大多数人都认为,“热寂说”的提出者是克劳修斯。持此说的人一般都以恩格斯《自然辩证法》中反复提到的“克劳修斯的第二原理”的说法作为根据。另外一条根据则是,“熵”的概念是由克劳修斯提出来的,而“热寂说”是反映宇宙中熵不断增大的一种极限状态,所以“热寂说”是由克劳修斯提出的。 事实上,如果仔细考察一下有关“热寂说”的历史文献,我们就会发现以上说法有误,至少是不准确的。 1852年4月19日,开尔文在《爱丁堡皇家学会议事录》上发表的《论自然界中机械能散逸的普遍趋势》一文指出:“在现今,在物质世界中进行着使机械能散失的普遍趋势……在将要到来的一个有限时期内,除非采取或将采取某些目前世界上已知的并正在遵循的规律所不能接受的措施,否则地球必将开始不适合人类像目前这样居住下去”。[1]在这篇论文中,开尔文首次指出,从卡诺定理可以得出一个明显的结果,即当热从热的物体传到比较冷的物体时,就存在着机械能不可能完全恢复的耗散现象。在自然界中普遍存在的这种不可逆转的机械能的耗散趋向,必然造成宇宙中热量的不断增加。其直接后果是,地球必将“不适合人类像目前这样居住下去”。显然,开尔文在这里对宇宙热寂的思想作了充分的暗示。十年后,即1862年,开尔文发表《关于太阳热的可能寿命的历史考察》一文,该文曾被收入1902年出版的《科普讲演与致辞》一书。引人注目的是,在这篇文章中间,开尔文在“运动停止和整个物质宇宙的势能竭尽”这句话旁边加了一条附注:“见1852年4月19日爱丁堡皇家学会会议录”上他发表的“《论自然界中机械能散逸的普遍趋势》一文”。[2]这是开尔文提出“热寂说”的一条重要证据(当然,这一证据并不能排除开尔文与克劳修斯争夺提出“热寂说”优先权的可能性)。另一条重要证据则是赫尔姆霍兹(H.Helmholtz)在1854年发表的《论自然力的相互关系》一文。在该文中,赫尔姆霍兹指出,"我们必须钦佩汤姆逊的聪明才智,他在一篇长期为人熟知的文章中,唯一地说热、物体的体积和压力能够识别出威胁宇宙的后果,虽然那肯定会发生在无限时间之后,会永远死亡"。[3]虽然目前还不能最终肯定赫尔姆霍兹所提到的原文即是《论自然界中机械能散逸的普遍趋势》,但起码据此可以初步判断开尔文在1854年之前就已经提出了宇宙“热寂”问题。 阎康年根据自己对开尔文原作的考证认为,尽管在开尔文看来自然界中机械能耗散不可逆转的普遍趋势必然会造成宇宙中热量的不断增加,但是,宇宙中热量增加后是否会引起热平衡乃至“热寂”,开尔文却没有得出明确的推论。[4] 从以上分析可以看出,开尔文即使在1852年没有明确提出“热寂说”,至少也是提出了“热寂”思想的。 但是,开尔文传记的作者舍林(H.Sharlin)则认为,开尔文提出“热寂说”的时间应从1862年算起,因为他是在《关于太阳热的可能寿命的历史考察》这篇论文中才提出了“一个不可避免的宇宙静止和死亡状态”。[5]开尔文原文如下:“热力学第二个伟大定律孕含着自然的某种不可逆作用原理,这个原理表明虽然机械能不可灭,却会有一种普遍的耗散趋向,这种耗散在物质的宇宙中会造成热量逐渐增加和扩散,以及势的枯竭。如果宇宙有限并服从现有的定律,那么结果将不可避免地出现宇宙静止和死亡状态。但是,对宇宙中的物质广延设想一个界限是不可能的……”([2],p.349~350)在这里,开尔文十分明确地提出了宇宙“热寂说”。但必须注意的是,从这段话可以清楚地看出,开尔文提出“热寂说”时是十分谨慎的,他做了一个基本假设--宇宙是有限的,在这个有限的系统里,热力学第二定律是正确的,宇宙才会不可避免地出现热寂状态。但是他又认为,把物质广延的宇宙看成是一个有限的体系是不可能的。因此,在开尔文的心中,他实际上并不能肯定热力学第二定律是否可以推广到他并不真正了解的整个宇宙,并由此得出宇宙“热寂说”的推论。 从文献上看,第二个提出“热寂说”的人才是克劳修斯。他于1865年4月24日在苏黎世自然科学家联合会上作了一篇题为《关于热动力理论主要方程各种应用的方便形式》的演讲,该文同年发表于德国《物理和化学年鉴》。克劳修斯在这篇文章中第一次引进了“熵”的概念,证明了熵在绝热过程中的增加,并将热力学定律表述为“宇宙的能量保持不变,宇宙的熵趋于极大值”这样两个宇宙的基本定律。他指出,当宇宙中的一切状态改变都向着一个方向时,全宇宙必然要不断地趋近于一个极限状态。实际上,这里所说的“极限”状态就是指“宇宙热寂状态”。[6] 克劳修斯正式提出“热寂说”则是在1867年9月23日。当时,他在法兰克福举行的第41次德国自然科学家和医生的集会上作了一篇题为“关于热力学第二定律”的演说。在这篇轰动一时的著名演说中,克劳修斯明确指出: “热总是从高温物体传到低温物体使得存在的温度差趋于消失,将逐渐地呈现越来越均匀的分布,而且在以太中的辐射热和物体所含的热之间也将出现一定的平衡。最后,物体分子的安排将接近于一定的状态,其中在相应的温度下总的离散度有最可能大的值。 我寻求把这整个过程用一个简单的定律表达出来,它将能确定地标志宇宙逐渐趋向的状态。我造了一个量,它与转化的关系跟能量与热和活的关系一样,即是,它等于所有的转化之和,这些转化是在使一个物体或是一群物体到达当前状态的过程中必然发生的。我叫这个量为熵。在一切正的转化大于负的转化的情形中,出现有熵增加。因此必然得出结论,在一切自然现象中熵的总值永远只能增加而不能减少,于是对到处不断进行的变化过程可以用下面的定律简短地表达:宇宙的熵趋向于极大。 宇宙越是接近于这个熵是极大的极限状态,进一步变化的能力就越小;如果最后完全达到了这个状态,那就任何进一步的变化都不会发生了,这时宇宙就会进入一个死寂的永恒状态。”[7] 实际上,克劳修斯在追述自己的思想时曾指出,他早在19世纪50年代初就已经有“能量退降”、“宇宙热寂”的思想了,只是他考虑到这个结论与当时很流行的关于热的观点有很大偏离而没有拿出来。 从以上可以看出,“热寂说”的思想产生于19世纪50年代初,几乎是伴随热力学第二定律的产生而产生的,开尔文和克劳修斯都进行过相关思考。然而最先提出"热寂说"的应该是开尔文而非克劳修斯。这一点,其实克劳修斯本人也是这么看的,他在1865年作的《关于热动力理论主要方程各种应用的方便形式》的演讲中就曾明确指出,“这个定律在宇宙中的应用,已得出一个结论,那是W.汤姆逊首先得出的,因此我才发表我所说的论文”。[8] 值得注意的是,开尔文和克劳修斯提出“热寂说”时是有所不同的,前者明确认为把热力学第二定律推广到宇宙是有条件限制的,也就是假设宇宙是一个“有限”的体系;后者并没有做这样一种限定,而是毫无条件地推广到了整个宇宙。在对“热寂说”的提出者进行客观评价时,这种区别是要特别认真对待的。不过,阎康年认为,克劳修斯把熵增原理推广到整个宇宙是出于数学上的考虑--他曾在1865年的《关于热动力理论主要方程各种应用的方便形式》论文中提到过这一点,只不过是在1867年的那篇著名演讲中“有意或无意地忽视或回避了在两年前提出的前提条件”。([4],p.182)由于这一问题超出了本文讨论的范围,在此不做赘述。 实际上,由于当时科学发展水平的限制,“热寂说”问题既无法用新的理论做出合理的解释,也无法用观测和验证做出做后判决,无论开尔文还是克劳修斯,也无论他们是否加上限定条件,都不能从科学上最终解决这个问题,这无疑就为后来的科学界与哲学界留下了一场旷日持久的争论。 二、科学解还是哲学解? “热寂说”一经提出,即在科学界引起了轩然大波。 首先对“热寂说”提出诘难的是麦克斯韦(J.Maxwell)。1871年,他在《热理论》一书的末章《热力学第二定律的限制》中,设计了一个假想的存在物--“麦克斯韦妖”。麦克斯韦妖有极高的智能,可以追踪每个分子的行踪,并能辨别出它们各自的速度。这个设计方案如下:“我们知道,在一个温度均匀的充满空气的容器里的分子,其运动速度决不均匀,然而任意选取的任何大量分子的平均速度几乎是完全均匀的。现在让我们假定把这样一个容器分为两部分,A和B,在分界上有一个小孔,在设想一个能见到单个分子的存在物,打开或关闭那个小孔,使得只有快分子从A跑向B,而慢分子从B跑向A。这样,它就在不消耗功的情况下,B的温度提高,A的温度降低,而与热力学第二定律发生了矛盾"。[9]麦克斯韦认为,只有当我们能够处理的只是大块的物体而无法看出或处理借以构成物体分离的分子时,热力学第二定律才是正确的,并由此提出应当对热力学第二定律的应用范围加以限制。 尽管麦克斯韦既没有实现也没有提出任何实际的实验来检验他的假说,但这个“热力学第二定律的破坏者”却困扰了科学界一百多年,成为科学家诘难热力学第二定律并进而反对“热寂说”的著名假想实验。与麦克斯韦佯谬有关的还有后来洛歇密(Loschmid)提出的“可逆佯谬”和赛密罗(E.Zermelo)提出的“再出现佯谬”等都对单向不可逆性和热力学第二定律提出了挑战,实际上也是对“热寂说”提出了挑战。 在“热寂说”提出后的数十年中,对其构成最大挑战的科学假说是波尔兹曼(L.Boltzmann)的“涨落说”。波尔兹曼在对气体分子运动的研究中,最先对熵增加进行了统计解释。按照这种解释,热平衡态附近总存在着偶然的“涨落”现象,这种涨落现象并不遵从热力学第二定律。由此,波尔兹曼将气体分子运动论的观点推广到宇宙中,认为整个宇宙可以看成类似在气体状态的分子集团,围绕着整个宇宙的平衡状态则存在着巨大的“涨落”。即使在与整个广延的宇宙相比极其渺小的恒星系和银河系中,在短时期内也存在着这种相对的热平衡附近的“涨落”。按照这种假说,宇宙就必然会由平衡态返回到不平衡态。在这个区域,熵不但没有增加,而且是在减少。因此,宇宙也就不可能产生“热寂”。 波尔兹曼的“涨落说”曾广泛流传,许多人都把它作为反对“热寂说”的新发现。但天文学观测表明,至今没有任何有说服力的证据证明现在的宇宙是处在热平衡态并存在着上下“涨落”。由于缺乏事实依据,“涨落说”并没有真正从科学上解决宇宙“热寂”的问题。而且从逻辑上看,波尔兹曼的“涨落说”实际上是把宇宙“热寂”已经放在他的前提中了。因为他首先承认“涨落”是在平衡态附近发生的。而对于任何“涨落”,不论它有多大,最后必然会消失,重新回到平衡状态。尽管后来一些物理学家,如莱辛巴赫(H.Reihenbach)等发展了玻尔兹曼的思想,把时间增加的方向作为熵增加的方向,并进一步指出了宇宙中存在着熵的涨落现象,但由于同样缺乏观测证据支持而最终放弃。 20世纪60年代以来,以普里高津(I.Prigogine)为首的布鲁塞尔学派在研究非平衡态热力学和统计物理学的过程中,找到了开放系统由无序状态转变为有序状态的途径,提出了耗散结构理论。这一理论曾被一些人用来反对“热寂说”。 所谓“耗散结构”是指一种远离平衡态的有序结构。根据热力学第二定律,系统处在热平衡态就是有最大的混乱度,此时熵值达到最高,系统即出现所谓“热寂”。而有序结构的出现即意味着熵的降低,系统便可“起死回生”。这显然与热力学第二定律相悖。如生命的发生和物种的进化等,都是从低级到高级、从无序到有序的变化,是一个熵不断降低的过程。耗散结构理论解决了这个问题。它认为关键在于系统必须是开放的,而且系统内有序结构的产生要靠外界不断供给能量和物质以及负熵流。 耗散结构理论提出不久,一些人即将其推广到整个宇宙,认为宇宙是一个无限发展的开放系统,它远离平衡态。由于它不断吸取负熵流,因而在宇宙的一些区域内,熵不但没有增加反而有减少的趋势。因此宇宙不可能变成完全无序的“热寂”状态。《纽约时报》曾于1980年发表特稿,宣称普里高津的耗散结构理论帮助人类解决了一项科学上最扰人的似是而非的问题。[10] 然而,尽管这种理论具有很广的应用范围,但对于整个宇宙来说,由于缺乏明确的物理图像和实验基础而不被天体物理学界所认可。 一百多年来,许多杰出的科学家都为解决宇宙“热寂”这一世界性疑案呕心沥血,提出了各种宇宙模型和假说,其中有一些是没有“热寂”的模型,如托尔曼(P.Tolman)的相对论热力学中就已经没有了“热寂”,[11]但由于这些假说或模型存在着理论上不可克服的困难和缺乏宇宙观测事实的支持,最终都没有对“热寂说”构成威胁。这种情况一直延续到20世纪六、七十年代以后曾经沉寂的大爆炸宇宙论再度兴起。而这正是本文在最后要详细讨论的问题。 由于“热寂说”涉及到宇宙未来和人类命运等重大问题,因而也引起了哲学尤其是马克思主义哲学的深刻关注。一百多年来,恩格斯对“热寂说”的批判产生了深远的影响。在解释恩格斯反对热力学第二定律和“热寂说”的原因时,法国生物学家、哲学家莫诺(J.Monod)曾经指出,“恩格斯因为看到热力学第二定律将危及人类以及人类的思维活动是宇宙演化的必然产物这一带有必然性的规律,所以他感到非反对它和否定它不可。在《自然辩证法》的导言中,他就是这么说的;而且他还直接从这个命题转到了热情洋溢的宇宙论预言,预示着如果不是现在的人类,无论如何也有思维能力的精神将永恒地反复地再现”。[12] 实际上,“热寂说”刚刚提出,恩格斯就在1869年3月21日致马克思的信中指出,“这种理论认为,世界愈来愈冷却,宇宙中的温度愈来愈平均化,因此,最后将出现一个一切生命都不能生存的时刻,整个世界将由一个围着一个转的冰冻的球体所组成。我现在预料神父们将抓住这种理论,把它当作唯物主义的最新成就”,[13]用来作为“必须设想有上帝存在”的论证,而这种论证实质上是与辩证唯物论背道而驰的。1873年,恩格斯开始写作《自然辩证法》,在为该书准备资料的过程中,写下了许多批判“热寂说”的札记。由于一些原因,这些言论和札记当时并没有公开发表。50多年后,才随着《自然辩证法》的出版而为人所知。 恩格斯指出,“热寂说”由于断言宇宙中的一切运动都将最后转化为热,因而违反了辩证唯物主义的基本原理--运动不灭原理(它所对应的科学定律是能量守恒和转化定律,即热力学第一定律),“克劳修斯的第二原理等等,无论以什么形式提出来,都不外乎是说:能消失了,如果不是在量上,那也是在质上消失了。熵不可能用自然的方法消灭,但可以创造出来。宇宙钟必须上紧发条,然后才走动起来,一直达到平衡状态,而要使它从平衡状态再走动起来,那只有奇迹才行。上紧发条时所耗费的能消失了,至少是在质上消失了,而且只有靠外来的推动才能恢复”。[14]在这个分析的基础上,恩格斯联系科学史指出,“作为冷却的起点的最初的炽热状态自然就绝对无法解释,甚至无法理解,因此,就必须设想有上帝存在了。牛顿的第一推动就变成了第一炽热”。([13],p.267)恩格斯认为,这是历史的又一次重演,克劳修斯就这样像牛顿一样从形而上学滑向了唯心主义。 恩格斯以唯物辩证法的观点进一步指出,运动不灭的原理应该从量的不灭和质的不灭两方面来理解,只有这样运动才永远不会丧失其转变为它自身所能达到的各种不同运动形式的能力。因此,“现代自然科学必须从哲学那里采纳运动不灭的原理;它没有这个原理就不能继续存在”。([14],p.21) 恩格斯的这些论断实际上是辩证唯物主义思想在自然科学领域的直接应用,然而却引来了不少反对。最著名的莫过于莫诺的责难。他将唯物辩证法斥之为“万物有灵论的设想”的“翻版”,并说,“这种解释同科学不仅是风马牛不相及,而且是跟本不相容的。尽管如此,那些用了连篇废话大讲其‘空头理论’的辩证唯物主义者,还是经常企图用他们的想法来指导实验科学的发展。恩格斯本人虽然很熟悉他那个时代的科学,却以辩证法的名义拒绝了当时的两大发现:热力学第二定律和自然选择学说(尽管他很钦佩达尔文)”。([12],p.29) 然而,恩格斯事实上看到宇宙“热寂说”疑难的极其复杂性,认为仅仅依靠运动的数量是无限的(即不可穷尽的)这样一个一般的哲学命题,对解决这个问题是没有什么帮助的。因而,“只有指出了辐射到宇宙空间的热怎样变得可以重新利用,才能最终解决这个问题”,([14],p.261)并由此提出了如下的假说,“放射到太空中去的热一定有可能通过某种途径(指明这一途径,将是以后自然科学的课题)转变为另一种运动形式,在这种运动形式中,它能够重新集结和活动起来。因此,阻碍已死的太阳重新转化为炽热的星云的主要困难便消失承。”([14],p.23) 显然,恩格斯在这里明确指出了应该用哲学上的运动不灭原理和未来自然科学的发展来解决散失到太空中的热变成了什么这个问题,强调了哲学与科学的结合,既肯定了哲学的指导作用,又否定了哲学的代替作用。 也有观点认为,用运动不灭原理来拯救宇宙“热寂”在哲学上是“错误的”。错误的关键是混淆了运动和发展两个概念。运动有两种形式,一种是发展的运动,另一种是非发展的运动。发展的运动是非循环的和不可逆的,如生物的进化;非发展的运动则是循环的和可逆的,如钟摆的震荡。运动不灭原理只能保证宇宙将不停地运动,并不能保证这种运动是发展的。而“热寂”则是一种有运动而无发展的状态,它与运动不灭原理并不矛盾。所以,用运动不灭原理并不能推翻“热寂说”。“在热力学中,运动和发展二者的性质分别由热力学第一定律及第二定律所规定。热力学第一定律就是运动不灭原理。热力学第二定律则是关于发展方向的规律。利用第一定律并不能排除第二定律的热死结论。”[15] 那么,是否就此认为应对恩格斯关于“热寂说”的论述进行重新评价呢?这一问题超出了本文讨论的范围,笔者将另外著文进行阐述。 继恩格斯后,彭加勒(J.Poincaré)从科学方法论的角度对“热寂说”提出了尖锐的批评。1890年,彭加勒在《力学原理》一书中指出,任何力学模型只能局限在有限的系统内运动。在这个封闭的系统中,运动从有序开始,经过无序状态,最后必然再回到有序状态即初始状态。因此,与系统组态相联系的既定熵值,为了能回到初始状态就必然要减少。彭加勒认为,“热寂说”的出现是由于它的提出者们采用了当时流行的力学模型法造成的。因此,应在方法论上进行变革,要么承认热力学过程能回到初始状态,要么将热力学模型根本抛弃。 在批评“热寂说”的各种观点中,有两种观点影响最大,也最普遍。一种观点认为,热力学第二定律是从有限世界得来的,因而不能应用到无限的宇宙上。如丹皮尔(W.Dampier)在其《科学史及其与哲学和宗教的关系》一书中就认为,“把热力学原理应用于宇宙理论,其有效性是可疑的。把从这样有限的例证中推出来的结果,应用到宇宙上去,是没有道理的,即令过去利用这些结果去预言有限的独立的或等温体系的情况很有成效”。[16]另一种观点则直接否认宇宙是一个“孤立系”。实际上,这两种观点本身是相互关联的,都预先设定了宇宙是一个“无限的”“非孤立系”的前提。并且一再企图证明,宇宙是漫无边际的物质,各个部分都是相互联系的,宇宙之外还有宇宙,因而不存在孤立部分。何祚庥认为,这些论证都不能证明人们永远不能把无限宇宙当作一个统一整体来把握。[17]况且,今天的科学还不能证明宇宙是否无限。因此,这种说法并不能驳倒“热寂说”。另一方面,认为从孤立系中得出的第二定律不能推广到无限宇宙去的论证,从逻辑上看也是不严密的。小范围内的自然规律外推到大范围在逻辑上并不必然错误,科学史上就有大量这样外推的先例,如绝对零度概念、热力学第一定律以及模型方法等。既然能把热力学第一定律作为证明辩证唯物主义关于世界普遍联系的根本规律推广到整个宇宙,那么又为什么不能将第二定律作同样的推广呢?事实上,热力学第一定律也没有在无限的条件下做过实验。必须承认,任何实践活动都是在有限的范围内取得的,把由此得出的结论外推不但是经常的,而且是必需的,甚至在处理复杂对象时是最有效的方法。因此,这种说法从逻辑上看也是不能驳倒“热寂说”的。也有人认为,外推第二定律之所以受到如此之多的责难,首先是因为人们认为它否定了马克思主义关于发展的辩证法,其次是因为它本身“不合希望”性,是一条带有悲观色彩的定律,人们主观上希望它最好受到某种“制约”。[18]这种说法有点类似于莫诺的观点。 此外,中国和苏联也对“热寂说”进行过大规模的批判。由于这些争论基本上都是意识形态之争,而且这正是笔者另外一篇文章要讨论的问题,故本文不做进一步论述。 “热寂说”提出一百多年来,无论是在科学上还是在哲学上,各种争论此起彼伏,无休无止。有许多赞同者,也有许多反对者。他们都在孜孜不倦地寻求着这一疑难的最后答案。然而,最终都令无数英雄竞折腰。难怪大哲学家罗素(B.Russel)发出这样悲观的感叹,“一切时代的结晶,一切信仰,一切灵感,一切人类天才的光华,都注定要随太阳系的崩溃而毁灭。人类全部成就的神殿将不可避免地会被埋葬在崩溃宇宙的废墟之中--所有这一切,几乎如此之肯定,任何否定它们的哲学都毫无成功的希望。唯有相信这些事实真相,唯有在绝望面前不屈不挠,才能够安全地筑起灵魂的未来寄托”。[19]即使是像控制论之父维纳(N.Wiener)这样的科学巨匠,最终也“控制”不住自己沮丧的感情,几乎是在绝望中悲叹,“我们迟早会死去,很有可能,当世界走向统一的庞大的热平衡状态,那里不再发生任何真正新的东西时,我们周围的宇宙将由于热寂而死去,什么也没有留下……”([7],p.76) 那么,答案在哪里呢?科学解和哲学解,谁更真实、谁更符合人类的愿望呢?事实上,一个多世纪以来,各种哲学派别无休无止的争论亦无助于这一问题的最终解决。然而,科学仍然坚持走自己的道路。尽管人们承认哲学能给人以启发和提供思考的方向,但宇宙的未来只能依赖于科学自身的发展,任何超科学的回答都会把问题引向认识论的误区和歧途。俄国物理学家诺维科夫(I.Novikov)说了一句意味深长的话,“今天这样的争论已成为过去,是科学来确定世界真正结构的时候了”。[20] 三、“热寂说”“终结”了吗? 长期以来,对“热寂说”疑难的回答,无论从科学上看还是从哲学上看似乎都未能切中要害,缺乏说服力,因而一再爆发争论。然而20世纪六、七十年代以后,自从“大爆炸”宇宙模型逐渐得到天体物理学界公认以来,对“热寂说”疑难的讨论发生了根本性的转向,这一时期成了“热寂说”争论史上一个划时代的转折点。 在大量涌现的介绍大爆炸理论的文献中,特别令人瞩目的是,1994年10月,《科学美国人》杂志以“宇宙中的生命”为主题隆重推出了一期专刊,其中登载了四位著名科学家的综述,全面介绍了当代天体物理学界关于宇宙起源与演化问题的研究成果--大爆炸宇宙模型。该理论认为,宇宙大约是在100~200亿年以前,从高温高密的物质与能量的“大爆炸”而形成。随着宇宙的不断膨胀,其中的温度不断降低,物质密度也不断减小,逐渐衍生成众多的星系、星体、行星等,直至出现生命。宇宙大爆炸理论是20世纪科学研究的重大成就,是基于几十年的创新实验与理论研究的结果。因而获得了科学界的公认,并成为现代宇宙学的标准模型。 大爆炸宇宙理论得到了三个强有力的直接证据的支持,即哈勃红移、氦元素丰度和3K微波背景辐射。 1929年,美国天文学家哈勃(E.Hubble)在研究了前人测量的星系距离资料后发现,远星系光谱线的颜色要比近星系的稍红一些。哈勃仔细测量了这种红化,发现它呈系统性变化。而且,星系愈远,光谱线红移愈大。在进一步测定了许多星系光谱中特征谱线的位置后,哈勃证实了这个效应,并指出红移现象的产生是由于星系在退行而使光波变长的结果。由此,他总结出了著名的哈勃定律:星系退行的速度与距离成正比。从哈勃定律人们会很自然地得出宇宙在膨胀的推论。这个重大发现奠定了现代宇宙学--大爆炸理论的的基础。 支持大爆炸宇宙论的第二个证据是宇宙中氦元素丰度的预言和测定。大爆炸发生一秒钟以后,宇宙是由极高温的基本粒子组成的“羹汤”,这时整个宇宙处于均匀的热平衡态。随着宇宙的膨胀和降温,其中的一些粒子逐次与其余部分粒子脱耦。此时产生的核反应使中子和质子聚合在一起,形成氦核,余下的核子(没有聚合的质子)自然就形成了氢核。精确的理论计算表明,当时应有23.6%的物质质量聚合成了氦核。英国皇家格林尼治天文台对众多星系中原始星云的发射光谱进行观测的结果表明,宇宙中氦的实际丰度为23.5%。这一结果与大爆炸的理论预
彡鈖赱辷筝
早在1909年,伽罗德(A·E·Garrod)在《先天性代谢差错》一书中,就描述了黑尿病基因与尿黑酸氧化酶的关系。以红色面包霉(链孢霉)为材料而开创生化遗传学研究的比德尔(G·W·Beadle),1941年与塔特姆(E·L·Tatum)一起提出“一个基因一种酶”的假说,认为基因是通过酶来起作用的。基因(DNA)主要位于细胞核中。如果酶(化学本质是蛋白质)是在细胞核内合成的,问题倒也简单,由基因直接指导酶的合成就是了。可事实却并不如此。早在40年代,汉墨林(J·Hammerling)和布拉舍(J·Brachet)就分别发现伞藻和海胆卵细胞在除去细胞核之后,仍然能进行一段时间的蛋白质合成。这说明细胞质能进行蛋白质合成。1955年李托菲尔德(Littlefield)和1959年麦克奎化(K·McQuillen)分别用小鼠和大肠杆菌为材料证明细胞质中的核糖体是蛋白质合成的场所。这样,细胞核内的DNA就必须通过一个“信使”(message)将遗传信息传递到细胞质中去。1955年,布拉舍用洋葱根尖和变形虫为材料进行实验,他用核糖核酸酶(RNA酶)分解细胞中的核糖核酸(RNA),蛋白质的合成就停止。而如果再加入从酵母中抽提的RNA,蛋白质的合成就有一定程度的恢复。同年,戈尔德斯坦(Goldstein)和普劳特(Plaut)观察到用放射性标记的RNA从细胞核转移到细胞质。因此,人们猜测RNA是DNA与蛋白质合成之间的信使。1961年,雅可布(F·Jacob)和莫诺(J·Monod)正式提出“信使核糖核酸”(mRNA)的术语和概念。1964年马贝克斯(C·Marbaix)从兔的网织红细胞中分离出一种分子量较大而寿命很短的RNA,被认为是mRNA。)实际上,早在1947年,法国科学家布瓦旺(A·Boivin)和旺德雷利(R·Vendrely)就在当年的《实验》杂志上联名发表了一篇论文,讨论DNA、RNA与蛋白质之间可能的信息传递关系。一位不知名的编辑把这篇论文的中心思想理解为DNA制造了RNA,再由RNA制造蛋白质。10年以后,1957年9月,克里克提交给实验生物学会一篇题为“论蛋白质合成”的论文,发表在该学会的论文集(Symposum of the Society for Experimental Biology)第12卷第138页。这篇论文被评价为“遗传学领域最有启发性、思想最解放的论著之一。”在这篇论文中,克里克正式提出遗传信息流的传递方向是DNA→RNA→蛋白质,后来被学者们称为“中心法则”。生物遗传中心法则最早是由Crick于1958年提出的,用以表示生命遗传信息的流动方向或传递规律。由于当时对转录、翻译、遗传密码、肽链折叠等都还了解不多,在那个时候中心法则带有一定的假设性质。随着生物遗传规律的进一步探索,中心法则也逐步得到完善和证实。 ①1965年,科学家发现RNA可复制;②1970年,科学家发现逆转录酶;③1982年,科学家发现疯牛病是由一种结构异常的蛋白质引起的疾病。 ①从DNA流向DNA(DNA自我复制);②从DNA流向RNA,进而流向蛋白质(转录和翻译);③从RNA流向RNA(RNA自我复制);④从RNA流向DNA(逆转录)注:其中前两条是中心法则的主要体现,后两条是中心法则的完善和补充。
乖乖邓子
如同所有重大科学发现一样,操纵子学说是许多杰出科学家智慧的共同结晶。然而,其中贡献最大、对该理论的形成自始至终起决定作用的是莫诺 。莫诺很早就与遗传学结下了不解之缘。1936年夏,他曾到世界遗传学中心——摩尔根的实验室进修过一年。尽管如此,莫诺的科学生涯却不是从遗传而是从微生物生理学开始的。他从1937年起开始以大肠杆菌为材料,研究细菌的生理问题,不久即发现了细菌的二次生长现象:当细菌在含有葡萄糖和乳糖的培养基上生长时,细菌首先利用葡萄糖,葡萄糖用完以后才开始利用乳糖。从生长曲线看,细菌生长经过一个上升期以后,出现一个停顿期,此时曲线呈现平坦、然后又出现第二个上升期。这就是说,细菌在利用乳糖之前,先要有一个“适应过程”。此后,莫诺围绕这一现象做了一系列研究。从表现上看,由于与利用乳糖有关的基因处在一个操纵子内,二次生长现象的最后解决必须靠操纵子学说,所以,莫诺从一开始就“歪打正着”,走上了发现操纵子学说的必由之路。1943年,莫诺从文献中查到,卡斯特罗姆(H·Karstrom)在1930年就发现过类似的现象。卡斯特罗姆认为,细胞中利用葡萄糖的酶无论何时都在不断的产生,因此它在细胞中能维持一定的浓度,好像细胞的一种成分一样,称组成酶。而利用乳糖的酶在细胞中仅恒量存在,只有当作为底物的乳糖存在时才会促进它的生成,这种酶称适应酶(现在通称诱导酶)。1938年,尤金(J·Yudkin)用质量作用定律解释适应酶的产生。他指出,不管是组成酶还是适应酶,它们在形成时要经过一个“前体”阶段,前体只有经过激活以后才能转变成有活性的酶。莫诺从中受到启发,马上想到:分解葡萄糖和分解乳糖的两种酶可能来自同一个前体。一般情况下,向分解葡萄糖的酶的转化占优势,当葡萄糖用完以后,则有利于向分解乳糖的酶的转化。但他错了。从生理的角度研究二次生长现象已很难深入下去了,从1943年底起,莫诺开始探索新的途径。当时,正是微生物遗传学方兴未艾之时。1944年,艾弗里(O·T·Avery)发表了关于细菌转化物质的文章,提出DNA是一种转化因子,因而是遗传的物质基础。卢里亚( S·E·Luria)和德尔布吕克(M·Delbruck)发表了关于细菌自发突变的论文,将数理统计方法、逻辑推理及实验手段有机地结合在一起,其结果严密而明确。这些成果使莫诺眼界大开,很受启发,从此,莫诺的兴趣转向了微生物遗传学。他抓住乳糖酶的适应现象不放,筛选出了一种突变菌株,这种菌株对乳糖的适应期比原菌株更长,从生长曲线上看,它的停顿平坦部明显延长。莫诺证明,细菌中适应酶系统是受分散的、特异的、稳定的(即遗传的)决定子所控制的。1946年夏,莫诺随洛夫参加“微生物的遗传和变异”冷泉港专题讨论会。在会上,莫诺的工作作为洛夫细菌营养突变报告中一个重要的例证介绍给大会,立即引起了参与会者的兴趣。莫诺被邀请于下一年到冷泉港专门讨论“生长问题”的会议上作专题报告。同行的邀请无疑是对莫诺的一种褒奖与鼓励,为此,他对二次生长现象进行了一次全面的总结和思考。这次总结,使他认识到二次生长的机制问题,中心是要搞清适应酶形成过程中诱导底物的作用,即诱导底物是影响酶分子形成的全程呢,还是仅仅激活前体而已。如果是影响全过程,那么诱导底物是如何与特异基因(或基因群)相互作用的。1947年,莫诺在冷泉港会议上以“酶的适用现象及其在细胞分化中的意义”为题,报告了他的观点。从此,莫诺开始从新的角度探讨二次生长现象。二次生长现象也就由一个生理学问题,变成了遗传学和生物化学问题。
如何快速发表期刊论文?在工作中需要升级评定职称的时候,职称论文就派上用场了,这个是可以给你加分的,是一项评定的重要标准,然而很多人忙于工作与研究,对撰写论文和投
答:前者主要从事学术的研究,而后者主要是为华为的发展服务,对此,我觉着这两者有着本质的区别,不能一概而论。
论文发表可以从网上尝试发给;去报社打一个发表也可以。
9月17日出生的人物: 黎曼 1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的 穷苦牧师。他六岁开始上学,14岁进入大学
钱其军,男,1964年9月出生,浙江嵊州人。1993.06-1994.09中国协和医科大学、中国医学科学院血液学研究所博士研究生1990.09-1993.06中