Jessie小鱼
赫尔曼·何乐礼、范内瓦·布什、约翰·冯·诺依曼、比尔·盖茨、史蒂夫·乔布斯。
1、赫尔曼·何乐礼:
赫尔曼·何乐礼(英语:Herman Hollerith,1860年2月29日-1929年11月17日),生于水牛城,德裔美籍的统计学家。1896年,创办了制表机器公司(Tabulating Machine Company),后来成为IBM的前身(电脑的前身)。
2、范内瓦·布什:
范内瓦·布什(Vannevar Bush,1890.3.11~1974.6.26),是二战时期美国最伟大的科学家和工程师之一。
他是模拟计算机的开创者,信息论之父香农是他的学生,1945年他发表的论文《诚如所思》("As We May Think")中提出了微缩摄影技术和麦克斯储存器(memex)的概念,开创了数字计算机和搜索引擎时代。在这篇论文里,范内瓦提出的诸多理论预测了二战后到现在几十年计算机的发展,许多后来的计算机领域先驱们都是受到这篇文章的启发,后来的鼠标,超文本等计算机技术的创造都是基于这篇具有理论时代意义的论文。
无论你审视信息技术发展史的哪个领域,布什都是在那里留下过足迹的具有远见的先驱性人物。正如历史学家迈克尔·雪利(Michael Sherry)所言,“要理解比尔·盖茨和比尔·克林顿的世界,你必须首先认识范内瓦·布什。”正是因其在信息技术领域多方面的贡献和超人远见,范内瓦·布什获得了“信息时代的教父”的美誉。
3、约翰·冯·诺依曼:
冯·诺依曼(John von Neumann,1903~1957),原籍匈牙利,布达佩斯大学数学博士。 20世纪最重要的数学家之一,在现代计算机、博弈论、核武器和生化武器等领域内的科学全才之一,被后人称为“计算机之父”和“博弈论之父”。
1946年,冯·诺依曼开始研究程序编制问题,他是现代数值分析——计算数学的缔造者之一,他首先研究线性代数和算术的数值计算,后来着重研究非线性微分方程的离散化以及稳定问题,并给出误差的估计。他协助发展了一些算法,特别是蒙特卡罗方法。
简单来说他的精髓贡献是两点:2进制思想与程序内存思想。
冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术、数值分析和经济学中的博弈论的开拓性工作。
4、比尔·盖茨:
比尔·盖茨 (Bill Gates),全名威廉·亨利·盖茨三世,简称比尔或盖茨。1955年10月28日出生于美国华盛顿州西雅图,企业家、软件工程师、慈善家、微软公司创始人。曾任微软董事长、CEO和首席软件设计师。
在他的领导之下,成功建立了新一代的电脑系统,并且在潜移默化当中改变着人类的生活方式。带着计算机时代进入一个新的时期,一个人机交流和谐的时期。
5、史蒂夫·乔布斯:
史蒂夫·乔布斯(Steve Jobs)是苹果公司的前任首席运行官兼创办人之一,同时也是前Pixar动画公司的董事长及行政总裁(Pixar已在2006年被迪士尼收购)。乔布斯还是迪士尼公司的董事会成员和最大个人股东。乔布斯被认为是计算机业界与娱乐业界的标志性人物,同时人们也把他视作麦金塔计算机、ipad、iPod、iTunes Store、iPhone等知名数字产品的缔造者。
参考资料来源:百度百科 - 赫尔曼·何乐礼
参考资料来源:百度百科 - 范内瓦·布什
参考资料来源:百度百科 - 约翰·冯·诺依曼
参考资料来源:百度百科 - 比尔·盖茨
参考资料来源:百度百科 - 乔布斯
丹枫在心
你好,希望我的答案可以帮助到你回顾计算机发展历史,“计算机之父”这种笼统的称谓没有明确的答案。我们可以认为是图灵,也可以认为是冯·诺依曼,答案还不止两个,可以算下面这些人,甚至更多:巴贝奇(Charles Babbage )- 通用计算机之父图灵(Alan Turing) - 计算机科学之父约翰·阿坦那索夫(John Vincent Atanasoff )- 电子计算机之父冯·诺依曼 (John von Neumann) - 现代计算机之父
拎拎同学
博弈论又被称为对策论(Games Theory),是研究具有斗争或竞争性 质现象的理论和方法,它既是现代数学的一个新分支, 也是运筹学的一个重要学科。 博弈论的发展 博弈论思想古已有之,我国古代的《孙子兵法》 就不仅是一部军事著作,而且算是最早的一部博弈论专著。 博弈论最初主要研究象棋、桥牌、赌博中的胜负问题, 人们对博弈局势的把握只停留在经验上,没有向理论化发展, 正式发展成一门学科则是在20世纪初。1928年冯· 诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。 1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《 博弈论与经济行为》 将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域, 从而奠定了这一学科的基础和理论体系。 谈到博弈论就不能忽略博弈论天才纳什,纳什的开创性论文《 n人博弈的均衡点》(1950),《非合作博弈》(1951) 等等,给出了纳什均衡的概念和均衡存在定理。 此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。 今天博弈论已发展成一门较完善的的学科。 博弈论的基本概念 博弈要素 (1)局中人:在一场竞赛或博弈中, 每一个有决策权的参与者成为一个局中人。 只有两个局中人的博弈现象称为“两人博弈”, 而多于两个局中人的博弈称为 “多人博弈”。 (2)策略:一局博弈中, 每个局中人都有选择实际可行的完整的行动方案, 即方案不是某阶段的行动方案,而是指导整个行动的一个方案, 一个局中人的一个可行的自始至终全局筹划的一个行动方案, 称为这个局中人的一个策略。 如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈” ,否则称为“无限博弈”。 (3)得失:一局博弈结局时的结果称为得失。 每个局中人在一局博弈结束时的得失, 不仅与该局中人自身所选择的策略有关, 而且与全局中人所取定的一组策略有关。所以, 一局博弈结束时每个局中人的“得失” 是全体局中人所取定的一组策略的函数,通常称为支付( payoff)函数。 (4)对于博弈参与者来说,存在着一博弈结果 (5)博弈涉及到均衡:均衡是平衡的意思,在经济学中, 均衡意即相关量处于稳定值。在供求关系中, 某一商品市场如果在某一价格下, 想以此价格买此商品的人均能买到,而想卖的人均能卖出, 此时我们就说,该商品的供求达到了均衡。所谓纳什均衡, 它是一稳定的博弈结果。 纳什均衡(Nash Equilibrium):在一策略组合中, 所有的参与者面临这样一种情况,当其他人不改变策略时, 他此时的策略是最好的。也就是说, 此时如果他改变策略他的支付将会降低。在纳什均衡点上, 每一个理性的参与者都不会有单独改变策略的冲动。 纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“ 均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*, 局中人B也采取其最优策略b*,如果局中人仍采取b*, 而局中人A却采取另一种策略a, 那么局中人A的支付不会超过他采取原来的策略a*的支付。 这一结果对局中人B亦是如此。 这样,“均衡偶”的明确定义为:一对策略a*(属于策略集A) 和策略b*(属于策略集B)称之为均衡偶,对任一策略a( 属于策略集A)和策略b(属于策略集B),总有:偶对(a, b*)≤偶对(a*,b*)≤偶对(a*,b)。 对于非零和博弈也有如下定义:一对策略a*(属于策略集A) 和策略b*(属于策略集B)称为非零和博弈的均衡偶, 对任一策略a(属于策略集A)和策略b(属于策略集B),总有: 对局中人A的偶对(a, b*) ≤偶对(a*,b*);对局中人B的偶对(a*,b)≤偶对( a*,b*)。 有了上述定义,就立即得到纳什定理: 任何具有有限纯策略的二人博弈至少有一个均衡偶。 这一均衡偶就称为纳什均衡点。 纳什定理的严格证明要用到不动点理论, 不动点理论是经济均衡研究的主要工具。通俗地说, 寻找均衡点的存在性等价于找到博弈的不动点。 纳什均衡点概念提供了一种非常重要的分析手段, 使博弈论研究可以在一个博弈结构里寻找比较有意义的结果。 但纳什均衡点定义只局限于任何局中人不想单方面变换策略, 而忽视了其他局中人改变策略的可能性,因此,在很多情况下, 纳什均衡点的结论缺乏说服力,研究者们形象地称之为“ 天真可爱的纳什均衡点”。 塞尔顿(R·Selten) 在多个均衡中剔除一些按照一定规则不合理的均衡点, 从而形成了两个均衡的精炼概念: 子博弈完全均衡和颤抖的手完美均衡。 博弈的类型 (1)合作博弈——研究人们达成合作时如何分配合作得到的收益, 即收益分配问题。 (2)非合作博弈—— 研究人们在利益相互影响的局势中如何选决策使自己的收益最大, 即策略选择问题。 (3)完全信息不完全信息博弈: 参与者对所有参与者的策略空间及策略组合下的支付有充了解称为完 全信息;反之,则称为不完全信息。 (4)静态博弈和动态博弈 静态博弈:指参与者同时采取行动,或者尽管有先后顺序, 但后行动者不知道先行动者的策略。 动态博弈: 指双方的的行动有先后顺序并且后行动者可以知道先行动者的策略。 财产分配问题和夏普里值(Shapley value) 考虑这样一个合作博弈:a、b、c、投票决定如何分配100万, 他们分别拥有50%、40%、10%的权力,规则规定, 当超过50%的票认可了某种方案时才能通过。 那么如何分配才是合理的呢?按票力分配,a50万、b40万、 c10万c向a提出:a70万、b0、c30万b向a提出: a80万、b20万、c0…… 权力指数: 每个决策者在决策时的权力体现在他在形成的获胜联盟中的“ 关键加入者”的个数,这个“关键加入者” 的个数就被称为权利指数。 夏普里值:在各种可能的联盟次序下, 参与者对联盟的边际贡献之和除以各种可能的联盟组合。 次序abc acb bac bca cab cba 关键加入者 a c a c a b 由此计算出a,b,c的夏普里值分别为4/6,1/6,1/6 所以a,b,c应分别获得100万的2/3,1/6,1/6。 博弈论的意义 弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一 样,都是从复杂的现象中抽象出基本的元素, 对这些元素构成的数学模型进行分析, 而后逐步引入对其形势产影响的其他因素,从而分析其结果。 基于不同抽象水平,形成三种博弈表述方式,标准型、 扩展型和特征函数型利用这三种表述形式, 可以研究形形色色的问题。因此,它被称为“社会科学的数学” 从理论上讲,博弈论是研究理性的行动者相互作用的形式理论, 而实际上正深入到经济学、政治学、社会学等等, 被各门社会科学所应用。 博弈论是指某个个人或是组织,面对一定的环境条件, 在一定的规则约束下,依靠所掌握的信息, 从各自选择的行为或是策略进行选择并加以实施, 并从各自取得相应结果或收益的过程, 在经济学上博弈论是个非常重要的理论概念。 什么是博弈论?古语有云,世事如棋。生活中每个人如同棋手, 其每一个行为如同在一张看不见的棋盘上布一个子, 精明慎重的棋手们相互揣摩、相互牵制,人人争赢, 下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。 换句话说, 就是研究个体如何在错综复杂的相互影响中得出最合理的策略。 事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。 数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、 体系研究其规律及变化。这可不是件容易的事情, 以最简单的二人对弈为例,稍想一下便知此中大有玄妙: 若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法, 而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法, 乙当然也知道甲想到了他在想甲的想法… 面对如许重重迷雾,博弈论怎样着手分析解决问题, 怎样对作为现实归纳的抽象数学问题求出最优解、 从而为在理论上指导实践提供可能性呢? 现代博弈理论由匈牙利大数学家冯· 诺伊曼于20世纪20年代开始创立, 1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《 博弈论与经济行为》,标志着现代系统博弈理论的初步形成。 对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈-- 好比两个人下棋、或是打乒乓球, 一个人赢一着则另一个人必输一着,净获利为零。 在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则, 即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度 地失利,并据此最优化自己的对策,诺伊曼从数学上证明, 通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个“ 最小最大解” 。通过一定的线性运算, 竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤, 就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在于, 这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说, 这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。
zoemai0505
博弈论又被称为对策论(Game Theory),既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。
博弈论已经成为经济学的标准分析工具之一。在金融学、证券学、生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
博弈论[2] 是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。博弈论思想古已有之,中国古代的《孙子兵法》等著作就不仅是一部军事著作,而且算是最早的一部博弈论著作。博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
近代对于博弈论的研究,开始于策梅洛(Zermelo),波莱尔(Borel)及冯·诺依曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。此外,莱因哈德·泽尔腾、约翰·海萨尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的学科。
qianxiao1985
日常生活中的一切,均可从博弈得到解释,大到贸易战,小到今天早上你突然生病。可能你会认为,贸易争端用博弈论来分析是可以的,但对自己生病也可以用博弈论来理解就有点不可思议,因为自己就一个人,和谁进行游戏?实际上,并非只有一个人,还有一个叫做“自然”(Nature)的参与者。“自然”可以理解为无所不能的上帝,上帝现在有两种策略,让人生病或不生病。人一旦生病,就不得不根据生病的信息判断上帝的策略,然后采取对应的策略。上帝采取让人生病的策略,人就采取吃药的策略来对付;上帝采取不让人生病的策略,人就采取不予理睬的策略。这正是一场人和上帝进行博弈的游戏。“自然”是研究单人博弈的重要假定。再比如一个农夫种庄稼也是同自然进行博弈的一个过程。自然的策略可以是:天旱、多雨、风调雨顺。农夫对应的策略分别是:防旱、防涝、放心地休息。当然,“自然”究竟采用哪种策略并不确定,于是农夫只有根据经验判断或气象预报来确定自己的行动。如果估计今年的旱情较重,就可早做防旱准备;如果估计水情严重,就早做防涝准备;如果估计是风调雨顺,农夫就可以悠哉游哉了。生活中更多的游戏不是单人博弈,而是双人或多人的博弈。比如,某一天你觉得应该是你太太的生日,但又不能肯定:如果是太太的生日的话,你可以送一束花,太太会特别高兴;你不送花,太太会埋怨你忘了她的生日;如果不是太太的生日的话,你可以送太太一束花,太太感到意外的惊喜;你不送花,结果生活同往常一样。在这个博弈里,我们看到,“自然”可以有两种策略:确定今天是太太的生日或确定今天不是太太的生日,但不论“自然”采取何种策略,你的最好行动都是买花。夫妻吵架也是一场博弈。夫妻双方都有两种策略,强硬或软弱。博弈的可能结果有四种组合:夫强硬妻强硬、夫强硬妻软弱、夫软弱妻强硬、夫软弱妻软弱。根据生活的实际观察,夫软弱妻软弱是婚姻最稳定的一种,因为互相都不愿让对方受到伤害或感到难过,常常情愿自己让步。动物学的研究有相同的结论,性格温顺的雄鸟和雌鸟更能和睦相处,寿命也更长。夫强硬妻强硬是婚姻最不稳定的一种,大多数结局是负气离婚。夫强硬妻软弱和妻强硬夫软弱是最常见的一种,许多夫妻吵架都是这样,最后终归是一方让步,不是丈夫撤退到院子里点根烟,就是妻子避让到卧室里号啕大哭。在竞争激烈的商业界,博弈更为常见。比如两个空调厂家之间的价格战,双方都要判断对方是否降价来决定自己是否降价,显而易见,厂家之间的博弈目标就是尽可能获得最大的市场份额,赚取最多的收益。
1、首先访问WTO数据官网,选择要查找的数据。2、其次点击selection,接着选择“TradeProfiles”。3、最后查看viewprofiles即可。
比较容易发表论文的测绘类期刊有《测绘科学技术学报》、《遥感学报》、《地理科学进展》创、《地理与地理信息科学》。 1、《测绘科学技术学报》创于1984年,是由中国
食品安全、服务与管理的重要。没有范文。以下供参考,主要写一下主要的工作内容,如何努力工作,取得的成绩,最后提出一些合理化的建议或者新的努力方向。。。。。。。工作
博弈论(Game Theory),又称为对策论,或者赛局理论,应用数学的一个分支,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论。目前在生物学,经济学
一般论文都是200页A4纸左右,可不是在这里帮您写的,代写也得500元到2000元。这里只能告诉你论文思路。 论文一般由:名、作者、摘要、关键词、正文、参考文献