馋嘴鱼了乐
你先看韩家炜的那本《数据挖掘》,然后看一下几个会议的论文SIGKDDCIKMICDMPAKDD里面的论文都是比较好的,具体内容需要看你最后做的是什么问题,现在做recommendation(推荐)的比较多。
嘚啵嘚啵的sissi
因为要做独立研究,首先要避开所有重器材的方向,比如做深度学习你作为个人是刷不过集团军的--你没有那么多计算资源。大部分教科书都是分章节介绍内容,而章节在一定程度上前后独立。跨领域交叉往往比在特定领域创新要容易,这个思路特别适合独立研究者。还有一点就是新手独立发文,在单盲的情况下更容易被拒稿,增加1-2个共同作者有助于减轻这种偏见,原因非常明显就不赘述了。论文被拒稿是很常见的事情,作为独立新手就更无法避免了。独立研究最大的成就感来自于「独立」,在这个过程中,你会不断的怀疑自己甚至否定自己,这也是为什么我建议大家能有人一起同行。 做好论文导师也不容易究竟是怎么一回事,跟随我一起看看吧。
看这篇就够了!
我特别能理解提问者的感受,因为很多同学都可能有以下几个需求
1、毕业有论文要求,但老板帮助不大
2、虽然毕业无论文要求,但希望通过发表论文来提升自己的职场竞争力
3、希望通过做研究和发表来争取国外的博士机会
在明确了主题后,我们就可以把问题继续分解为三个子问题:
1.如何选题2.如何研究3.如何投稿
1、如何选题
第一点选择适合的研究方向是成功的一半,不要单纯因为兴趣而选定研究方向。因为要做独立研究,首先要避开所有重器材的方向,比如做深度学习你作为个人是刷不过集团军的--你没有那么多计算资源。
第二点就是选择适合自己的方向。大部分基础学科如数学、物理等都需要多年的知识积累以及导师指导,因为导师的轻轻一点就可以省掉了数天甚至数个月的瞎想。
选题的第三点就是要读几篇该领域的经典文章,试试水深。换句话说,就是看看自己能不能大概读懂,知识的空缺有多大,离能够独立成文还有多远。
如果某一领域的文章都有大量的公式推导且你的数学功底有限,那么就不建议选择这类方向。读综述文章一般也是个很好的思路,这样可以快速看到领域的边界,也有助于缩小选题范围。
当然,兴趣依然是一切的源头,也是能不断激励你的后盾。
总结来看,选题是一个平衡过程,是硬件资源+知识背景+个人兴趣的综合后的产物。其中任意一项如果是绝对短板的话,就很容易影响最后的产出。
综合要选择一个自己有兴趣,有一定的相关知识,资源要求不高,且写作水平和领域论文不会相差太远的方向。
2、如何研究
当我们有了一个适当的选题后,应该先读该领域的经典教科书或者综述文章。
我个人的经验是:一边读一边记下自己天马行空的点子,先不用想是否成熟,记下来再说。一边读一边看能不能和其他领域结合,比如用集成学习或是graph mining做推荐系统。
一边读一边缩小自己的选题范围,通过阅读了解自己更擅长在哪个(章节)主题上发力。
大部分教科书都是分章节介绍内容,而章节在一定程度上前后独立。因此你可以着重挑自己读着有趣的内容深入了解。
假设我们现在确定了一个小主题:如何利用「集成学习」来提升「推荐系统」的「鲁棒性」。
那么找到新的方向其实并不难,你需要:找到该领域常用的数据集(benchmark datasets),找到其他基线算法的实现(baseline algorithm implementation),一般在GitHub上搜索算法名就可以。可以找最近的相关论文的related works:来追踪领域进展。
找一本集成学习的教科书。第一步就是重现基准算法在常用数据集上的表现,这个将会是进行研究的重要参照物。如果某些基准算法没有现成的实现,你可以尝试着动手写一个--实现算法的过程往往就是找灵感改进的过程。
等以上步骤做完后,你就可以考虑如何用集成学习来改进推荐系统。这个时候就可以参考集成学习教科书,分析不同算法的优劣,找到哪些方法有助于提高鲁棒性,再应用到推荐系统上去。跨领域交叉往往比在特定领域创新要容易,这个思路特别适合独立研究者。
3、如何投稿
首先一般投稿有期刊和会议,期刊一般内容更加完善,但会议一般更加前沿,不同领域在意的不同。
期刊一般是单盲(即审稿人知道你的身份,而你不知道谁是审稿人)。会议可能是单盲、双盲甚至三盲(比如ICDM)。考虑到独立研究没有老板的背书,那么尽量避开单盲的投稿,因为你可能会从中吃亏。
第二点就是考虑审稿周期,大部分会议的审稿都在1-3个月内,而大部分期刊的第一轮意见都需要3个月以上才会出现。所以时间敏感的话,建议优先投会议,而非期刊。
另一个常见的操作是会议论文在发表后经过扩展(>30%)的新内容再重投期刊,可以同时兼顾时效性和完整性。
选择投稿渠道也是对于新手非常不友好的环节,建议多问问周围的资深人士。
这一切的前提都是你的英文足够好,这点是一切的前提。最佳情况还是要和别人合作,即使他们和你一样是新手也没关系,毕竟是人多力量大,心理上有个依靠。还有一点就是新手独立发文,在单盲的情况下更容易被拒稿,增加1-2个共同作者有助于减轻这种偏见,原因非常明显就不赘述了。
论文被拒稿是很常见的事情,作为独立新手就更无法避免了。
4、总结
理论上只要你方向选的合适,自身条件尚可,在坚持不懈的实验、写作、投稿、被拒、修改、重投后,总能慢慢走上正轨。如果幸运的话说不定还能在你的研究小领域打开一点局面,有一点知名度。
独立研究最大的成就感来自于「独立」,在这个过程中,你会不断的怀疑自己甚至否定自己,这也是为什么我建议大家能有人一起同行。
但当你有所推进时,比如发出了第一篇不错的文章,你会非常激动。
因为你完成了自己的博士入门训练,避开了民科式科研,在艰苦的环境中打开了一片局面,甚至还微微推动了科学发展。这比发表论文本身更有意义,你应该为自己感到自豪。
我是皇家学术大佬,会持续分享考研干货与科研知识与论文写作技巧等,欢迎大家多多专注!!!
馋猫儿星星
Computational visual media conference是清华大学图形学实验室主办的国际会议,是亚洲图形学学会的三大会议之一(另两个是Pacific Graphics和GMP)。Computational visual media conference会议每年投稿100-240篇,录取25-38篇,论文全部发表在期刊上,包括:CCF A类的IEEE TVCG,CCF B类的Graphical Models和JCST,以及同名的期刊《Computational visual media》,该刊EI收录,Scopus影响因子2.9,高于graphical models.值得投稿!
karenchao1983
《Tensorflow:实战Google深度学习框架》(郑泽宇)电子书网盘下载免费在线阅读
资源链接:
链接:
书名:Tensorflow:实战Google深度学习框架
作者:郑泽宇
豆瓣评分:8.0
出版社:电子工业出版社
出版年份:2017-2-10
页数:296
内容简介:
TensorFlow是谷歌2015年开源的主流深度学习框架,目前已在谷歌、优步(Uber)、京东、小米等科技公司广泛应用。《Tensorflow实战》为使用TensorFlow深度学习框架的入门参考书,旨在帮助读者以最快、最有效的方式上手TensorFlow和深度学习。书中省略了深度学习繁琐的数学模型推导,从实际应用问题出发,通过具体的TensorFlow样例程序介绍如何使用深度学习解决这些问题。《Tensorflow实战》包含了深度学习的入门知识和大量实践经验,是走进这个最新、最火的人工智能领域的首选参考书。
作者简介:
郑泽宇,现为才云科技(Caicloud.io)联合创始人、首席大数据科学家。针对分布式TensorFlow上手难、管理难、监控难、上线难等问题,他带领团队成功开发了国内首个成熟的分布式TensorFlow深度学习平台(TensorFlow as a Service)。基于此平台,才云大数据团队为安防、电商、金融、物流等多个行业提供有针对性的人工智能解决方案。归国创业之前,郑泽宇曾任美国谷歌高级工程师。从2013 年加入谷歌,郑泽宇作为主要技术人员参与并领导了多个大数据项目。由他提出并主导的产品聚类项目用于衔接谷歌购物和谷歌知识图谱(knowledge graph)数据,使得知识卡片形式的广告逐步取代传统的产品列表广告,开启了谷歌购物广告在搜索页面投递的新纪元。郑泽宇于2011年5月获得北京大学计算机学士学位,并荣获北京大学信息科学技术学院十佳优秀毕业论文、北京大学优秀毕业生。2013年5月获得美国 Carnegie Mellon University(CMU)大学计算机硕士学位,并获得西贝尔奖学金 (Siebel Scholarship)。郑泽宇在机器学习、人工智能领域有多年研究经验,并在SIGIR、SIGKDD、ACL、ICDM、ICWSM等顶级国际会议上发表多篇学术论文。
学术论文被接受了,不一定会发表你这一口人,他发表的一些内容,你们用了你的东西,不一定是全编发表你的东西
1、此行为侵犯了原作者的著作权人身权当中的发表权和财产权当中的署名权。2、我国著作权采取自动取得原则,即如无相反证明,在作品上署名的人为著作权人,著作权主体包括
会被发现的。论文已经被录用的话,在见刊的系统中是会有记录的,只不过是没有在见刊发表的论文,若在见刊发表之前再去投别的期刊的话,系统是会甄别出已经被录用的,是会被
1、方式不同 检索是指通过知网等网络学术平台,可以搜索到论文;收录是指论文被收录在学术专著当中,也可以是被学术平台收录;发表是指论文发表在学术期刊上。 2、载体
当文章被抄袭可以进行举报,但是非常的麻烦,你可以选择有原创保护的企鹅号发文,发现有抄袭的文章可以在后台一键发起投诉,非常方便。