老李重庆
背景介绍
阴离子交换膜燃料电池(AEMFCs)作为能量转换装置正在被深入研究。其中,阴离子交换膜(AEMs)的设计对于实现所需的AEMFCs功率输出和性能稳定性至关重要。离子从AEM的阴极到阳极,因此阴离子交换膜(AEMs)中的透过面(TP)传导路径,可作为氢氧根离子在电极之间传输短而有效的路径,能够提高燃料电池功率输出。
但当前的AEM通常具有随机分布且形状不规则的导电域,这些域易于产生各向同性电导率。为了提高TP电导率,电场和磁场已被用于在AEM中创建面向TP的结构,但性能提升幅度不大,能够通过开发同时具有磁响应性和具有阴离子导电能力的材料来规避。此外,碱稳定性对AEM也至关重要。
主要内容
鉴于此, 天津大学Michael D. Guiver教授和尹燕副教授 使用顺磁性二茂铁聚合物在磁场下制备TP取向的AEM。磁场诱导混合价态,从而实现更高的阴离子解离和增强的碱/氧化还原稳定性。
特别是,二茂铁阳离子磁响应性和阴离子电导率的结合提升了TP电导率。具体来说,本文合成了一种具有化学惰性主链的高分子量聚(乙烯基二茂铁)(PF),且PF上的配体交换激活烷基的取代基效应以提高稳定性,从而提供相应的配体交换的PF(LPF)。在PF或LPF中,从二茂铁到二茂铁的部分氧化(即电离)使混合价态聚合物具有适当的离子交换容量(IEC),以平衡令人满意的电导率和适当的溶胀/机械强度。部分电离的PF和LPF转化为氢氧化物形式,分别表示为PF-OH和LPF-OH。磁场下的溶液浇铸提供了TP取向的高导电 PF-OH和LPF-OH AEMs。
实验结果表明, 本文的AEM在95 的水中显示出160 mS cm-1 TP离子电导率,并且在95 的碱性溶液中4320小时内没有明显的离子电导率损失。由此组装的燃料电池80 和80%相对湿度的情况下实现737 mW cm-2的功率输出,在500 mA cm-2,120 和40%相对湿度的500小时下增加了3.9%的电压损失和2.2%的高频电阻的耐久性 。
相关论文以“ Magnetic-field-oriented mixed-valence-stabilized ferrocenium anion-exchange membranes for fuel cells ”为题发表在 Nature Energy 。
图文详情
图1. PF-OH和LPF-OH的合成
图2. 聚合物和膜样品的外观和光谱分析
图3. 膜表征
图4. 膜电导率和稳定性
图5. AEMFC评估
1000+电机企业通讯录+200份电驱动行业精华报告合集,新年福利包资料领取, 请关注或私信回复关键词 “888” 免费领取...
穿跑鞋的公主
要想在Nature 或者Science (以下简称NS)上发表文章,首先要对自己领域最近10年有哪些文章发表在这些刊物上,并进行分类。以氧化物燃料电池领域为例,在2002-2012年区间总共有8篇文章发表在这两个杂志上。如果你研究的小领域没有文章在NS或者Nature的子刊上,那说明杂志编辑认为你的领域不具有很广的关注度。同时,要分析是些什么样的突破发表在NS上。比如在这8篇文章,有6篇文章直接与燃料电池的阳极材料有关。这说明如果你能在阳极的研究中有所突破,存在在NS上发表的可能性。再进一步分析其细节,你会发现更多的规律。比如,燃料电池阳极的最主要的问题是碳氢燃料在高温下的裂解导致碳沉积和硫在镍表面吸附导致阳极硫中毒。早前的SN上的文章主要关注怎样防止在阳极上的碳沉积,在2006年首先出现了一个新的阳极材料同时有抗碳沉积和抗硫中毒。这篇文章给了我一个启发,说明现有的阳极材料必须能够同时解决这两个问题,才有可能在NS上出现。当然这也是合理的,因为碳氢燃料包含碳和硫。 当然,并不是说你知道这些趋势,你一定能够在这样上面有所突破,但是能够给你一个非常具有指引性的思路。比如说,当时我的研究课题是做电解质的,因为师兄毕业需要移交阳极的课题,我学习了一段时间。我把我所研究的新电解质去做阳极的抗硫测试,发现具有不可思议的抗硫性能。在我多次重复加以确认之后,我意识到了其重要性。其实当时有人建议说可以用这个结果在Advanced Materials上投一篇文章,但是在我分析这些年在SN上发表的氧化物燃料电池文章,我决定继续研究该阳极的抗碳沉积特性,然后进一步优化。这个做法非常重要,为后来冲击Science奠定了重要的基础。 二、系统性的设计实验 据我了解,很多最为关键或者突破的实验数据都是意外得到的,或者超过自己预期的 (当然也存在像Goodenough教授这种牛人能够从理论上设计材料)。当你获得比以前文献中更好的性能时,就要开始考虑怎么设计一系列系统的试验,以能够将来写出一篇有完整故事情节的文章。因为现在已经不是“酒香不怕巷子深”的年代了,除非你的结果能够改变人类的认知,否则都需要思考围绕该突破的实验设计。其工作量大约是一般长文的2~3倍。除了最为关键的4个图放在正文,其余的将放到补充材料里面。 实验该怎么设计才会对主编和审稿人的口味?当然不同领域有不同的文章结构。一个简单的方法就是你尽可能把自己领域中不同小方向在Journal of the American Chemical Society, Angewandte Chemie International Edition 和Advanced Materials 上面的文章综合起来。比如,这些杂志上有专注于合成的、有专注于表征的或者专注机理理解的文章。你如果能够把这些文章的最有特色的东西有机的糅合在一起,你的文章就已经高于这些杂志的档次了。以催化和表面化学为例,SN上的实验设计思路一般来说就是一个比较新颖的纳米结构,比较高档的表征(如STM或同步辐射)、优异的性能和分子动力学的理论计算。如果你去详细比较SN上某一篇文章每一小部分和JACS上类似的的全文,你会发现其实JACS上的水平更专。根据这个思路,你就可以设计完整的实验,寻找合作对象,相互促进,最终达到一个完美的实验结论。我的那篇Nature Communications 就是以这种思路设计的。当时需要对我们现有性能的理论解释,我们寻求了与布鲁克海文国家实验室的合作。他们给我们提供了很好的思路,继续优化实验,与他们的理论达到了较好的融合。虽然在投Nature主刊40多天后被拒,但是审稿人对实验设计非常肯定:This paper has really nice science;The science is top notch等等。这篇文章本身的实验结果没有我Science上那篇文章的突破大,但是好的实验设计让这篇文章被子刊接受。 三、撰写完整且吸引人的文章 当你做完大部分实验或计算之后,就要开始着手写论文了。对于Natured子刊、JACS和Advanced Materials这类杂志来说,论文撰写的重要性我觉得至少占40%。也就是说如果你能够切入一个非常有吸引力的角度,你可以让你的实验结果发到更好的杂志。对于NS来说,我觉得实验的设计更为重要。如何能够写好一篇文章,我认为首先应该抛弃两个错误的看法。第一:不要鄙视烂的结果都能够发在好杂志上。你需要思考如果你拿这些数据能够把文章写成怎样。你要学习你没有想到的“点”。比如说,性能可能并没有非常突出,但是他/她提出了一个非常有启发性的假设。第二:不要认为审稿人误会你的评语愚蠢。我知道审稿人在审阅时(包括我在审Advanced Materials时)速度是非常快的。如果一个领域的评审人在短时间内都没有看出你的创新点,说明你没有表达清楚。我经常听到有人抱怨“我这篇文章其实和以前不一样,审稿人却认为没有新东西”或者“我的性能明显要比别人的文章好,不知道为什么审稿人没有注意到”等等。出现这种情况后,要重新审视自己的文章。思考怎样写别人不会忽视我的重点,怎样写不会让人误解。一个小窍门是让你的同学(大方向一致但不是一个小领域的)快速浏览一下你的文章,让他指出不确定的东西,然后加以改正。 我觉得写文章最重要也最难写的就是Introduction。这是审稿人看得比较认真而且容易理解的部分。而且我发现一个规律,越好的杂志,审稿人越喜欢攻击introduction。可能是因为你的实验设计已经很好,不太容易有问题。但是对于introduction,审稿人却非常容易下手。比如这篇文章没有新意,或者你在introduction提到的问题,在正文中没有解决等等。在读好文章时一定要学习他们在组织introduction时的思路。其次,一定要有一个吸引人的标题。不要过于中立。我以前投一篇文章的时候,刚开始拟定为Sulfur Poisoning Behavior of .。后来偶然看到Berkeley物理系的一片不相干的文章,用了New Insights into ..。我就把这个模式套用到我的文章上,我导师认为这个标题立马让文章档次提高。我的一个经验,经常收集那些好文章的title (不需要局限你的领域),以备将来时灵活运用。至于正文,只要围绕你的Introduction,反复强调你的创新性(一定要“反复”,因为审稿人会忽视),一般没有什么问题。另外,因为审稿人是带着寻找问题的模式去评判文章的,所以在正文中的每一句话不要过度发散,否则很容易招致不严谨或者补充数据的评语。 后记:这三个部分分享了很多关于提升自己成果的经验,但是大家不要进入一个误区:为了发文章而做实验。 发牛文更多是因为你的研究热情和辛勤付出,因为科研成果的内核还是你能否真正解决前人未能解决的问题。当然,从营销学角度,我们去探寻并运用这些规律也是无可厚非的。
紫竹幽阁Nina
燃料电池的演化及发展探析摘要:对燃料电池的工作原理进行了详细的分析;对其演化过程进行了简述;对其最新技术进行了详细的研究;对国内燃料电池技术的发展提供了参考意见。关键词:燃料电池;碱性燃料电池;磷酸型燃料电池;熔融碳酸型燃料电池;固体氧化物燃料电池;直接醇类燃料电池;固体高分子膜燃料电池随着工业化过程的进一步加强,大气中二氧化碳的排放量和污染程度加剧,导致了温室效应越来越明显,因此环保问题引起了各国政府的重视。为此,绿色能源技术引起了各国的普遍关注,并且正在逐步成为一种趋势。经过了各方的互相协作和努力,燃料电池技术正日趋成熟。作为一项重要技术,从本质上讲,它是一种电化学的发电装置,等温地按电化学方式,直接将化学能转化为电能而不必经过热机过程,不受卡诺循环限制,因而能量转化效率高,且无噪音,无污染,因此正在成为理想的替代能源。1 燃料电池的演化过程1.1 燃料电池的演化过程燃料电池是一种新型的无污染、高效率汽车、游艇动力和发电设备,在本质上是一种能量转化装置。1839年,格罗夫发表了第一篇有关燃料电池研究的报告。1889年,蒙德和朗格尔采用了浸有电解质的多孔非传导材料为电池隔膜,一铂黑为电催化剂,以钻孔的铂或金片为电流收集器组装出燃料电池。但此后的一段时间里,奥斯卡尔德等人在探索燃料电池发电过程的实验都因为反映速度太慢而使实验没有成功。与此同时,热机研究却取得了突破性进展并成功运用而迅速发展。因此燃料电池技术在数十年内没能取得大的进展。直到1923年,由施密特提出了多孔气体扩散电极的概念,在此基础上,培根提出了双孔结构电池概念,并成功开发出中温度培根型碱性燃料电池。以此为基础,经过一系列发展,这项燃料电池技术得到了突飞猛进的发展。在20世纪60年代由普拉特一惠特尼公司研制出的燃料电池系统,并成功应用于宇航飞行,使得燃料电池进入了应用阶段。1.2 燃料电池的基本工作原理燃料电池是一种能量转化装置,它就是按电化学原理,即原电池工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。从本质上说是水电解的一个“逆”装置。电解水过程中,通过外加电源将水电解,产生氢和氧;而在燃料电池中,则是氢和氧通过电化学反应生成水,并释放出电能。因此,燃料电池的基本结构与电解水装置是相类似的,它主要由4部分组成,即阳极、阴极、电解质和外部电路。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,目的是用来加速电极上发生的电化学反应。两极之间是电解质,电解质可分为碱性型、磷酸型、固体氧化物型、熔融碳酸盐型和质子交换膜型等类型。燃料电池的工作原理如下(以磷酸型或质子交换膜型为例):(1)氢气通过管道或导气板到达阳极;(2)在阳极催化剂的作用下,1个氢分子解离为2个氢离子,即质子,并释放出2个电子;(3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极;(4)在阴极催化剂的作用下,氧与氢离子和电子发生反应生成水;与此同时,电子在外电路的连接下形成电流,通过适当连接可以向负载输出电能。1.3 燃料电池的特点由上所述可知,燃料电池在本质上是电化学转化装置,它能够通过电化学过程直接将化学能转化为电能和热能,因而具有如下优点:1)干净清洁。利于环保,可减少二氧化碳的排放;无噪音,并自给供水;2)高效。由于其转化过程没有经过热机过程,因此效率高。3)适用性。由于污染小,无噪音,可靠,可使用于终端用户,因而可减少各种损失,并节省设备投资。4)可调制性。由于它是组合的结构,因而可以调节,以满足需求。5)燃料多样性。由于燃料可以是氢气、天然气、煤气、沼气的功能碳氢化合物燃料。基于以上特点。燃料电池成为绿色能源技术发展的重点。成为本世纪最有发展前途的技术之一。2 国内外燃料电池的最新进展2.1 碱性燃料电池(AFC)AFC技术是第一代燃料电池技术,已经在20世纪60年代就成功地应用于航天飞行领域。它是最早开发的燃料电池技术。目前德国一家公司开发的AFC在潜艇动力实验上获得了成功。国内对AFC的研究工作是从20世纪60年代开始的,主要是集中在中科院的下属研究机构。武汉大学和中科院长春应化所在上世纪60年代中期即开始对AFC进行基础研究。上世纪70年代,由于航天工业的需求,天津电源研究所研制出lkW AFX2系统。与此同时,A型号(即以纯氢、纯氧为燃料和氧化剂)、B型号(即以N2H4分解气、空气氧为燃料和氧化剂)燃料电池系统也在中科院大连化物所研制成功。此外,其它的研究机构也都展开了对AFC的研究。2.2 磷酸型燃料电池(PAFC)PAFC也是第一代燃料电池技术,也是目前最为成熟的应用技术。已经进入了商业化应用和批量生产。目前美国、日本、欧洲各国已有100多台200KW 发电机组投入使用或在安装中,最长的已经运行了37000小时。因此已经证实了PAFC是高度可靠的电源。只是由于其成本太高,目前只能作为区域性电站来现场供电、供热。国内对PAFC的研究工作相对较少。尽管如此,在对PAFC的研究过程中仍进行了卓有成效的工作,取得了不俗成绩。如国内学者魏子栋等人在对氧化还原发应的电催化剂研究过程中发现了Fe、Co对Pt的锚定效应。2.3 熔融碳酸型燃料电池(MCF℃)MCFC是属于第二代燃料电池技术。目前对MCF℃ 的研究国家有美国、日本和西欧,主要是应用于设备发电,目前还处于试验阶段。美国对MCFC的研究单位有国际燃料电池公司和能源研究公司及M—C动力公司。而日本对MCFC的主要是NEIX)公司、电力公司、煤气公司和机电设备厂商组成的MCFC研究开发组。大坂工业技术研究所从1991年开始10kW的MCFC单电池的长期运行试验,到1995年l1月止,累计运行了4万小时,确证了MCFC实用化的可能。德国MTU宣布在MCFC技术方面取得了突破。由该公司开发出来的世界上最大的280kW 的单电池还在运行。国内对MCFC的研究是中科院大连化物所从1993年开始的。现在正处于组合电池的研究阶段。而经过多年的艰苦努力与创新突破,上海交通大学科研人员率先在国内成功进行了1~1.5l 的熔融碳酸型燃料电池(M ℃)发电实验,取得了在国外一些国家至少需要6年甚至10年左右时间才能获得的成果。参加项目评审的专家认为,它整体水平达到了当前国内领先水平、国际20世纪90年代初同类技术的先进水平。2.4 质子交换膜型燃料电池系统(PEMF℃)PEMFC是属于第三代燃料电池技术。20世纪60年代,美国就已将PEMFC应用于宇航飞行,但由于技术问题,使得在其发展过程中受到了影响。直到20世纪80年代,加拿大Ballad公司才展开对PEMFC的研究工作。并取得了突破性进展。目前开发出来的电池组合功率达到了1000W/L、700W/kg的指标,因此这一技术引起了各国的广泛关注。目前Ballad公司在这一技术领域处于领先地位。国内对PEMFC的研究是从20世纪70年代天津电源研究所展开一聚苯乙烯蟥酸膜为电解质的PEM—FC基础研究。但进展缓慢。而国外在这一领域发展较快。因此在90年代开展了PEMFC的跟踪研究。目前,在PEM 方面,国内技术在多个方面取得了突破,北京富原新技术开发总公司已出现了50W、75W、150W、5KW 等样机。而上海神力科技有限公司已研制出5KW,10KW 的大功率型质子交换墨燃料电池系统,这大大缩小了与世界先进水平的距离。
节能发电调度下电厂的经营思路与策略探析论文 摘要:节能发电调度可以最大限度地减少能源、资源消耗和污染物排放,因此,应对调度方式的变化创新管理机制,通过大力推进全
具体篇数和贵单位有关,每一个单位都有不同。一般论文在3000-4000字刊物要求也和贵单位有关一般情况下是合法正规刊物,万方知网全文收录的学术期刊《科技传播》杂
《燃料化学学报》投稿须知 《燃料化学学报》是由中国科学院主管、中国化学会和中国科学院山西煤炭化学研究所主办,主要刊载国内外燃料化学基础研究及其相关领域的最新研究
电力已成为现代化工业国家的基础性产业。尽管中国经济正处在工业化进程之中,中国电力行业的发展自建国以来一直受到政府的高度重视。下文是我为大家搜集整理的关于电力工技
背景介绍 阴离子交换膜燃料电池(AEMFCs)作为能量转换装置正在被深入研究。其中,阴离子交换膜(AEMs)的设计对于实现所需的AEMFCs功率输出和性能稳定性