.笛卡儿的坐标系不同于一个一般的定理,也不同于一段一般的数学理论,它是一种思想方法和技艺,它使整个数学发生了崭新的变化,它使笛卡儿成为了当之无愧的现代数学的创始人之一。
笛卡儿是十七世纪法国杰出的哲学家,是近代生物学的奠基人,是当时第一流的物理学家,并不是专业的数学家。
笛卡儿的父亲是一位律师。当他八岁的时候,他父亲把他送入了一所教会学校,他十六岁离开该校,后进入普瓦界大学学习,二十岁毕业后去巴黎当律师。他于1617年进入军队。在军队服役的九年中,他一直利用业余时间研究数学。后来他回到巴黎,为望远镜的威力所激动,闭门钻研光学仪器的理论与构造,同时研究哲学问题。他于1682年移居荷兰,得到较为安静自由的学术环境,在那里住了二十年,完成了他的许多重要著作,如《思想的指导法则》、《世界体系》、《更好地指导推理和寻求科学真理的方法论》(包括三个著名的附录:《几何》、《折光》和《陨星》),还有《哲学原理》和《音乐概要》等。其中《几何》这一附录,是笛卡儿写过的唯一本数学书,其中清楚地反映了他关于坐标几何和代数的思想。笛卡儿于1649年被邀请去瑞典作女皇的教师。斯德哥尔摩的严冬对笛卡儿虚弱的身体产生了极坏的影响,笛卡儿于1650年2月患了肺炎,得病十天便与世长辞了。他逝世于1650年2月11日,差一个月零三周没活到54岁。
笛卡儿虽然从小就喜欢数学,但他真正自信自己有数学才能并开始认真用心研究数学却是因为一次偶然的机缘。
那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。
笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:
有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。
在法国生活了若干年之后,他为了把自己对事物的见解用书面形式陈述出来,他又离开了带有宗教偏见和世俗的专制政体的法国,回到了可爱而好客的荷兰,甚至于和海盗的冲突也抹然不了他对荷兰的美好回忆。正是在荷兰,笛卡儿完成了他的《几何》。此著作不长,但堪称几何著作中的珍宝。
笛卡儿在斯德哥尔摩逝世十六年后,他的骨灰被转送回巴黎。开始时安放在巴维尔教堂,1667年被移放到法国伟人们的墓地--神圣的巴黎的保卫者们和名人的公墓。法国许多杰出的学者都在那里找到了自己最后的归宿。
数学之父—泰勒斯(Thales)
泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
在泰勒斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而泰勒斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,主要是一些由经验中总结出来的计算公式。泰勒斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,泰勒斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以泰勒斯素有数学之父的尊称,原因就在这里。
泰勒斯最先证明了如下的定理:
泰勒斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,泰勒斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,泰勒斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前泰勒斯曾对Delians预言此事。 泰勒斯的墓碑上列有这样一段题辞:「这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。」
祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。
祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在与之间。并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。
数学家的故事——苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心
望采纳!
新颖的数学论文题目有:
1、数学模型在解决实际问题中的作用。
2、中学数学中不等式的证明。
3、组合数学与中学数学。
4、构造方法在数学解题中的应用。
5、高中新教材中数学教学方法探讨。
6、组合数学恒等式的证明方法。
7、浅谈中学数学教育。
8、浅谈中学不等式的几何证明方法。
9、数学教育中学生创造性思维能力的培养。
10、高等数学在初等数学中的应用。
11、向量在几何中的应用。
12、情境认识在数学教学中的应用。
13、高中数学应用题的编制和一些解题方法。
14、浅谈反证法在中学教学中的应用。
15、探索证明线段相等的方法。
16、几个带参数的二阶边界值问题的正解的存在性研究。
17、关于丢番图方程1+x+y=z的一类特殊情况的研究。
18、变限积分函数的性质及应用。
19、有限集上函数的迭代及其应用。
20、小学课堂环境改着的行动研究。
21、网络环境下小学数学主题教学模式应用研究。
22、培养小学生数学学习兴趣的教学策略研究。
23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。
24、小学生数学创新思维的培养。
25、促进小学生数学课堂参与的数学策略研究。
26、使学生真正成为学习的主人。
27、改革课堂教学的着力点。
28、谈素质教育在小学数学教学中的实施。
29、素质教育与小学数学教育改革。
30、浅谈学生数学思维能力的培养。
数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门学科。下面学术堂整理了一部分数学论文题目供大家参考。1、数学模型在解决实际问题中的作用2、中学数学中不等式的证明3、组合数学与中学数学4、构造方法在数学解题中的应用5、高中新教材中数学教学方法探讨6、组合数学恒等式的证明方法7、浅谈中学数学教育8、浅谈中学不等式的几何证明方法9、数学教育中学生创造性思维能力的培养10、高等数学在初等数学中的应用11、向量在几何中的应用12、情境认识在数学教学中的应用13、高中数学应用题的编制和一些解题方法14、浅谈反证法在中学教学中的应用15、探索证明线段相等的方法
如果你看那些新有趣的数学论文小课题,有一些预言引发所有的数学考思考的话,可以这样去学一些知识的一些杂文,可以把题目写出来。
我有一本书电子版的 《数学的美》吴振奎 写的,次数比较系统介绍数学美。徐利治先生的书也不错 我的毕业论文题目是:数学奇异美现在正在写着呢。不要忘记给我加分
趣味数学故事:
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
数学分支
1、数学史
2、数理逻辑与数学基础
a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。
3、数论
a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。
.笛卡儿的坐标系不同于一个一般的定理,也不同于一段一般的数学理论,它是一种思想方法和技艺,它使整个数学发生了崭新的变化,它使笛卡儿成为了当之无愧的现代数学的创始人之一。
笛卡儿是十七世纪法国杰出的哲学家,是近代生物学的奠基人,是当时第一流的物理学家,并不是专业的数学家。
笛卡儿的父亲是一位律师。当他八岁的时候,他父亲把他送入了一所教会学校,他十六岁离开该校,后进入普瓦界大学学习,二十岁毕业后去巴黎当律师。他于1617年进入军队。在军队服役的九年中,他一直利用业余时间研究数学。后来他回到巴黎,为望远镜的威力所激动,闭门钻研光学仪器的理论与构造,同时研究哲学问题。他于1682年移居荷兰,得到较为安静自由的学术环境,在那里住了二十年,完成了他的许多重要著作,如《思想的指导法则》、《世界体系》、《更好地指导推理和寻求科学真理的方法论》(包括三个著名的附录:《几何》、《折光》和《陨星》),还有《哲学原理》和《音乐概要》等。其中《几何》这一附录,是笛卡儿写过的唯一本数学书,其中清楚地反映了他关于坐标几何和代数的思想。笛卡儿于1649年被邀请去瑞典作女皇的教师。斯德哥尔摩的严冬对笛卡儿虚弱的身体产生了极坏的影响,笛卡儿于1650年2月患了肺炎,得病十天便与世长辞了。他逝世于1650年2月11日,差一个月零三周没活到54岁。
笛卡儿虽然从小就喜欢数学,但他真正自信自己有数学才能并开始认真用心研究数学却是因为一次偶然的机缘。
那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。
笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:
有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。
在法国生活了若干年之后,他为了把自己对事物的见解用书面形式陈述出来,他又离开了带有宗教偏见和世俗的专制政体的法国,回到了可爱而好客的荷兰,甚至于和海盗的冲突也抹然不了他对荷兰的美好回忆。正是在荷兰,笛卡儿完成了他的《几何》。此著作不长,但堪称几何著作中的珍宝。
笛卡儿在斯德哥尔摩逝世十六年后,他的骨灰被转送回巴黎。开始时安放在巴维尔教堂,1667年被移放到法国伟人们的墓地--神圣的巴黎的保卫者们和名人的公墓。法国许多杰出的学者都在那里找到了自己最后的归宿。
数学之父—泰勒斯(Thales)
泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。
在泰勒斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而泰勒斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,主要是一些由经验中总结出来的计算公式。泰勒斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,泰勒斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以泰勒斯素有数学之父的尊称,原因就在这里。
泰勒斯最先证明了如下的定理:
泰勒斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,泰勒斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,泰勒斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前泰勒斯曾对Delians预言此事。 泰勒斯的墓碑上列有这样一段题辞:「这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。」
祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。
祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在与之间。并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。
数学家的故事——苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心
望采纳!
去论文拼凑一个吧 这类的论文比较少,主要是学的人比较少。
“兴趣是最好的老师”,怎样调动起学生学习数学的兴趣,对学生掌握数学知识起著至关重要的作用。下文是我为大家整理的,欢迎阅读! 篇一:小学数学趣味课堂的构建 一、故事激趣 小学生喜欢听故事。数学教学中可以根据学生爱听故事的特点,将故事情节融入数学教学,有效激发学生的兴趣,增强学生对数学问题的探究动力。例如,在讲解《三角形》一节内容时,教师给学生讲述了这样一个故事:喜羊羊得到了三根精美的条形金属,她想用三根金属条制作一面镜子。但是她将三个金属条摆来摆去就是摆不成一个完整的三角形。大家能不能给喜羊羊一个满意的解释?通过故事激趣,学生动手,从而得出:三角形任意两边之和大于第三边,任意两边之差小于第三边的结论。通过故事引领,学生动手操作、探究,激活了学生思维,提高了学生动手解决问题的能力。 二、游戏激趣 爱玩游戏是小学生的天性,在小学数学课堂中引入游戏,能激发学生的探究积极性,延长学生的有意注意时间,取得更好的教学效果。例如,在学习《角的认识》时,教师让学生用纸张做折角的游戏,一次、两次反复对折,启发学生观察角有哪些特点?在原角的基础上对折一次只有两个角吗?再如,教学“年、月、日”这节内容,为了巩固所学知识,在教学将要结束的时候,教师引入游戏:让一个同学报月份,如果报出的是大月,同学们要快速举左手,如果报出的是小月,同学们快速举右手,如果报的是二月,两只手都要举起。同学们都踊跃地参与到游戏中。通过游戏可以强化思维训练,使学生对所学知识加深理解。 三、媒体激趣 小学生的抽象思维还不发达,他们多以形象思维认识与理解问题。在小学数学教学中可以利用多媒体形象逼真的特点,直观呈现知识之间的联络,使复杂的内容简单化,使静态的内容动态化,符合学生形象思维较为发达的特点,可以有效激发学生兴趣,提高数学教学效果。例如在教学“对称、平移和旋转”一节时,如果只凭教师的讲解,或者只让学生观看静态的图画,学生就会感觉到枯燥乏味,教学效果就会大打折扣。因此,笔者在教学中利用多媒体技术展示了图形平移与旋转的动态过程,学生饶有兴趣地观看图片的演变与移动,对知识就有了直观形象的认识,通过形象的展示也使学生感觉知识简单、容易掌握。多媒体还在视觉上给学生以图文并茂的美感 *** ,有效地延长了学生的有意注意时间,激发了学生的学习兴趣。学生在观察中,提高了分析问题与解决问题的能力,有效达成了课堂教学目标。 四、评价激趣 心理学研究表明:人的内心最深层次的要求,就是得到别人的欣赏与认可。对思维活跃、表现欲望强的小学生来说,在学习中更需要教师的鼓励与肯定。教师在教学中要注意发现学生的优点与进步,及时给予肯定与鼓励,通过对学生学习过程的评价,激发学生的学习兴趣与信心。例如对于表现优秀的学生可以说:“你真棒,你思考问题的角度是独特的,这种解法老师也没有想到”,对努力学习有进步的学生可以这样评价:“你的学习比以前有了很大进步,继续努力,老师相信你会更好”,对学习暂时困难的学生,教师应该给予一个温暖鼓励的眼神、一次肩头的抚摸,可以对其这样进行评价:“没有关系,虽然你没有答对问题,但是老师同学们都欣赏你的勇气。”教师的激励是学生学习兴趣的催化剂,学生会在心中燃起克服困难、力争上游的火焰。 五、活动激趣 小学生活泼好动,他们适合在“动”中获取知识与体验,教师根据教学内容,开展课堂数学活动,可以有效激发学生参与的热情与兴趣,提升教学效果。例如学习“加减法”这部分内容时,教师引领学生在课堂开展了“小小超市”数学活动,学生将教室布置成超市格局,学生们分别扮演售货员与购物的顾客,到超市进行购物。在购物中会直接涉及到加减法的运算,顾客和售货员可以相互交流,讨论付钱多少及应该找零多少等问题。因为超市购物是学生在生活中经常遇到的情境,学生们对活动感到亲切,兴致盎然地参与活动。在活动中计算,在活动中踊跃交流,在活动中发现问题,在活动中掌握与巩固了知识。总之,小学数学教学应该以激发学生的兴趣为中心,使学生学习数学的兴趣变为深入探究问题的动力,在趣中学,在乐中研,在潜移默化中完成对数学知识的构建。教师要根据学生的特点创设趣味浓厚的情境,采取各种措施,激发学生兴趣,挖掘学生潜能,促进学生数学能力与素质的不断提高。 作者:汪玲玲 单位:江苏省南京市六合区程桥中心小学 篇二:初中数学趣味教学研究 一、设计有效性汇入,提高学生的兴趣 课堂汇入是课堂教学的重要环节。俗话说得好:“良好的开端是成功的一半。”我们要认识到课堂汇入的重要意义,采用行之有效的汇入手段,以吸引学生的注意力,激发学生的学习兴趣。在汇入环节,教师可以采用直接汇入法。所谓“直接汇入法”,就是一上课就将要解决的问题直接提出来。例如,在教学“切割定理”时,教师可以先将定理的内容写在黑板上,引导学生分清楚其中的已知和求证,然后由师生共同证明定理的形成过程;还可采用“强调式汇入法”,即针对学生有意义的事物比较感兴趣的特点,在上课伊始就阐述本节课重要意义的一种汇入方式。例如“,三角形”这一部分就是平面几何的重点“,圆”是平面几何重点中的重点,在中考试题中占据非常重要的地位,也是学生未来学习和深造的基础。为此,教师在教学之前,可以将这两部分的重要性介绍给学生,以引起学生的重视。 二、利用现代手段,激发学习兴趣 多媒体技术图文并茂、声形兼备,集声音、图片、视讯、动画于一体,能够为学生创设直观形象的教学情境,实现课堂教学的动静结合,化抽象为形象,化复杂为简单,化深奥为浅显,帮助学生理解学习内容,充分激发学生的学习兴趣。因此,教师要充分利用这一技术,增强学生的学习欲望。例如,在教学“图形的旋转”时,学生需要具备相应的空间感才能充分理解这一部分内容,教师可以利用多媒体进行展示,这样不但调动了学生的学习兴趣,而且提高了课堂教学效率。 三、完善评价机制,提高学生的积极性 受应试教育的影响,在长期的教学活动中,学生成绩一直被作为衡量学生好坏的唯一标准,这样只注重成绩的好坏,而忽视学生学习过程的评价方式,势必对学生的学习态度和精神状态产生消极影响,造成好的学生更好、差的学生更差的恶性回圈。因此,教师要积极完善评价机制,注重发展性和鼓励性评价,将学生的学习态度和平时的表现情况纳入考核标准中,多一些鼓励,少一些批评,让学生看到自己的闪光点,增强学生的自信心,引导学生自我控制、自我调节学习的情绪,提高学生学习的积极性。总之,只有开展趣味教学才能减轻学生的心理负担,让学生自发投入学习活动中。否则,如果学生将学习当作一种负担和累赘,势必会影响学习效率。因此,我们要加强趣味教学,提高学生数学学习的兴趣,同时让学生的数学能力得到锻炼。 作者:姜辉 单位:重庆市酉阳县大溪初级中学校 篇三:高等数学趣味教学法思索 1上好绪论课 所谓“开门见山,山形几何”,第一节课是一门课程的开篇之言,是学生了解教材内容、教学目的、学习方法的“视窗”,它直观地在学生大脑中形成印象,对于激发学生的学习兴趣非常重要。所以第一节课怎样讲、讲什么、达到怎样教学目的等问题是值得我们来探讨的。教师可提出一些具有吸引力、与学生的知识有紧密联络而又暂时不能马上解答的问题,使学生一开始就对新知识产生浓厚的兴趣。 例如在新生入学后的第一次高等数学课上,教师可设定这样几个问题:1作变速直线运动的物体的瞬时速度如何求?2曲边梯形的面积,旋转体的体积以及外表面积如何求?这两个问题正是利用高等数学中的微分和积分来解决的,用现有的知识虽无法解决,然而学习高等数学后很快就会计算出来。学生一听,便产生了学习高等数学的浓厚兴趣。 2介绍数学家人物传记 在教学过程中将教学内容与典故进行有效的结合也是一种很好的方法。在教学过程中不失时机地向学生介绍相关数学家人物传记,对提高课程的趣味性、激发学生的学习兴趣能起到积极作用。例如《微积分》这节课程中,可以向学生讲述世界科学史上的一桩公案,即微积分到底是谁发明的,在欧洲大陆的学者归功于德国的莱布尼兹1646~1716,英伦三岛的学术界授誉于牛顿。激烈的争执甚至伤害了民族感情。最后判决:微积分是莱布尼兹和牛顿共同发明的,争执才得到公正的解决。再如《尤拉公式》一节中,可以向学生介绍天才数学家尤拉。 尤拉是一位牧师的儿子,1707年4月15日生于瑞士西北部城市巴塞尔Basel。尤拉在很多领域均有他独到的见解,一生发表论文886篇、论著47册,堪称数学界的莎士比亚。内容遍及微积分学、几何学、代数学、数论、概率论、光学、力学、天文学、统计学、财政学等诸多领域。尤拉活了76岁。他28岁瞎了一只眼,40多岁双目失明,这之后,靠自己口述、助手整理的方法发表论著。他的顽强毅力和才华横溢曾震惊世界。通过向学生介绍这些重要数学家的生平,提高课程的趣味性的同时,也对学生进行了一次良好的教育,鼓励学生刻苦钻研数学知识,为将来学习各类科学知识打下坚实的基础。 3借助计算机实施教学 教学中将传统教学与多媒体教学相互补充、相互融合,根据教学内容不同灵活选择教学方式。传统教学利用板书这种特有的教学方法是人们在长期的教育实践中保留下来的,它是任何别的手段不可替代的。多媒体教学是一种先进有效的教学手段,它具有直观、形象、资讯量大等优点。只有将传统教学与多媒体教学有效融合,才能帮助学生更好地汲取知识,培养他们的创新能力和思维能力。例如高等数学中的极限定义语言、中值定理、定积分概念、微元法、二次曲面、偏导数的几何意义、重积分的概念及计算等,都可绘制成二维或三维的静、动态图形,供教师在讲解时进行演示,可使教师一下子就能讲清平时要花好几倍的时间才能讲清楚的问题。再如旋转曲面课程,学生很难理解旋转后的图形形状,而利用多媒体,这个问题很容易就解决。 看过" "的还:
概率问题:一个国家有一条法律,死刑犯抽签(两个纸团)决定生死。一个正直的大臣,国王想借他的一次失望杀了他,于是让法官把两个纸团都换成“死”字的。法院上,大臣看着眼前的纸团一笑,一把夺过一个塞进嘴里。“你干什么?”法官走了下来。“就让我没抽到的这张决定我抽到的那个吧,如果这个是‘生’那我死,如果这个是‘死’那我活。”请问:大臣为什么这么自信。
如果你看那些新有趣的数学论文小课题,有一些预言引发所有的数学考思考的话,可以这样去学一些知识的一些杂文,可以把题目写出来。
趣味数学故事:
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
数学分支
1、数学史
2、数理逻辑与数学基础
a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。
3、数论
a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。
圆周率“π”的由来 很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今. π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法. 公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π 会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值. 公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到<π<.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜. 15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录. 1579年法国韦达发现了关系式 ...首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式. 1650年瓦里斯把π表示成元穷乘积的形式 稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式. 1671年,苏格兰数学家格列哥里发现了 1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法. 1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π,如果取 ,则该式化简为 1794年勒让德证明了π是无理数,即不可能用两个整数的比表示. 1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根. 本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字. 人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休…… 曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r�0�5,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r�0�5=9�0�5∏+6�0�5∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r�0�5=15�0�5∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
1.阅读能力差 往往沿用小学学法,死记硬背,囫囵吞枣,像浮萍溅水,一摇即落。根本谈不上领会理解,当然更谈不上应变和应用了。这严重制约了自学能力的发展。 2.听课方法差 抓不住要点,听不入门,顾此失彼,精力分散,越听越玄,如听天书。如此恶性循环,厌学情绪自然而生,听课效率更为低下。 3.思维品质差 常常固守小学算术中的思维定势,不善于分析、转化和作进一步的深入思考,以致思路狭窄、呆滞,不利于后继学习。 4. 识记方式单调 机械识记成份多,理解记忆成份少。对数学概念、公式、法则、定理,往往满足于记住结论,而不去理解它们的真正含义,不去弄清结论的来龙去脉,更不会数形结合,纵横联系,致使知识无法形成完整的知识网络。 5.表达能力差 格式混乱,表达不清。尤其是几何解证,对三种语言(图形语言、符号语言、文字语言)不能融会贯通、相互转换、作图失准、条理不清,缺乏数学应有的严谨、逻辑性、条理性。 6.畏难情绪严重 一遇难题(综合性强、灵活性大的题)便不问津,或互相抄袭,应付了事。
圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。在数学中我们通常根据定义,通常用圆规来画圆。 圆,是一个看来简单,实际上是十分奇妙的形状。古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 在占有材料相同的情况下,圆形具有最大的面积。几何学告诉我们,这时圆的面积比其他任何形状的面积都来得大,如果有相同数量的材料希望做成容积最大的东西,当然圆形是最合适的了。自来水管、煤气管等,就是对这一自然现象的仿造。
“圜,一中同长也!”在古时人们对于圆的认识主要是圆心到圆上距离相等,从而做成了车轮等物品,而今圆已成为我们生活中必不可少的模具,人们广泛运用的东西大多由圆构成。毕达哥拉斯说过,一切立体图形中最美的是球形,一切平面图形中最美的是圆形。由此可见
汉语言文学论文的题目有哪些呢?下文是我为大家整理的关于汉语言文学论文题目的范文,欢迎大家阅读参考!
1.著名作家作品语言运作特色的研究
2.讽刺语言中的文化底蕴
3.语法中的语义因素
4.“是”字用法研究
5.语用与语法的关系
6.新兴词缀研究
7.祈非主谓句的修辞作用
8.论动词重叠式的使用条件
9.论句群纳入中学语文教学的实用意义
10.新兴辞格研究
11.语言环境对句式选择的制约作用
12.××方言(包括语音、词汇、语法等部分)
13.××方言现象专题报告
14.代词的语用研究
15.语言副词的语用研究
16.助动词的语用研究
17.时下新词描写
18.句型的语用研究
19.语气词的语用研究
20.言语行为在句子里的表现
1.论小说的叙述视角
2.论小说的误乐性
3.心态小说的 艺术魅力
4.论现代小说性情节结构类型
5.论小说的新典型观
6.论小说语言的创新
7.论小说的写作技巧
8.论广告辞的审美特性
9.从报告文学的轰动效应探视读者的审美要求
10.试论新时期女性散文的艺术特色
11.试论毕淑敏小说的创作特色
12.试论诗歌中意象的类型与特征
13.论鲁迅小说对人物灵魂的深刻穿透力
14.试论当今散文的 发展走向
15.论小说中的意识流手法
16.试论新时期散文创作的艺术特色
17.论新闻文体的审美特质
18.试论新闻写作的真实性
19.论想象在文学创作中的功用
20.试谈散文笔法的多元化趋势
21.论新时期散文的艺术嬗变
22.任选当今一个散文作家的作品进行评论
23.任选当今一个小说作家的作品进行论述
24.论散文的“自叙体”色彩
25. 论文学语言的审美特性
26.试论王蒙小说的艺术特色
27.试论王安忆小说的艺术特色
28.论文学人物性格的立体结构
29.意识流写法的魅力
30.任选当今一个诗人的作品进行论述
1. 论 艺术真实
2. 论文艺欣赏中的心理距离
3.文艺欣赏中的共鸣与沟通
4.论艺术直觉
5. 论艺术虚构
6.论典型
7.文学流派在艺术创作中的意义
8.简论文学作品形式的独立审美特征
9.新时期文学 发展与典型内涵的新变化
10.新时期诗歌审美特点的新变化
11. 论当代 中国的大众文化
12.论艺术创作的通感与错位
13.论审美变形
14.论艺术想象在文学创作中的价值
15.论文艺作品可能产生的负面影响
学术堂整理了一部分古代文学论文题目,供大家参考:中国古代文学传播方式及其影响略论智慧的启迪:浅谈中国古代文学经典的现代价值武则天的人格与重要人际关系考论中国三大神话母题研究《聊斋志异》中的妒、悍妇群像研究《儒林外史》与科举制度研究唐传奇爱情小说中的女性形象研究媒介环境视域下文学创作的职业化之路--以晚清报人小说家为研究中心《淮南子》神话艺术解读唐代青楼题材小说研究近世京津词坛研究《盛京时报》小说研究明清小说与韩国汉文小说女将形象比较研究宋代出使文学研究唐前曹植接受史黄庭坚隐逸诗及其隐逸思想研究论楚辞《九歌》中的自然崇拜魏晋南北朝涉医文学研究明清小说"乡村描写"研究--以名者为中心牟氏家谱研究牟菲菲中国海洋大学陆游诗歌的地域文化研究--以绍兴、汉中为中心
古代文学不仅成就了一代代文人雅士,也缔造了中国五千年璀璨的文明史;不仅有着极高的文学欣赏价值,历代政治家、文学家、哲学家乃至普通人还源源不断地从中吸取营养,提高社会文明的步伐,提高个人的修养。下面是我带来的关于有关古代文学毕业论文选题的内容,欢迎阅读参考! 有关古代文学毕业论文选题(一) 1. 浅论《史记》的游侠精神 2. 论乌江流域民歌的思想内容和艺术价值 3. 论乌江流域竹枝词的思想内容和艺术价值 4. 论乌江流域古代贬谪文人的诗歌创作 5. 论乌江流域民间故事的思想内容和艺术价值 6. 乌江流域历代碑刻文学艺术价值略论 7. 论王维山水诗田园的诗情与画意的交融 8. 论李白诗歌与道家精神的关系 9. 杜甫夔州行迹及诗歌创作考论 10. 负重生活下的自我寻求——从杜甫诗歌看其性格 11. 杜甫成都诗与夔州诗的差异比较 12. 试论李清照的词学观及其创作 13. 浅谈苏辛词风之异同 14. 论苏轼的出世和入世 15. 论高适诗歌深沉悲凉的风格特色及其成因 16. 试论杜诗中的“哭”字诗 17. 试探陆游的“梅”情结 有关古代文学毕业论文选题(二) 1. 论李商隐爱情诗中的缺失性体验 2. 杜牧、李商隐咏史诗比较 3. 论李商隐诗歌创作中的内转倾向 4. 论宋元时期的李商隐研究 5. 论李贺诗歌的神秘美及其成因 6. 论禅修队苏轼词境的影响 7. 论宋元明清时期黄庭坚诗歌的传播 8. 苏轼、黄庭坚诗歌艺术特征比较 9. 论黄庭坚诗歌对杜甫诗歌的继承与创新 10. 论通俗小说的历史发展轨迹 11. 论《金瓶梅》中的民俗描写 12. 论李贽对明后期文学创作的影响 13. 元代少数民族作家研究 有关古代文学毕业论文选题(三) 1. 从乌台诗案探苏轼政治悲剧的根源 2. 论李商隐爱情诗中的朦胧意境 3. 李白、王昌龄七言绝句比较 4. 论李白诗歌中的英雄主义精神 5. 李白、李贺浪漫主义诗歌比较研究 6. 论李白诗歌的现实主义因素 7. 论李白的咏侠诗 8. 李白、苏轼的人生态度和诗风比较 9. 李白和杜甫对诗歌创作的贡献与影响比较研究 10. 李白诗歌中的自我形象及其演变 11. 李白浪漫主义诗风探源 12. 论尚侠思想对李白诗歌的影响 13. 杜甫夔州时期的诗歌创作及其审美观照 14. 论杜甫咏怀咏史诗的超前意识和批判精神 15. 论杜甫人文精神的构成要素 16. 论杜甫的律师成就 17. 论白居易的闲适精神及其思想根源 18. 论李商隐咏史诗对杜甫咏史诗的突破创新 猜你喜欢: 1. 古代文学论文题目 2. 古代文学论文选题方向 3. 古代文学毕业论文 4. 浅谈古代文学论文 5. 古代文学毕业论文范文