首页 > 学术论文知识库 > 中国石油地质研究论文

中国石油地质研究论文

发布时间:

中国石油地质研究论文

中国陆相石油地质理论的发展历程,与石油天然气勘探事业的发展密切相关,经过了一个探索、创立和日趋完善的过程。新中国成立之前,我国石油工业基础十分薄弱,石油地质理论主要是从国外引入,并根据传统的背斜说和地面油气显示找油。新中国成立后,石油工业进入一个蓬勃发展的崭新阶段,石油地质学理论体系也获得了不断充实和发展。与我国勘探事业发展阶段相对应,陆相石油地质学理论经历了20世纪50年代初创阶段、60~70年代勘探东移的快速发展阶段和80年代以来充实完善阶段。

(一)近代石油地质学理论的引入及陆相生油观点的提出

中国近代,伴随着石油地质勘探事业的发展,逐步从国外引入科学的石油地质学理论,主要是背斜油气聚集成藏理论及追踪油气苗的勘探方法。

近代石油工业,先是从美国发展起来的,而且发展较快。石油地质学也是于19世纪末期先从美国逐步发展起来的。

1859年,美国人德拉克(Drake,.)在阿巴拉契亚山区,以蒸汽机为动力,在宾夕法尼亚州Tilusville区,成功地钻成了世界上第一口工业油井,井深 m,日产油 m3,从而成为石油工业的起点。这一口井也被命名为德拉克井(Drake well)。

国外把寻找石油与地质结合起来,是在19世纪末期才开始的。由此诞生了石油地质学。在Drake井完成后的第三年,加拿大人亨特(Hunt,.)研究了安大略油田,指出石油多储于背斜顶部多孔隙灰岩之中。与此同时,美国人安德鲁斯(Andrews,.)也提出同样的观点,但均未引起石油界的注意。

怀特于1883年研究了美国阿巴拉契亚区油气井后,指出石油聚集与背斜构造有密切关系。为证明他的观点,他选了 3 个背斜,在其顶部拟定了 3 口井位,于 1884 年开始,先后获得油气流。于是怀特于1885 年发表了论文《天然气地质学》(The Geology of Nature Gas),提出背斜理论,并开始为石油界重视。到 1915 年,大部分石油公司均先后建立了地质部门,因而把1885年被定为石油地质学的诞生年。

至1919年,按石油地质学家多西·瓦格尔(Dorsey Huager)1915年出版、1919年所修订的《石油地质学》(Oil Geology)一书,在原理方面已不局限于背斜理论,而且包括了石油的成因、聚集、物理化学性质、地层、构造地质等。在勘探方法方面,包括测图、井位确定、钻井、石油生产以及石油地质野外方法与用具等。书中关于石油的成因,分为“无机说”与“海相有机说”及“无机与有机复合说”3种。

关于油气聚集的要素,提出了五个方面,即背斜(包括单斜)构造、地层水与挤压作用、毛细管作用、储层、盖层和底板层。书中对石油地质学的主要方面均已涉及,只是因为勘探程度和分析化验技术水平的局限,在认识程度上比较肤浅。

中国近代石油地质科学原理,基本上是从国外引进的。1932年著名地质学家谢家荣编著出版《石油》一书,这可以说是中国人写的第一本石油地质学著作,难能可贵。该书主要引用外国书刊理论综合编写,对中国石油地质涉及较少,但却成为国外油气地质科学引入中国的第一本中文书籍。

在近代中国石油地质事业发展中,老一辈地质家在极其艰难的条件下,在惟海相生油论气氛笼罩下,通过在中国的实地调查,提出了陆相生油的观点。从而使中国这个在印支构造运动后陆相沉积广泛分布的国土上,勘探石油天然气的前景变得乐观起来。

首先是潘钟祥教授,他根据从1931~1934年先后4次去陕北进行石油地质调查,1935年又去四川作石油地质调查,获得的比较系统的实际资料,于1941年在美国石油地质家协会杂志上发表了《论中国陕北及四川白垩系陆相生油》的论文,向当时流传的只有海相地层才能生油的论点提出了挑战,认为陆相沉积同样可以生油。

接着黄汲清、翁文灏等,根据1942年在新疆石油地质调查的资料,在1943年初编写的《新疆油田地质调查报告》中也提出陆相生油的观点,指出新疆二叠系、三叠系、侏罗系及下第三系均为可能生油层。文中说:“至少可以说某些新疆石油,显然来源于纯粹的陆相侏罗纪沉积”。

此后,还有不少地质学家,如谢家荣、李春昱(1944)、陈贲(1945)、王曰伦(1947)、阮维周(1947)、尹赞勋(1948)、王尚文(1949)等,先后在地质调查报告中论述过陆相沉积可以生油的观点,他们认为玉门老君庙油田的生油层,应是白垩系黑色湖相页岩。尹赞勋更提出由于火山喷发,淡水湖泊中生物暴亡,成为玉门石油之来源。这些观点虽然是以区域地质分析为基础的,但它无疑是对中国石油地质学发展的一个重要贡献。

正是由于有了比较明确的陆相地层也可生油的认识,才指导了许多地质学家不畏艰难,锲而不舍地在中国广袤的国土上进行石油地质调查和钻探,发现了玉门油田,为现代中国石油天然气工业发展,指出了良好的勘探前景。

中国对近代石油地质学的贡献是,指出了惟海相生油理论的局限性,提出陆相沉积也可以生油的新观点,这是在石油海相成因观点占绝对优势的条件下,地质认识的一种革命性变化和飞跃。

(二)20世纪50年代现代油气勘探的首次突破与中国陆相石油地质学理论的初步创立

新中国诞生后,石油天然气勘探事业是在旧中国遗留下来的技术十分落后、基础极其薄弱的情况下起步的。指导油气勘探的是背斜理论,勘探目标选定的依据,一是地表背斜,二是地面油气苗。

鉴于西北地区的山前坳陷和山间盆地内背斜构造明显,又有众多的油气苗,而且已发现了老君庙和独山子油田,因此,勘探重点在西部。从1952年起,主要力量移向甘肃西部,开展了酒泉西部、民和、潮水盆地的石油勘探。同时,在新疆准噶尔盆地南缘、四川盆地西部龙门山山前坳陷开始了地面地质调查。1954年进入青海省柴达木盆地。

1950~1954年共计完钻探井420口,进尺万米,平均井深583 m。先后发现了永坪、白杨河、石油沟等3个小油田,勘探成效不大。究其原因,有的是储层物性差,如陕北枣园;有的是目的层缺失,如潮水盆地窖水构造;有的是地面背斜构造与地下构造不吻合,如川西海棠铺构造。在挫折中人们开始认识到,一个油气藏的形成,需要具有多方面的条件,找油气田不能简单理解为就是找地面背斜构造、找油气苗,还要研究储层的变化、地层分布、构造发育历史以及深浅层构造吻合情况等。并认识到区域构造稳定地区,也可形成油气田。对油气藏形成方面的这些新认识,是油气勘探指导思想的一次提高。

鉴于前期的认识,本时期油气勘探逐步向盆地腹地和构造平缓地区拓展,即所谓的上“地台”。在此认识指导下,1955年末首次突破,发现了克拉玛依油田。1958年发现了川中含油区。

到1959年底,川中地区共发现平缓背斜24个,钻探了10个,发现了7个油田,产油层位包括有中、上三叠统和侏罗系。储集空间主要为裂缝、由裂缝连通的晶洞、溶洞、介壳间隙等。凉高山层为既有裂缝、又有孔隙的双重介质储层,油层的分布受裂缝发育产状的控制。大安寨层既是生油层,又是较好的介壳灰岩储层。表明川中地区油层纵向上为多层系,横向上分布广泛,并不局限于背斜圈闭。

从1950年到1959年8月,是我国现代石油天然气地质理论发展的初创时期。在实践中初步总结出了一套具有中国特色的油气地质理论雏形。

经过10年的油气地质勘探,通过野外地质调查和油藏所处的地质环境研究,使广大地质学家进一步确立了陆相生油的观点。各勘探盆地已先后确定了本地区的主要生油层系及分布范围。

1960年前后,石油工业出版社出版了有关这方面的若干著作,代表了这个阶段石油地质学家对陆相生油认识的水平。但由于种种原因,多数未能与广大读者见面。《中国陆相沉积生油和找油论文集》(第一集,1960年3月)是公开发行的一本。该书各篇论文,有的从大地构造条件、沉积环境、古气候及有机物沉积特点,来论述石油的生成;有的从陆相沉积、沉积建造与生油关系,来论述陆相沉积的生油条件;有的从岩石性质及动物、植物化石来论证陆相生油;有的论文还谈到在陆相沉积中,如何找油的问题等等。

关于生油的地质条件,当时已经提出,在内陆盆地的沼泽相、湖泊相(淡水、半咸水),甚至三角洲相,都是生油层的沉积环境,并大体明确了中国已勘探盆地的主要生油层系。关于生油层与储油层的分布关系,该书认为,储油层在生油层剖面内,或在其上,或在其附近。陆相生油岩是在沉积盆地不断扩大、水体封闭、湿润气候条件下堆积而成的,其直观标志与海相一样是灰绿色到黑色粘土岩。

在此期间,中国科学院兰州地质研究所于 1959 年提出中国陆相生油的地质条件是“内陆潮湿坳陷”。地质部系统对陆相生油也进行了大量的研究工作,在描述生油层地质条件时,特别强调了还原环境。

1955年,第一次走出山前坳陷,在背斜构造不明显的单斜带,发现了当时中国最大的克拉玛依地层超覆和地层不整合大油田。之后,又在玉门鸭儿峡发现了变质岩风化壳油藏、在川中发现了裂缝性油藏,证实了中国油气藏类型是多种多样的,勘探领域十分广阔。

在油气藏形成的过程中,水文地质条件有很大影响,克拉玛依油田在这方面的研究较为深入和系统(《石油地质报告集》,1959)。

这期间开始认识到油气藏分布不仅受单个构造的控制,就总体来看,是被构造带控制的。因此,相应地提出了油气聚集带的概念,如准噶尔盆地北部划分出3个含油区、7个油气聚集带;克拉玛依-乌尔禾为1个油气聚集带。

关于找油方向,这期间已经明确提出必须在具有生油岩系的盆地范围内去找,首先是要在有生油岩系的整个盆地里去找储油构造。

对含油气的评价工作,也逐步摒弃了单个背斜的排队方法,而着眼于全盆地或一个含油气地区的综合评价。在勘探方法上,开展了如川中、川南等地区的构造连片细测和克拉玛依的地面地质、钻井及地球物理的综合勘探,从而能够较全面而且较快地认识地下地质构造。

(三)中国油气勘探战略东移与陆相石油地质学理论快速发展阶段

中国石油天然气勘探重点由西部向东部转移的原因,一是油气地质学理论水平的提高,认识到东部地区有较大的含油气潜力;二是勘探手段的改进与发展,特别是地震与深井钻探技术已开始广泛使用,于是才有可能在一无地面背斜,二无油气显示的广袤大平原内进行油气勘探。

关于我国东部地区的含油性,早在1948年1月,翁文灏教授在美国油气杂志上就著文指出,中国松辽、华北、江汉和鲁、苏、浙、闽、粤沿海以及台湾省西部定碳比小于70%,为有利含油气区。从1952年以后,又有一些中国地质专家先后提出,应该开展中国东部地区的地质勘探。

从1955年开始,地质部和燃料工业部石油管理总局加强了在东部地区进行的石油地质普查工作。1955年1月,燃料工业部石油管理总局召开了第六次全国石油勘探会议,确定了开展中国东部地区石油地质普查。同年1~2月,地质部第一次石油普查工作会议也决定开展东部的勘探。

1956年,石油工业部成立华北石油勘探大队,并开钻了第一口石油参数井——华1井,同时派出地质队到二连盆地进行石油普查。

1958年,又在长春市成立了松辽石油勘探局,在上海成立了华东石油勘探局,为中国石油勘探的重点东移做好了组织准备。

1.大庆油田的勘探开发和中国油气地质理论的逐步建立

松辽盆地以找油气为目的的地质普查勘探是从1955 年开始的。首先是地质部东北地质局进行了两条路线踏勘。通过调查认为,松辽平原是一个沉降区,有很厚的白垩系与第三系沉积,总厚度约4000 m。在松花江岸及公主岭西之黑山嘴子找到了具有油味和荧光显示的含介形虫化石的暗色泥岩,并提出有海相地层存在的可能。预测平原中部可能有储油构造,建议尽快开展地球物理勘探。1956 年,地质部松辽石油普查大队和第二物探大队,在松辽平原进行重磁力普查,初步了解了松辽平原的基底起伏状况。

大庆油田的发现,进一步证明了陆相沉积盆地不仅可以生油,而且可以形成丰富的石油,形成特大型的世界著名的大油田,从而极大地提高了对陆相盆地含油气潜力的评价,对中国油气资源的认识就更加乐观。

在大庆油田的勘探开发实践中,系统地研究和总结了陆相盆地石油地质学的主要内容,使中国石油地质学理论水平和相应的勘探指导思想水平,有了大幅度的提高。

(1)在陆相生油方面有重大进展

陆相生油研究,不再局限于过去单纯的地质定性分析,开始大量应用岩石化学分析资料,确立了定量鉴别生油层的有机质丰度和沉积环境参数,这是一个很大的进步。在大庆油田陆相生油研究的推动下,全国各油气区,陆续进行了这方面的工作,明确了中国陆相原油和海相原油相比,多数具有高蜡、低硫、低卟啉含量、低w/(V)/w(Ni)比值等特点。陆相生油层沉积水体矿化度多数较低,氯根含量一般只为海相的10%~20%,碘含量为海相的20%~50%,溴的含量也低,还原硫、钒、镍、铜、铬等元素含量也普遍低于海相,说明多数陆相生油层形成于淡水和半咸水中。能否构成生油层,关键是有机质的丰度和沉积环境,而不取决于古水体的矿化度。

陆相生油层的形成与沉积时水体的氧化-还原程度密切相关。提出利用铁还原系数(k)来确定还原程度:氧化相k=0~,还原相k=~,其中,弱还原亚相k=~,还原亚相k=~,强还原亚相k=~,硫化氢相k>。以此为标准,分析了中国主要含油气盆地生油层的分布特点,指出陆相生油层主要沉积于弱还原亚相和还原亚相,而海相生油层则主要沉积于还原亚相、强还原亚相和硫化氢相。

还原环境有利于有机质的保存和有机质向石油转化,有机碳含量则是衡量生油层优劣的标准。中国陆相生油层有机碳含量比较高,它的下限值为,而一般值为1%~2%;海相生油层有机碳含量一般为1%左右或更高。陆相生油层的沉积环境,为长期下沉、并为较深水体所覆盖的湖盆,非补偿区是形成良好生油层的最佳部位。气候条件不是最主要的,但温暖湿润的气候更有利于水体的长期保持与动植物的繁衍生长。

(2)推动了陆相沉积学的发展

大庆油田发现后,在储油层岩性、物性、沉积环境及其分布规律方面的认识,极大地推动了陆相沉积学的研究与进展。

对陆相沉积环境的研究,早在20世纪50年代末期,在大庆油田发现前业已开始。1958年冬,石油工业部石油科学研究院在北京举办岩相古地理学习班,由各石油管理局派人参加学习。之后,各探区借鉴海相沉积学研究方法,应用地层、岩性和古生物资料进行岩性分区和岩相古地理恢复研究。石油工业部石油科学研究院于1959年成立岩相古地理研究队。该队于1959~1960年,先后研究了鄂尔多斯盆地延长组(T3y)和延安组(J1y),渤海湾盆地济阳坳陷的下第三系,松辽盆地松花江群和四川盆地的侏罗系。由于资料短缺,研究单元划得大、方法少,因此,对陆相沉积特点体现较少。但是,在认识盆地的发育历史和沉积特点方面起到了一定的作用。

1960年11月,石油科学研究院召开了“全国油气田分布规律与岩相古地理会议”,交流了各油气区的经验。把湖相细分为滨湖、浅湖、半深湖和深湖亚相。并提出了深湖亚相利于生油,以及陆相沉积有明显的旋回性,地层剖面多生储盖组合的观点。认为生油层、盖层位于细粒段,储层位于粗粒段,从而形成了生储盖组合。

(3)进一步认识陆相油气藏形成的特征

大庆油田发现后,总结提出油气藏形成的生(油层)、储(集层)、盖(层)、运(移)、圈(闭)、保(存)等6个条件,对中国陆相盆地油气藏形成及分布规律有了进一步认识。归纳起来大体有如下几点:①由于陆相沉积岩性、岩相变化大,油气运移距离小,油气藏分布严格受生油凹陷的控制;②二级构造带控制油气聚集;③斜坡区,往往形成非背斜油气藏;④盆地中央宽缓部位,往往发育有平缓的长垣背斜,油气最为富集,如大庆长垣背斜。因此,在勘探上形成了“定凹探边”,以二级构造带为目标的指导思想。所谓定凹,首先要确定生油凹陷,然后在有利生油凹陷周边有利储集相带区,以二级构造带为目标,进行整体勘探。这种勘探做法,在随后的渤海湾盆地油气勘探初期,应用见到了实效。

2.渤海湾大型油气区的勘探进展推动了油气聚集理论的完善和提高

渤海湾油气区的发现和发展过程,是认识张性裂谷盆地油气藏形成和分布特点的过程,也是中国陆相石油天然气地质理论长足发展,进一步完善提高的过程。

1964~1977年的10多年间,通过全面而系统的研究,中国石油天然气地质理论,包括陆相沉积学、陆相生油层评价、陆相储集岩特征、陆相流体性质和陆相油气田分布规律等内容,都有很大的丰富和发展。进展最明显的是油气藏形成条件及复式油气聚集带理论的产生。

(1)油气藏形成条件认识的发展

如前所述,在大庆油田发现后的初期,对油气藏的形成曾提出了生(油气层)、储(集层)、盖(层)、圈(闭)、运(移)、保(存)等6个要素,经过渤海湾盆地大规模油气勘探和深入研究后,认识深化了,对油气藏形成条件也进行了补充和发展。首先认为烃源岩是基础,储、盖层两个条件不应分割开来单独分析,而应当把两者联系起来,从其组合的角度分析它们在油气藏形成中的作用。另外也应把烃源岩与运移两条件结合起来,分析油气源的状况。因此实际上油气藏形成的最基本要素,就是油气源、储盖层组合和圈闭。

上述3个条件也并非就是油气藏形成的充分条件,有不少地区这3个条件都有,但是有的圈闭成为油气藏,有的却含油气很少,有的甚至成为“空”圈闭。这是为什么呢?经过深入研究,认为油气藏形成的 3 个要素,并非是互相联系发展的,而是各自独立变化的。只有当3个要素在时间、空间上具最佳配置和组合的地方,才能形成油气藏。特别是油气运移和圈闭形成的时间、空间的配置就更为重要,即在时间上是在油气生成前或与油气生成同时形成的圈闭。而在空间上,则是距油气源近,或虽然远,但有通道沟通的圈闭,才最有利于油气藏的形成。比如济阳坳陷的胜-坨地区,是一个同沉积的逆牵引背斜构造,发育于沙三期(E2-3 s3),定型于油气运移开始的东营中晚期(E3 d1-2)。在空间上,这个背斜带紧邻东营生油凹陷陡侧,有多条断层与主要生油层沙三段沟通,因而在沙二段(E2-3 s2)形成丰度很高的油气藏。黄骅坳陷孔店凸起,不仅距歧口生油凹陷较远,而且披覆于凸起上的馆陶组背斜形成也较晚,但在时间上仍早于油气主要生成运移期明化镇期(N1-2 m)。在空间上圈闭与油源区有不整合面和断层沟通,因此也形成了油气藏。

油气藏形成的关键是3个成藏要素的时空配置和组合。在此观点指导下开展了渤海湾盆地油气生成、运移与圈闭形成诸要素的时空关系研究,随后的找油勘探工作就更有针对性,成效有了明显提高。

(2)复式油气聚集带理论的产生

对以拉张断陷为特征的渤海湾盆地油气聚集与分布的认识,大体上经历了3个阶段。

第一阶段———简单背斜油气藏模式阶段:在勘探初期,认为华北平原和松辽平原一样,油气聚集于背斜中,因此用简单背斜油气藏的模式来指导勘探,采用等距离布探井、大剖面控制的办法来探明含油气的范围,但使许多井遇到了意想不到的情况。如在济阳坳陷的勘探中,发现在构造高部位的探井为水层,在低部位的探井却见到油层;在一口井中,油层之上有水层,水层之下有油层;同一油层在不同井中,其流体性质、产能、产量、油气比等变化都很大,有些井落了空。再如,辽河坳陷在整体勘探黄金带———热河台二级构造带,套用大庆油田油气分布模式部署井位,致使第一批定在翼部及鞍部的探井落空。一度曾出现了仅在“构造高点有油”的论点,认为含油面积只能依靠钻井来确定。于是出现了“打到油层往外扩,打到水层往里缩”的完全被动和“不可知”的状况。

第二阶段——勘探小断块阶段:经过初期勘探实践,已认识到渤海湾盆地断层多、断层活动时间长、构造破碎和断块控制油气分布的特点。针对断块油田的特殊性,一部分勘探家曾产生过必须先搞清每一个断块的油层分布情况,然后才能进行油田开发的想法。这一做法一度使勘探工作陷入复杂小断块中,导致探井密度越来越大,钻井越来越多,使勘探步子难以迈开,以致于在一段时间里,勘探上没有重大发现。如某一个坳陷的勘探初期,对其中2个构造带,勘探了2年,仍然没有超出3~4 km2的范围。

第三阶段——复式油气聚集带观点的建立阶段:渤海湾盆地在下第三系沉积时,有47个凹陷。多数凹陷自成一个独立的沉积系统,在其周围有大小不等、数量众多的水系注入湖盆,形成了各类砂体与生油岩在平面上共生、剖面上错叠交互的组合。而且又因湖盆中心不断迁移,从而使生油岩和储油岩构成良好的生储盖匹配。这与我国一些大型湖盆,如松辽盆地构成的统一沉积盆地不同而且要复杂得多。另外,在沉积过程中及沉积后,盆地又经历了多次强烈的断裂活动,使生、储油层被一系列不同方向的断层切割、错动,或呈垒堑相间、或呈阶梯变化、或呈群楼式的镶嵌体。每一个油田都是由很多含油层系、很多类型油藏和大小不等的一系列含油断块组成。每个断块的每个含油层段又都是一个独立的油水系统。实际上一个油田是由成百上千个油藏组成的。

有关复式油气聚集带的理论,就是在这样的地质条件下,经过反复实践和全面系统的综合研究,才逐步总结出来的。

复式油气聚集带理论的提出,在我国东部地区的油气勘探中发挥了重要作用,提高了勘探、开发成效。

断陷盆地既有它复杂的一面,也有它简单的一面,既有差异性,又有统一性。所谓统一性,就是一个断裂构造带一般都有相对统一的形成史、主要目的层与主要的生储盖组合及主要的油气藏形成期。油气分布受构造带控制,在一个成藏地质体中构成多层系、多类型油气藏组合含油的基本面貌。所谓差异性,是一个断裂构造带被众多的断层切割,油、气、水在各断块中又自成系统,断块间在含油气层系、油层段、油水界面、油气水层组合、流体性质、压力系统、驱动类型与能量方面均有差异。在勘探上,要从统一性出发,整体着眼,立足于油气藏聚集带进行整体部署,对含油规模进行控制和探明。而在开发上,则要立足于断块,区别对待,力求稀井高产,早期补充能量,及时注水。

(3)滚动勘探开发方法应运而生

如上所述,复杂油气聚集带内油气藏数量众多、类型多样,是不可能通过一次勘探就能完全搞清的。因此,要把勘探开发交叉进行,从而产生了滚动勘探开发的具体实践,使勘探开发成效明显提高,这是中国石油勘探专家、油藏工程师与油田开发专家基于对断陷盆地油藏特征与油、气、水分布复杂性的深刻理解,在实践中描述总结出的行之有效的方法,是对世界油气勘探开发实践的重要贡献。

(四)1979年之后中国陆相石油地质学理论进一步丰富完善阶段

为了深化对中国含油气盆地石油地质特征的认识,以便更有效地发现油气储量,从1979年开始,原石油工业部组织强化了对中国石油天然气地质理论的研究。一是健全和建立研究组织机构,在北京充实和加强了石油勘探开发科学研究院,在全国各地区的各油田管理局(公司),先后建立和健全了石油天然气地质勘探开发研究院(所);二是加强了科学研究工作的协调和计划管理,以及广泛应用先进的分析、实验技术;三是强调了基础学科研究,如构造、沉积相、生油层、储层、煤成气及天然气地质、资源评价和油气藏分布规律等。经过几轮分专业分地区的系统综合总结和全国性专业系统综合总结,中国石油天然气地质学有了很大的充实和提高。

1981年开展的全国油气资源评价研究,促进了油气地质学理论的发展。在统一的研究大纲和计划安排下,进行了5年工作,于1986年完成了构造、沉积、生油、煤成气、油气聚集与分布、资源评价等专题研究和全国143个盆地的资源评价。预测了全国石油和天然气资源量。这次资源评价工作,重视基础研究,从专题研究入手,取得了丰硕的成果。在该项研究工作结束之后,先后汇总出版了中国油气区构造、沉积相、陆相生油、煤成气、油气资源评价方法及油气聚集与分布规律等6个专题研究论文集。

1985~1995年的《中国石油地质志》编写工作,包括中国海洋石油总公司及中国石油天然气总公司所属各石油管理局、勘探局(公司)的研究院(所),按照统一的提纲,对各油气区的石油天然气地质理论,包括地层、沉积相、构造、生油层、储层、油田水文地质、天然气地质、原油性质、油气运移、油气藏分布规律、资源潜力和勘探前景等,进行了更为全面和系统的总结,使中国石油天然气地质理论水平又向前跨进了一大步。

1992年开始的第二次全国资源评价,促进了对我国石油天然气地质特征的认识进一步深化。

随着油气勘探的发展,很多油气地质问题需要重新认识和研究。为此,中国石油天然气总公司和中国海洋石油总公司从1992年4月到1994年底,组织全国各有关24个单位按照统一要求,进行了第二次全国油气资源评价研究工作。地质评价主要进行盆地评价和区带-圈闭评价。盆地评价研究统一采用先进的盆地模拟技术,在对盆地石油地质进行综合研究的基础上,建立地质模型和数学模型,随后编制成软件,应用计算机,定量模拟沉积盆地的形成、发展及其中烃类的生成、运移和聚集过程,从而指出盆地有利的勘探区带。区带-圈闭评价研究,采用地质风险方法,主要对区带-圈闭的含油气性进行基础地质研究,指出成藏条件及与其相关区带-圈闭的对比研究。

第二次资源评价研究与第一次相比,采用技术方法先进,规范标准统一,认识深入和可信度显著提高。不少区带-圈闭评价研究,直接为探区提供了勘探目标。特别对于油气藏形成条件与规律、陆相生油理论、低熟油以及若干新区勘探新成果、新理论编写了专著,使对中国含油气盆地的地质认识进一步深化。

兰凤娟1 秦勇1,2 常会珍1 郭晨1 张飞1

(1.中国矿业大学资源与地球科学学院 江苏徐州 221116;2.煤层气资源与成藏过程教育部重点实验室 江苏徐州 221008)

摘要:一般来说,煤层气中重烃浓度低于3%~5%,然而某些地区煤层气中重烃浓度超过常规而显现异常。煤层气化学组成中隐含着极为丰富的成因信息,对重烃异常原因的研究能深化对煤层气成因的认识,推动煤层气地球化学基础研究的完善发展。本文归纳总结了国内外煤层气中重烃异常的分布和特征,以及目前学者们对重烃异常成因的诸多解释,对于这些解释笔者分别提出了自己的见解,为重烃异常成因的深入研究提供一个思路和切入点,认为还需结合具体地区综合考虑多种因素进行进一步研究。

关键词:重烃异常 分布特征 成因

基金项目: 国家自然科学基金重点项目 ( 40730422) 资助。

第一作者简介: 兰凤娟,1986 年生,女,博士研究生,煤层气地质,,lanfj1986@126. com。

Distribution Characteristics of Abnormal Heavy Hydrocarbon in Coalbed Methane and its causes

LAN Fengjuan1QIN Yong1,2CHANG Huizhen1GUO Chen1ZHANG Fei1

( 1. The School of Resource and Earth Science,china university of Mining and Technology, Xuzhou,Jiangsu 221116,china 2. Key Laboratory of CBM Resources and Reservoir Formation Process,Xuzhou,Jiangsu 221008,China)

Abstract: Generally speaking,concentration of heavy hydrocarbon of CBM is between 3% ~ 5% ,however,it is more than normal in somewhere. There is abundant genetic information in chemical composition of coalbed methane ( CBM) . The research about its origin will deepen our understanding of origin and geochemistry of coalbed gas. This article summarizes the distribution characteristics of abnormal heavy hydrocarbon domestic and overseas and scholars’explanations for its causes at present,giving the author's own opinion which provides a starting point for the further research of the causes. It is thought that it still needs further study taking many factors into account in some definite area.

Keywords: abnormal heavy hydrocarbon; distribution characteristics; causes

引言

煤层气主要由CH4构成,次要组分为重烃(C2+)、N2和CO2,微量组分有Ar、H2、He、H2S、SO2、CO等(陶明信,2005)。据Scott对美国1400口煤层气生产井气体成分的统计结果,煤层气平均成分为:CH4,93%;CO2,3%;C2+,3%;N2,1%;干湿指数(C1/C1~5),~(Scott,1993)。中国煤层气虽然总体上以干气为特征,但也发现了大量“湿气”的实例。这些实例中,煤层气中重烃浓度通常在5%~25%之间,甚至出现了重烃浓度大于甲烷浓度的现象(吴俊,1994)。就云、贵、川的龙潭组而言,云南恩洪矿区煤层气中重烃浓度往往较高,其次是黔西和重庆地区。在恩洪向斜,煤层气中乙烷浓度达~,一般在16%左右;丙烷浓度~,一般小于3%(吴国强等,2003)。不仅是恩洪,其他一些地区也出现重烃异常,如重庆天府矿区上二叠统焦煤煤层瓦斯中C2H6—C4H10浓度高达,是CH4浓度的倍;南桐矿区煤层气中重烃的比例高达6%~15%(刘明信,1986)。

1 国内外煤层重烃异常分布

国内出现重烃异常的地区从南往北有云南、贵州、重庆、浙江、湖南、江苏、安徽、河南、陕西、辽宁、河北、内蒙古、黑龙江(见表1)。出现重烃异常的时代集中在石炭纪、二叠纪和侏罗纪,其中以二叠纪为主。煤化程度处于气煤、肥煤、焦煤阶段,在长焰煤中也有出现。重烃浓度介于~之间。出现重烃异常的煤层常常与油气有关联,有的在煤层中或其顶底板发现有液态油的存在,有的有明显的气显示和油显示。

表1 国内煤层气重烃异常分布表

续表

根据已查阅的资料,国外煤层中出现重烃异常的有美国、俄罗斯、德国。煤变质程度主要处于气肥煤阶段,重烃浓度最高大于43%。有趣的是许多出现重烃异常的煤田附近有一个与煤成气相关的天然气田或油田,有的煤层中也见到了液态石油或者有良好的气显示和油显示,因此有的学者就用石油气的成分来解释重烃浓度,认为与盆地深部层位的含油性有关,可能其运移是沿深断裂进行的(А.И.Кравцов,1983)。

表2 国外煤层气重烃异常分布表

续表

2 煤层重烃异常成因

关于煤层气中重烃异常的成因众说纷纭,有生气母质说、油气渗透说、接触变质说、煤化作用阶段说等。下面列出了重烃异常原因的各种假说。

生气母质

烃源岩的生烃母质组成特征影响着烃源岩的生烃品质和生烃潜力,是烃源岩研究的重要内容,其主要研究方法有两种:一是煤岩学的方法,一是干酪根方法,煤岩学法保存了有机质的原始状态与结构,有利于对成因的研究,镜质组反射率更可靠,干酪根法富集了矿物沥青基质中的那部分有机质,利于干酪根类型的确定(韩德馨,1996)。

煤岩显微组分很大程度上决定了煤层的产烃能力。通常认为,富壳质组煤层具有产油倾向,富镜质组煤层具有产气倾向。岩相学和地球化学研究表明,高或中等挥发分烟煤中,以壳质组分为主的腐泥煤生成湿气和液态烃,以镜质组分为主的腐殖煤生成干气(Rice D D,1993)。但某些种类镜质组分也具有生成较高重烃浓度气体的能力(BertrandP,1984)。例如,新西兰富氢煤层中镜质组含量在80%以上,但具有很高的产油能力(Killops S D et al.,1998);研究发现挪威北海中侏罗纪腐殖煤中壳质组含量和产油能力之间没有明确关系;Gentzis等认为,加拿大阿尔伯塔MedicineRiver煤层(乙烷和丙烷浓度5%)湿气来源于煤中大量的富氢镜质组分(Gentzis T,et al.,2008)。一般认为,惰性组由于芳构化程度和氧化程度更高及氢含量极低,不仅不能生油,而且产气量也比相同煤阶的壳质组和镜质组低,因而通常不把惰性组作为油气母质。但是近年来,经过煤岩学家的深入研究发现,某些惰性组分并非完全惰性,如南半球煤中“活性半丝质体”(RSF)的发现以及荧光与非荧光惰性体的划分(黄第藩等,1992),为惰性体成烃提供了有机岩石学证据。徐永昌等对惰性组分加热也曾得到产油量为的残物(徐永昌,2005)。

笔者认为前人对煤岩显微组分对重烃产生的影响只是通过显微镜观测和测得的气组分的对比来进行的猜测,对具体显微组分对重烃产生的影响还没有进行过实验验证,尤其还未进行过煤化学结构特殊性的探索验证,还应对不同地区同类型的干酪根对重烃产生的影响进行深入研究。

微生物

微生物可以从两方面对重烃浓度产生影响,一是重烃菌有助于煤层产生重烃,一是微生物可以消耗掉重烃(如产甲烷菌),产生次生生物气,不利于重烃的保存。

一种解释认为自然界存在重烃菌,生物气中少量重烃是重烃菌的贡献,即生物成因说。但要证明生物作用可以形成重烃,必须有以下证据:在一定的地质背景下,生物成因气中可以含有少量的重烃组分(~);乙烷的碳同位素较轻(就目前所报道的碳同位素值都在-70‰~-55‰之间)(Mattavelli L and Martinenghic,1992),充分的证据证明无其他成因乙烷混入;还有一个重要的条件,就是在实验室内能够培养出产重烃菌。徐永昌等(2005)测得了陆良天然气乙烷的碳同位素组成δ13C2值为-‰~-‰,结合其单一的地质背景的分析,基本排除了热成因乙烷的可能,较明晰地显示了其为生物成因,对长期争议的生物作用是否可以生成乙烷给出正面的回答(徐永昌,2005)。

笔者认为重烃菌和细菌生源等有助于煤层产生重烃的因素尚需进一步验证;而影响到重烃的保存的次生生物气来解释重烃异常的前提是,整个向斜的煤层产生重烃的数量都很多,只是有的井田未受到微生物的影响而保存了下来,需要证明重烃正常区存在次生生物气。

催化作用

近年来,越来越多的学者开始注意催化作用对煤层气生成的影响,国内外学者研究中涉及地质过程中能起催化生气作用的无机质主要有粘土矿物、碳酸盐矿物、氧化物矿物、过渡金属元素等(吴艳艳和秦勇,2009)。催化剂对重烃生成的影响也有一些假说:

某些著作中提出一个假设,煤层中的重烃是由于甲烷、煤的灰分化合物和地层水的相互化学作用造成。据Е.Е.Вороищй的结论:包含在岩石孔隙中甲烷的氧化将导致高分子同系物的形成,其反映是:

Fe2O3+2CH4→2FeO+C2H6+H2O和2Fe(OH)3+2CH4→2FeO+C2H6+4H2O

但这种假设未必正确,还应研究煤层中重烃从属于矿物杂质的分布情况(А.И.Кравцов,1983)。

火山活动及深部流体活动在沉积有机质生烃地质过程中的作用也日益受到重视。张景廉认为含煤盆地的原油可能的模式是深部氢气与有机质的加氢液化生烃,或是深部H2、CO2、CO在中地壳的低速高导层中经费托合成反应生成油气(张景廉,2001)。金之钧等认为,深部流体至少从3个方面影响烃类的生成:一是直接以物质形式参加生烃过程,深部流体中的氢与沉积有机质可能发生加氢反应而增加烃的产率;二是热效应,深部流体携带的大量热能有助于提高有机质成熟度,加快有机质生烃过程;三是催化作用,深部流体携带的各种元素可能成为烃源岩生烃的催化剂(金之钧等,2002)。实验结果表明:以熔融铁作媒介,CO2和H2可以合成烷烃类物质;地下深处的玄武岩、橄榄玄武岩和橄榄岩与实验室条件下的熔融铁类似(郭占谦和杨海博,2005)。

笔者认为若是火山活动及深部流体活动在煤层生烃过程中起到了的催化作用,可以很好的解释许多重烃异常点的分布特征,所以流体活动对重烃产生的影响值得深究。

煤化作用阶段差异

在煤层气热成因的中期阶段,有机质主要通过树脂、孢子和角质等稳定组分降解初期所形成沥青的转化,以及芳核结构上的烷烃支链的断裂,形成富含重烃的气体。肥煤和焦煤初期阶段是有机质生油的高峰期,这是造成煤层气中重烃浓度相对增高的一个重要原因。根据我国统计资料,在整个煤级序列中,镜质组最大反射率处于~之间煤层的煤层气中重烃浓度明显较高(吴俊,1994)。

笔者虽在肥焦煤阶段是重烃产生的最高峰,但只有少数肥焦煤中煤层气出现重烃异常,所以煤化阶段是重烃异常的影响因素,但却不是唯一的影响因素。

煤对气体组分的差异吸附作用

由于被吸附势的差异,煤对重烃气体成分的吸附能力比对甲烷的要大。在煤微孔中,重烃气体分子主要被吸附在孔壁表面,甲烷分子主要位于重烃分子吸附层之上。被吸附力的这种差异,造成甲烷分子易于运移,导致煤层中重烃气体相对富集(吴俊,1994)。

某些学者注意到由于镜质组吸附作用造成煤排出烃类成分的变化。Given、Derbyshire等、Erdmann等发现,煤层中产生的油被吸附在镜质组微孔中(Given P,1984;Derby-shire F et al.,1989;Erdmann M and Horsfield B,2006)。Ritter采用分子直径的概念研究了镜质组中微孔的吸附作用,基于杜平宁—兰德科维奇(Dubinin-Radushkevitch)理论建立起来的镜质组吸附模型模拟排出了高含量的芳香族气体冷凝物,认为显微组分微孔的分布和交叉连接密度可能对煤层排出烃类的成分起着决定性作用,干酪根中吸附溶解过程影响到了煤层排出的烃类物质成分(RitterU,2005)。

煤微孔隙分子筛作用

煤中孔隙分布极不均匀,对于分子直径大小不一的烃类气体具有明显的分子筛作用。甲烷气体分子直径最小,在煤层中最易运移;重烃气体分子直径较大,在运移过程中常受到孔径制约而停滞于孔隙中,使重烃气体相对富集,且常以较高压力状态存在(吴俊,1994)。

烃类物质驱替效应

许多煤层具有煤、油、气共生的特征,含油性高的煤层中较多的液态烃占据了煤中有效孔隙,并驱替气态烃运移。分子量越小,被驱替的效应就越为明显。这种差异驱替特性,造成C2以上重烃气体在煤层中相对富集(吴俊,1994)。

笔者认为差异吸附作用、分子筛作用、驱替效应涉及的是气体分馏作用使得重烃得以富集和保存,对此项因素的验证需排除生烃母质差异的可能性。

油气渗透说

主张油气渗透说者认为,煤层中存在重烃是油、气藏中石油或天然气渗透到煤层中的结果(于良臣,1981)。

构造作用

现在煤层中保存的烃气,不仅包括深成变质作用产生而保留下来的烃气,还应该包括叠加在深成变质作用之上的构造煤动力变质作用产生而保留下来的烃气。

赵志根等探讨了构造煤动力变质作用的生烃问题,认为:①构造煤在动力变质过程中有烃气形成;②动力变质作用所形成的烃气对瓦斯含量、瓦斯压力的增加起着重要作用;③重烃是在构造煤动力变质过程中形成的(赵志根等,1998)。曹代勇等认为构造应力影响化学煤化作用存在两种基本机制→应力降解和应力缩聚。应力降解是指构造应力以机械力或动能形式作用于煤有机大分子,使煤芳环结构上的侧链、官能团等分解能较低的化学键断裂,降解为分子量较小的自由基团,以流体有机质形式(烃类)逸出的过程。应力缩聚是指在各向异性的构造应力作用下,煤芳环叠片通过旋转、位移、趋于平行排列使秩理化程度提高,基本结构单元定向生长和优先拼叠、芳香稠环体系增大的过程,构造应力在煤化作用中有“催化”意义(曹代勇等,2006)。

笔者认为从构造的动力学机制来分析重烃的产生能解释某些地区重烃异常沿断层的分布的特征,但为何只有部分断层的两侧有重烃异常需进一步研究。

3 结论

(1)国内外均有较多地区的煤层气中出现重烃异常,出现重烃异常的时代集中在石炭纪、二叠纪和侏罗纪,其中以二叠纪为主。煤化程度处于气煤、肥煤、焦煤阶段,在长焰煤中也有出现。出现重烃异常的煤层常常与油气有关联,有的在煤层中或其顶底板发现有液态油的存在,有的有明显的气显示和油显示。

(2)从生气母质、微生物、催化作用、煤化作用阶段差异、差异吸附作用、煤微孔隙分子筛作用、烃类物质驱替效应、油气渗透说、构造作用等方面总结了目前学者对重烃异常可能成因的解释并分别提出了笔者的见解,认为重烃异常成因的研究对煤层气的成因、勘探和开发以及煤矿的安全生产都有着重要的意义,需结合具体地区综合考虑多种因素进行进一步研究。

参考文献

А.И.Кравцов,З.Г.Токарева.1983.煤盆地和煤田里天然气的成分和成因,石油地质论文集煤成气译文专辑

中国石油学会石油地质学会等,23~32

曹代勇,李小明,张守仁.2006.构造应力对煤化作用的影响————应力降解机制与应力缩聚机制[J],中国科学(D辑),36(1):59~68

戴金星,戚厚发,宋岩等.1986.我国煤层气组分、碳同位素类型及其成因和意义[J],中国科学(B辑),16(12):1317~1326

戴金星.1979.成煤作用中形成的天然气和石油[J].石油勘探与开发,(03):10~17

戴金星.1980.我国煤系地层含气性的初步研究[J],石油学报,1(4):27~37

郭占谦,杨海博.2005.中国陆壳是富烃陆壳[J],新疆石油地质,26(3):326~330

韩德馨,任德贻,王延斌等.1996.中国煤岩学[M],徐州:中国矿业大学出版社,261~263

黄第藩,华阿新,王铁冠等著译.1992.煤成油地球化学新进展.北京:石油工业出版社,1~25

金之钧,杨雷,曾溅辉等.2002.东营凹陷深部流体活动及其生烃效应初探[J],石油勘探与开发,29(2):42~44

李明潮,张五侪.1990.中国主要煤田的浅层煤成气[M],北京:科学出版社,138~143

刘明信.1986.四川盆地二、三叠系煤层瓦斯中的重烃[J],天然气工业,6(4):19~24

陶明信.2005.煤层气地球化学研究现状与发展趋势[J],自然科学进展,15(6):618~651

吴国强,林玉成,李一波.2003.恩洪、老厂矿区煤层气资源及赋存特征[J].江苏煤炭,(3):27

吴俊,刘明信,马正芳.1992.四川龙潭煤系高含重烃气的地质成因及意义[J],天然气工业,12(3):19~21

吴俊,于良辰,李文馥.1989.中国煤层烃类气体组分及地球化学特征的研究[J],中国科学B辑,(9):971~981

吴俊.1994.中国煤成烃基本理论与实践[M],北京:煤炭工业出版社,62~64

吴艳艳,秦勇.2009.煤中矿物/金属元素在生气过程中的催化作用[J].地球科学进展,24(8):882~890

徐永昌,刘文汇,腾格尔等.2005.陆良、保山气藏碳、氢同位素特征及纯生物乙烷发现[J],中国科学:D辑,35(8):758~764

杨宜春.1992.关于煤成气组分和甲烷碳同位素的几个问题[J],贵州地质,9(1):99~108

应育浦,吴俊,李任伟.1990.我国煤层甲烷异常重碳同位素组成的发现及成因研究[J],科学通报,(19):1491~1493

于良臣,李文馥.1981.煤与瓦斯突出煤层重烃组分的研究[J],煤炭学报,(4):1~8

张景廉.2001.中国侏罗系煤成油质疑[J].新疆石油地质,22(1):1~9

赵志根,陈资平,杨陆武.1998.浅析构造煤动力变质作用的生烃问题[J],焦作工学院学报,17(1):26~29

Bertrand P. 1984. Geochemical and petrographic characterization of humic coals considered as possible oil source rocks [J] . Organic Geochemistry,6: 481 ~ 488

Derbyshire F,Marzec A,Schulten H R,Wilson M A,Davis A,Tekely P,Delpuech J J,Jurkiewicz A,Bronnimann C E,Wind R A,Maciel G E,Narayan R,Bartle K,1989. Snape C. Molecular structure of coals: adebate [J],Fuel,68: 1091 ~ 1106

Erdmann M,Horsfield B. 2006. Enhanced late gas generation potential of petroleum source rocks via recombination reactions: evidence from the Norwegian North Sea [J],Geochimica et Cosmochimica Acta,70: 3943 ~ 3956

Gentzis T,Goodarzi F,Cheung F K,Laggoun - Défarge F. 2008. Coalbed methane producibility from the Mannville coals in Alberta,Canada: A comparison of two areas [J],International Journal of Coal Geology,74: 237 ~ 249

Given P. 1984. An essay on the organic geochemistry of coal [J],Coal Science,3: 65 ~ 252

Killops S D,Funnell R H,Suggate R P,Sykes R,Peters K E,Walters C,Woolhouse A D,Weston R J,Boudou,J P. 1998. Predicting generation and expulsion of paraffinic oil from vitrinite - rich coals [J] . Organic Geochemistry,29: 1 ~ 21

Kotarba J M,Rice D D. 2001. Composition and origin of coalbed gases in the Lower Silesian basin,southwest Poland [J] . Applied Geochemistry,16 ( 2001) : 895 ~ 910

Mattavelli L,Martinenghic. 1992. Deep isotopic light methane in northern Italy [J] . Bacterial Gas,121 ~ 132

Rice D D,Clayton J L,Pawlewicz M J. 1989. Characterization of coal - derived hydrocarbons and source rock potential of coal beds,San Juan basin,New Mexico and Colorado,U. S. A. International Journal of Coal Geology,( 13) : 597 ~ 626

Rice D D. 1993. Composition and Origins of Coalbed gas [M] . Law B E,Rice D D eds. Hydrocarbons from Coal. Halifax N1S Canada: AAPGSpecial Publication,159 ~ 184

Ritter U,Grver 2005. A. Adsorption of petroleum compounds in vitrinite: implications for petroleum expulsion from coal[J],International Journal of Coal Geology,62: 183 ~ 191

R. Teichmüller et al. 1970. Das Kohlenstoff-Lsotopen-Verhaltnis im methan von grubengas and flozgas and seine abhangigkeit von den geologischen verhgltnissea,9th Geol. Mitt,181 ~ 206

Scott A R. 1993. Composition and origins of coalbed gases from seleted basins in the United States, Proceedings of the1993. International Coalbed Methane Symposium. Birmingham,Alabama,207 ~ 212

Багринцева,К. И. и др. ,Геодосця кефтц цсаэа,1968,6: 7 ~ 11

41志丹油区滚动开发石油地质研究1青藏高原基础石油地质数字平台构建及关键问题研究青东凹陷石油地质特征和勘探方向分析.pdf这样的可以不???要的话说声

石油地质论文双语

摘要:根据多方资料查证,得到了中国油气田特征及其分布规律。指出,中国大中型油田主要分布在裂谷型盆地中,大中型油田主要分布在克拉通盆地和山前盆地中;陆相生烃岩是中国大中型油气田的主要生烃岩,生烃岩从早古生代到新生代都有,南中国海和东中国海的古近系和新近系,中国北方的侏罗系和石炭系--二叠系是中国的主要生气层,古近系,新近系,白垩系,侏罗系,三叠系,二叠系是中国的主要生油层;大中型气田的储集层主要为陆源层(中砂岩,细砂岩和砂砾岩),其成因类型为扇三角洲和三角洲体系,碳酸盐储集层主要为裂缝型、风化壳型;油气藏盖层主要为均质泥岩,油气成藏期较晚,绝大多数大中型油气田形成于新生代,在早生代地层中仍有相当储量的油气田未被发现。中国油气资源潜力丰富,大多数盆地的油气田处于开发的早中期,发现大中型油气田的可能性是很大地。中国的油气储量和世界大多数国家一样主要分布在大中型油气田中。自上世纪50年代初期以来,我国先后在82个主要的大中型沉积盆地开展了油气勘探,发现油田500多个。以下是我国主要的陆上石油产地。大庆油田:位于黑龙江省西部,松嫩平原中部,地处哈尔滨、齐齐哈尔市这间。油田南北长140公里,东西最宽处70公里,总面积5470平方公里。1960年3月党中央批准开展石油会战,1963年形成了600万吨的生产能力,当年生产原油439万吨,对实现中国石油自给自足起到了决定性作用。1976年原油产量突破5000万吨成为我国第一大油田。目前,大庆油田采用新工艺、新技术使原油产量仍然保持在5000万吨以上。胜利油田:地处山东北部渤海之滨的黄河三角洲地带,主要分布在东营、滨洲、德洲、济南、潍坊、淄博、聊城、烟台等8个城市的28个县(区)境内,主要开采范围约平方公里,是我要第二大油田。辽河油田:主要分布在辽河中上游平原以及内蒙古东部和辽东湾滩海地区。已开发建设26个油田,建成兴隆台、曙光、欢喜岭、锦州、高升、沈阳、茨榆坨、冷家、科尔沁等9个主要生产基地,地跨辽宁省和内蒙古自治区的13市(地)32县(旗),总面积10万平方公里,产量居全国第三位。克拉玛依油田:地处新疆克拉玛依市。40年来在准噶尔盆地和塔里木盆地找到了19个油气田,以克拉玛依为主,开发了15个油气田,建成了792万吨原油配套生产能力(稀油万吨,稠油万吨),从1900年起,陆上原油产量居全国第四位。四川油田:地处四川盆地,已有60年的历史,发现油田12个。在盆地内建成南部、西南部、西北部、东部4个气区。目前生产天然气产量占全国总量近一半,是我国第一大气田。华北油田:位于河北省中部冀中平原的任丘市,包括京、冀、晋、蒙区域内油气生产区。1975年,冀中平原上的一口探井任4喷出日产千吨高产工业油流,发现了我国最大的碳酸盐岩潜山大油田任丘油田。1978年原油产量达到1723万吨,为当年全国原油产量突破1亿吨做出了重要贡献。直到1986年,保持年产量原油1千万吨达10年之久。目前原油产量约400多万吨。大港油田:位于天津市大港区,其勘探地域辽阔,包括大港探区及新疆尤尔都斯盆地,总勘探面积34629平方公里,其中大港探区18628平方公里。现已在大港探区建成投产15个油气田24个开发区,形成年产原油430万吨和天然气亿立方米生产能力。目前,发现了千米桥等上亿吨含油气构造,为老油田的增储上产开辟了新的油气区。中原油田:地处河南省濮阳地区,于1975年发现,经过20年的勘探开发建设,已累计探明石油地质储量亿吨,探明天然气地质储量亿立方米,累计生产原油7723万吨、天然气亿立方米。现已是我国东部地区重要的石油天然气生产基地之一。吉林油田:地处吉林省扶余地区,油气勘探开发在吉林省境内的两大盆地展开,先后发现并探明了18个油田,其中扶余、新民两个油田是储量超亿吨的大型油田,油田生产已达到年产原油350万吨以上,形万了原油加工能力70万吨特大型企业的生产规模。河南油田:地处豫西南的南阳盆地,矿区横跨南阳、驻马店、平顶山三地市,分布在新野、唐河等8县境内。已累计找到14个油田,探明石油地质储量亿吨及含油面积平方公里。长庆油田:勘探区域主要在陕甘宁盆地,勘探总面积约37万平方公里。油气勘探开发建设始于1970年,先后找到了油气田22个,其中油田19个,累计探明油气地质储量万吨(含天然气探明储量亿立方米),目前已成为我国主要的天然气产区,并成为北京天然气的主要输送基地。江汉油田:是我国中南地区重要的综合型石油基地。油田主要分布在湖北省境内的潜江、荆沙等7个市县和山东寿光市、广饶县以及湖南省境内衡阳市。先后发现24个油气田,探明含油面积平方公里、含气面积平方公里,累计生产原油万吨、天然气亿立方米。江苏油田:油区主要分布在江苏的扬州、盐城、淮阴、镇江4个地区8个县市,已投入开发的油气田22个。目前勘探的主要对象在苏北盆地东台坳陷。青海油田:位于青海省西北部柴达木盆地。盆地面积约25万平方公里,沉积面积12万平方公里,具有油气远景的中新生界沉积面积约万平方公里。目前,已探明油田16个,气田6个。塔里木油田:位于新疆南部的塔里木盆地。东西长1400公里,南北最宽外520公里,总面积56万平方公里,是我国最大和内陆盆地。中部是号称“死亡之海”的塔克拉玛干大沙漠。1988年轮南2井喷出高产油气流后,经过7年的勘探,已探明9个大中型油气田、26个含油气构造,累计探明油气地质储量亿吨,具备年产500万吨原油;100万吨凝折、25亿立方米天然气的资源保证。吐哈油田:位于新疆吐鲁番、哈密盆地境内,负责吐鲁番、哈密盆地的石油勘探。盆地东西长600公、南北宽130公里,面积约5。3万平方公里。于1991年2月全面展开吐哈石油勘探开发会战。截止1995年底,共发现鄯善、温吉桑等14个油气油田和6个含油气构造探明含油气面积平方公里,累计探明石油地质储量亿吨、天然气储量731亿立方米。玉门油田:位于甘肃玉门市境内,总面积平方公里。油田于1939年投入开发,1959生产原油曾达到万吨,占当年全国原油产量的。创造了70年代60万吨稳产10年和80年代50万吨稳产10的优异成绩。誉为中国石油工业的摇篮。除陆地石油资源外,我国的海洋油气资源也十分丰富。中国近海海域发育了一系列沉积盆地,总面积达近百万平方公里,具有丰富的含油气远景。这些沉积盆地自北向南包括:渤海盆地、北黄海盆地、南黄海盆地、东海盆地、冲绳海槽盆地、台西盆地、台西南盆地、台西南盆地、台东盆地、珠江口盆地、北部湾盆地、莺歌海——琼东南盆地、南海南部诸盆地等。中国海上油气勘探主要集中于渤海、黄海、东海及南海北部大陆架。1966年联合国亚洲及远东经济委员会经过对包括钓鱼岛列岛在内的我国东部海底资源的勘察,得出的结论是,东海大陆架可能是世界上最丰富的油田之一,钓鱼岛附近水域可以成为“第二个中东”。据我国科学家1982年估计,钓鱼岛周围海域的石油储量约为30亿~70亿吨。还有资料反映,该海域海底石油储量约为800亿桶,超过100亿吨。南海海域更是石油宝库。中国对南海勘探的海域面积仅有16万平方千米,发现的石油储量达亿吨,南海油气资源可开发价值超过20亿万元人民币,在未来20年内只要开发30,每年可以为中国GDP增长贡献1~2个百分点。而有资料显示,仅在南海的曾母盆地、沙巴盆地、万安盆地的石油总储量就将近200亿吨,是世界上尚待开发的大型油藏,其中有一半以上的储量分布在应划归中国管辖的海域。经初步估计,整个南海的石油地质储量大致在230亿至300亿吨之间,约占中国总资源量的三分之一,属于世界四大海洋油气聚集中心之一,有“第二个波斯湾”之称。据中海油2003年年报显示,该公司在南海西部及南海东部的产区,截至2003年底的石油净探明储量为亿桶,占中海油已探明储量的。到目前为止,渤海湾地区已发现7个亿吨级油田,其中渤海中部的蓬莱19-3油田是迄今为止中国最大的海上油田,又是中国目前第二大整装油田,探明储量达6亿吨,仅次于大庆油田。至2010年,渤海海上油田的产量将达到5550万吨油当量,成为中国油气增长的主体。从以上来看,我国石油资源集中分布在渤海湾、松辽、塔里木、鄂尔多斯、准噶尔、珠江口、柴达木和东海陆架八大盆地,其可采资源量172亿吨,占全国的%;天然气资源集中分布在塔里木、四川、鄂尔多斯、东海陆架、柴达木、松辽、莺歌海、琼东南和渤海湾九大盆地,其可采资源量万亿立方米,占全国的%。从资源深度分布看,我国石油可采资源有80%集中分布在浅层(<2000米)和中深层(2000米~35 00米),而深层(3500米~4500米)和超深层(<4500米)分布较少;天然气资源在浅层、中深层、深层和超深层分布却相对比较均匀。从地理环境分布看,我国石油可采资源有76%分布在平原、浅海、戈壁和沙漠,天然气可采资源有74%分布在浅海、沙漠、山地、平原和戈壁。从资源品位看,我国石油可采资源中优质资源占63%,低渗透资源占28%,重油占9%;天然气可采资源中优质资源占76%,低渗透资源占24%。截至2004年底,我国石油探明可采储量亿吨,待探明可采资源量近144亿吨,石油可采资源探明程度%,处在勘探中期阶段,近中期储量发现处在稳步增长阶段;天然气探明可采储量万亿立方米,待探明可采资源量万亿立方米,天然气可采资源探明程度仅为%,处在勘探早期阶段,近中期储量发现有望快速增长

盆地是第一级的,其次为坳陷,再次为凹陷,最后为洼陷盆地内一级构造单元: 坳陷(depression)、隆起(uplift)二级构造单元:凹陷(sag)、凸起(high)洼陷(sub-sag)是更次级的,可以算作三级构造单元凹陷:sag含油气盆地划分的亚一级构造单元。指一级构造单元内相对下降的地区。其特征是基底埋藏较深,沉积盖层发育完全,主要含油气层系发育完整,是油气生成的地区。凹陷、坳陷是不同的概念,分别表示不同级别的盆地构造单元,坳陷是盆地的次一级构造单元,如渤海湾盆地济阳坳陷,凹陷是盆地的再次一级构造单元,如济阳坳陷东营凹陷,还有更次一级的构造单元如洼陷。隆起和凸起也是不同级别的概念。凹陷和坳陷都是含油气区一级的构造单元,坳陷的级别要比凹陷高一点:坳陷属于一级构造单元,是盆地基地埋藏最深的区域,沉积盖层发育齐全,厚度大,岩相相对稳定;凹陷是亚一级构造单元,介于坳陷、隆起等一级构造单元与长垣、背斜带等二级构造单元之间,常在某些地质构造较复杂的大型含油气盆地内划分。凹陷和坳陷都是含油气区一级的构造单元,坳陷的级别要比凹陷高一点:坳陷属于一级构造单元,是盆地基地埋藏最深的区域,沉积盖层发育齐全,厚度大,岩相相对稳定;凹陷是亚一级构造单元,介于坳陷、隆起等一级构造单元与长垣、背斜带等二级构造单元之间,常在某些地质构造较复杂的大型含油气盆地内划分。断陷盆地指断块构造中的沉降地块,又称地堑盆地。它的外形受断层线控制,多呈狭长条状。盆地的边缘由断层崖组成,坡度陡峻,边线一般为断层线。随着时间的推移,在断陷盆地中充填着从山地剥蚀下来的沉积物,其上或者积水形成湖泊(如贝加尔湖、滇池),或者因河流的堆积作用而被河流的冲积物所填充,形成被群山环绕的冲积、湖积、洪积平原。如太行山中的山间盆地和地堑谷中发育着的冲积洪积平原。低于海平面的断陷盆地被称为大陆洼地。盆地是最大一级的负向构造单元,与它相对应的是造山带、褶皱带,分别代表了地球上最大规模的负向构造和正向构造,但盆地里面并不是一马平川的,也是高低起伏的川壑相间,因此在盆地里面,又划分了负向构造单元坳陷和正向构造单元隆起,同理,负向单元坳陷里面也不是平坦的,在坳陷里面,又划分了负向单元洼陷和突起,而洼陷又可以分为不同的次洼坳陷指地壳上不同成因的下降构造,如盆地、坳槽、地堑、裂谷等。而这种下降可以直接起因于垂向地壳运动,也可以由侧向挤压或伸展所导生。它属于一级构造单元,而洼陷属于三级构造单元。

Basin (geology) In geology, referring to the basin-shaped warping of underlying bedrock in a region. Or, in sedimentology, a low and usually sinking region that is filled with sediments from adjacent positive areas. Sag (geology)When a piece of lithosphere that was heated and stretched cools again, its density will rise, causing isostatic subsidence. If this subsidence continues long enough the basin is called a sag basin, or, a sag. Uplift (geology) In geology, an uplift generally refers to the result of tectonic plate collisions and results in mountain ranges or a more modest uplift over a large region. Trough (geology)In geology, a trough generally refers to a linear structural depression that extends laterally over a distance, while being less steep than a trench. A trough can be a narrow basin or a geologic rift.

是我们的作业吗 。。

石油地质类期刊加急

这个可就太多了看你想看哪一类的 有新闻类的比如中国石油报有技术类的期刊 比如说 石油仪器看你需要哪一类的

以下刊物最好:TD 矿业工程1.煤炭学报 2.中国矿业大学学报 3.煤炭科学技术 4.金属矿山 5.非金属矿 6.煤矿安全 7.矿山压力与顶板管理 8.矿山机械 9.矿业安全与环保 10.中国煤炭 11.中国矿业 12.辽宁工程技术大学学报.自然科学版 13.煤炭工程 14.矿冶工程 15.煤田地质与勘探 16.煤矿机械 17.矿业研究与开发 18.选煤技术 19.煤矿自动化(改名为:工矿自动化) 20.西安科技学院学报 21.湘潭矿业学院学报 22.化工矿物与加工 23.洁净煤技术TE 石油,天然气1.石油学报 2.石油勘探与开发 3.石油地球物理勘探 4.油田化学 5.石油炼制与化工 6.石油大学学报.自然科学版 7.天然气工业 8.石油学报.石油加工 9.石油钻采工艺 10.油气储运 11.钻井液与完井液 12.石油机械 13.石油与天然气地质 14.炼油技术与工程 15.油气田地面工程 16.钻采工艺 17.石油化工 18.新疆石油地质 19.大庆石油地质与开发 20.石油实验地质 21.石油与天然气化工 22.油气地质与采收率 25.大庆石油学院学报 26.江汉石油学院学报

是2011北大核心《石油与天然气地质》。收石油、天然气方面各类论文,审稿3周,稿子不行的话会很快退信,若有操作余地则会慢些,正常刊期一年后,可以加急4个月出刊。可以电话查稿,官网查稿,开发票,给用稿通知。实力推荐。需要发表速联

中国石油和石化工程研究会论文

中国石油化学工业将主要面临以下挑战: 当前中国正处于城镇化和工业化进程中,传统的粗放型发展模式亟待改变。中国在保持适度稳定、高质量的增长过程中,对资源、能源、化工产品的消耗增长会相对有所减少。 资源约束持续加大。自1993年中国成为石油净进口国以来,石油对外依存度已提高到2012年的,预计2020年将接近70%,石油化学工业抵抗油价剧烈波动的能力较为脆弱。此外,由于轻烃资源短缺,乙烯工业的发展缺乏原料低成本优势。 石化市场竞争日趋激烈。在国内市场上面临产能过剩和海外低价原料制品竞争的双重压力。在国际市场,面临发达经济体经济低迷影响石化产品出口、国际贸易保护主义明显抬头、石化及其下游产业的贸易摩擦日益频繁和激烈等挑战。与此同时,替代燃料、新能源、生物化工、煤化工等非石油基产品的竞争日趋增强。 落实生态文明建设、实现绿色低碳发展将成为中国石油化学工业可持续发展的一项重要任务。当前,中国正向着建设生态文明、建设美丽中国的目标迈进。一方面,中国石化企业将面临加快产品结构调整、增产绿色产品新要求的挑战。另一方面,石化企业运营也需要与社会和环境实现和谐共赢。希望能帮到你,请采纳。

石油石化是重要的基础产业,它为国民经济的运行提供能源和基础原材料,许多国家都对该领域高度关注。而原油位于石化产业链的源头,在全球能源消费中占很大比例。如在2004年前后,欧洲和亚洲约为32%,中东地区高达53%,中南美洲约44%,非洲约41%,北美约40%。2008年,全球每天消费原油大约为8600万桶。全球最大的原油消费国是美国、中国和日本。石化行业在我国的国民经济中占有相当大的比重。以1999年至2003年的平均值计算,中国石化行业工业总产值占全部工业总产值的%,工业增加值占约16%,总资产占比约13%,产品销售收入占比超过14%,而石化行业工业增加值约占GDP的4%。石化行业的地位不仅体现在其占国民经济的比重上,也体现在其对整个国民经济提供的基础性作用上,其基础性作用和支柱性地位体现在下列三个方面: 1.为生产和生活提供能源。根据IEA的数据:2005年,在中国的一次能源总需求中,石油占%,是除煤炭以外最大的能源资源。我们常用的汽油、煤油、柴油、石脑油、燃料油等都是石油的下游产品。2.为国民经济发展提供原材料。石油不但是重要的能源物质,也是化工行业的重要原料。从上游的石脑油,到中游的各类中间体,以及下游的合成树脂、合成纤维和合成橡胶等,都是石化产业的重要原材料或者产品。化工领域是个巨大的行业,其产品涉及到人类生活的方方面面。上至航天航空等高科技产品,下至服装和生活日用品,无一没有化工原料油的身影。3.支持与促进农业发展。在农业领域,除农机动力需使用燃料之外,化肥占据了很大的比重。此外,现代农业大量使用塑料薄膜,推动了农业的发展。石油石化产业链的构成石油化工是指以石油和天然气为原料,生产石油产品和化工产品的整个加工工业,包括原油和天然气的开采行业和油品的销售行业,是我国的支柱产业之一。通常可以将石油石化产业分为:石油开采业、石油炼制业、石油化工、化工制品和化肥行业等。“石油开采”指的是将原油和天然气从地下采出的过程,并将原油和天然气分离。“石油炼制”指的是将原油加工成汽油、柴油、煤油、石脑油、重油等油品的过程。“石油化工”指的是,将石油产品和石化中间品加工成石化中间品的过程。而“化工制品”指的是将石化中间品加工成制品的过程。“化肥行业”指的是将石油产品合成为化肥的过程。每个过程有其自身的功能和特点。具体分类和特点如下:石油工业包括全球的勘探、开采、炼制、运输(通常利用油轮和管道运输)和油品销售等。石油也是许多化工产品的原料,包括医药品、熔剂、化肥和塑料等。该行业通常被分为三个主要部份:上游、中游、下游。通常将中游纳入下游之内。石油石化产业链石油领域的上游通常指原油和天然气的寻找、采收和生产,被称为勘探和生产领域。还包括寻找地下或者水下油田和气田,和钻井等工作,以及后续开采原油和收取天然气等油井的运营工作。下游领域包括石油炼厂、化工厂、石化产品的分配和销售环节,以及天然气销售企业等。下游行业涉及数千种油品和化工产品,如汽油、柴油、航空燃料、取暖油、沥青、润滑剂、合成橡胶、塑料、化肥、防冻剂、杀虫剂、医药品、天然气和丙烷等。石化产品价格形成机制为了便于研究价格的形成和传导过程,本文根据价格形成和传导的特点,按照石油产品(简称油品)和化工产品两大类进行分析。1.价格传导的过程鉴于化工领域广泛存在着“中间体”,而国内又缺少交易“中间体”的现货市场。因而我国石化终端产品的价格形成过程较为复杂,往往受到上游价格垄断的影响。产业链图显示了石化产业链的主要环节,其产业链末端产品的价格经由各自产业链的加工环节传导形成。如图所示:石油馏分(主要是轻质油)通过烃类裂解,或裂解气馏分可制取乙烯、聚乙烯、丁二烯等烯烃和苯、甲苯、二甲苯等芳烃。芳烃亦可来自石油轻馏分的催化重整。石油轻馏分和天然气经蒸汽转化、重油经部分氧化可制取合成气,进而生产合成氨、合成甲醇等。三烯三烃经与无机产品反应可获得“中间体”,包括PE、EG、聚乙烯醇、丙烯晴、已内酰胺、对二甲苯等,也就是产合成树脂、合成橡胶等产品的原料。通常价格的形成主要受两种因素主导:一是消费拉动,二是成本推动。在这两种类型之间,价格传导的过程和效果也大不相同。(A)消费拉动型在消费拉动的情况下,受下游需求增长的影响,价格开始上涨。此时,该加工环节的边际利润也随之增长,进而拉动原材料价格的上涨。这一过程在产业链中的每一个加工环节中重复,直至传导至产业链的源头石脑油(或者天然气)。这一过程有时也会在某一环节受到阻碍,特别是在产能远远大于产量或者需求的环节。(B)成本推动型在成本推动的情况下,产业链源头原材料价格首先上涨,其结果要求将增加的原材料成本转嫁到该加工环节的产品价格之中。这一过程在产业链中的每一个加工环节重复,直至传导至产业链末端的终端产品。不同的是,成本的推动不如需求的拉动那么顺利。由于产业链中下一环节的阻碍,而无法完成价格传导过程,致使该加工环节的边际利润降低,甚至处于亏损状态。事实上,上游价格的向下传导,必须得到下游产品消费市场的消化。一旦价格超过了消费者愿意接受的程度,该产品将面临积压的命运,价格根本无法继续传导。结果该产品不得不亏损销售,生产企业必须承担亏损的现实,直到价格能够向下传导为止。(C)消费萎缩与上述两种情况相反的是,消费萎缩和成本下降时的传导过程。当消费萎缩时产品开始积压,企业开始减产,导致该加工环节的原材料价格下降。这一过程逐渐向上游传导,最终迫使产业链源头产品价格回落。这一过程有时会在某一环节减弱,因为该上游产品有可能是其他产业链的上游,只要该产业链的整体需求没有充分的下降。(D)成本下降对于下游企业来说,原材料成本的下降是件好事。不但可以提高加工利润,还可以降低产品价格,扩大市场。然而,在成本下降的整个传导过程中,加工企业却很难应对。面对不断降价的原材料,无论以何种价格买入,企业都要面临亏损。这就导致了另外一种局面,企业宁可停产也不愿意生产。当然,为了保住重要的客户资源,大多数大型企业不得不继续亏本生产。我们还可以将上游原材料价格与下游产品价格进行对比,找出价格运动的相关性。从以往产业链上产品价格的年均变化趋势来看,石脑油价格的变化与原油价格的变化总体一致,相关度在产业链中最高。也就是说,其裂解差价相对稳定。此外,从原油到PTA的整个产业链,价格传导有如下规律:原油-石脑油 (加工费区间:35—50美元/吨)石脑油-MX (加工费区间:50—60美元/吨)MX-PX 加工费区间:80—100美元/吨)PX-PTA (加工费区间:150—170美元/吨)事实上,将原料和产品之间的差价与上述加工费区间对比,我们可以了解某一环节的盈利状况和所处的环境。一旦某一环节出现扭曲,该环节或许就是影响价格的主要因素。2.价格传导的特点石化产业价格传导主要存在以下几个方面的特点:(A)时间滞后性。通常产业链越长,滞后的时间也较长。(B)过滤短期小幅波动。由于具有滞后性,一些短期和小幅波动还没有来得及向下传导,价格就已经发生变化,因而短期波动得以过滤。(C)传导过程可能被阻断。当产业链中某一环节的供需关系处于极端状态时,该环节供需关系本身上升为影响价格的主导因素,因而价格传导被阻断。(D)价格垄断性。由于国内缺少交易石化“中间体”的市场,因而其价格具有垄断性。越是靠近产业链上端的企业,其价格垄断性越强。(E)国际市场价格的影响。进口依存度较高的“中间体”,其定价常常受到国际市场价格的影响。进口依存度越高,受国际市场价格的影响越大。3.油品价格的形成在我国,除石脑油和燃料油外,其油品的价格仍然由“发改委统一定价”,采用区间定价的原则。即只有当国际油价波动超过一定幅度时,才会进行调整。因此这些油品的价格与国际市场价格的联动性并不太大,且滞后的时间很长。但我国的石脑油和燃料油已率先采用了“市场定价机制”。可以设想,随着改革的深入,我国的油品价格形成机制将最终采用由市场定价的方法。在市场定价的环境下,油品价格一方面受原材料成本和加工环节边际利润的影响,另一方面还要受产品供需关系的影响。除了生产成本之外,我国的油品价格往往受进口成本的影响,特别是亚洲市场价格的影响,尤其是在国内需求缺口较大的情况下。例如,我国黄埔市场的燃料油(180CST)价格,主要受新加坡市场价格的影响;而我国的石脑油价格则主要受日本市场价格的影响。在亚洲的油品市场中,最为重要的就是新加坡市场。亚洲地区特别是远东地区的成品油定价基本上都要参考新加坡成品油市场价格,而“普氏”(PLATTS)的油品报价具有一定的权威性。普氏(PLATTS)公开市场是指每天下午5:00-5:30在公开报价系统(PAGE190)上进行公开现货交易的市场,每天公布的报价是15天以后交货的价格,实际交割一般在15-30天之内进行。4.裂解差价与价格传导与化工产业不同,由于不存在所谓的石化“中间体”,油品的价格均由交易油品的市场决定(我国没有交易石化中间体的现货市场)。一般来说,油品成本应该包括生产原材料和辅料,以及加工过程中发生的费用。或者说,油品价格由“原材料成本”+“边际利润”构成。通常,我们使用“裂解差价”的概念,描述某一油品的市场价格与原油的市场价格之差。在油品市场上,裂解差价是衡量企业盈利状况的一种指标,也是市场供需关系的一种反应。当裂解差价走高时,炼厂的利润扩大。意味着:或者油品价格上涨,或者原油价格下降,或者两者兼而有之,其结果是炼厂利润增加。当裂解差价走低时,意味着:或者油品价格下跌,或者原油价格上涨。这种价差的变化,通常暗示着价格的未来走向。影响价格的其他因素1.季节性影响季节性主要是指随着季节的交替而产生的需求量不同的情况,石化终端产品的季节性消费情况直接带动上游石化产品的产销变动,从而进一步引发价格的相应波动,形成一定的季节性交替。在石化产业链中,还有一些环节具有季节性特点,包括原油等。2.相关商品价格走势由于相关商品价格价格具有较强的替代作用,其价格变动也直接影响到石化产品价格走势,如PTA和棉花,由于其都是纺织品的直接上游原料,所以它们之间具体较强的替代作用,价格走势也具有一定的联动性。3.人民币汇率变化人民币汇率变化直接影响到石化中间体及上下游产品的进出口价格,将直接影响到该系列商品的进出口竞争力情况。如对PTA而言,我国是全球最大的纺织品生产国和出口国,人民币升值降低纺织品的出口竞争力。另一方面,人民币升值意味着按美金计价的进口PX价格更加具有吸引力,有可能促使相应的报价上升。4.国家宏观政策法规对价格的影响国家宏观政策法规对价格的影响主要包括进口关税、出口退税以及国家产业政策取向等等。进口关税直接影响到进口商品的成本,出口退税反应在出品商品在国外的竞争力情况,而国家产业政策取向则直接影响到某个产业或领域在未来的发展状况,对未来产品的供需情况及相关产业的发展关况具有较强的联动作用。总之,石化产业链较为复杂,且各品种具有各自的特点。如PTA与纺织品市场密切相关,而LLDPE与农膜市场密切相关。这就导致了各个品种还有自己的运行规律,尽管原油价格的影响完全相同。鉴于我国的农业生产受经济危机的影响有限,因而LLDPE领先于原油价格恢复上行,这就是一个“减缓、阻断、甚至逆转原油走势”的典型案例。

石油化学工业简称石油化工,石油化学工业是基础性产业,它为农业、能源、交通、机械、电子、纺织、轻工、建筑、建材等工农业和人民日常生活提供配套和服务,在国民经济中占有举足轻重的地位。以下是我为大家精心准备的:电气节能技术在石油化工设计中的应用研究相关论文。内容仅供参考,欢迎阅读!

电气节能技术在石油化工设计中的应用研究全文如下:

1概述

能源作为新世纪发展的动力,制约著国家经济的发展,这关系到一个国家的经济安全乃至国家安全。目前,我国是世界上第二大能源消耗国和能源生产国,随着人们对能源消耗、环境污染等相关问题的认识和了解,能源形势问题得到了人们的高度重视。各大企业单位都在进行能源管理体系建设以及普遍应用节能减排技术。如今,石油化工企业在能源消耗方面面临着能源利用效率低、能源浪费问题严重、节能管理意识培养不全面等一系列问题,这就迫使石油化工企业加快电气节能技术在工程设计中应用的步伐。

2电气节能技术概述

电气节能技术主要从电力系统节能、照明系统节能、电子装置节能这三大部分考虑。对于一个石油化工企业来说,电气装置占据着大部分生产线,所以电力系统节能是整个电气节能中的重点。照明系统节能、电子装置节能大规模积体电路、电动机驱动控制也不容小觑。

电气节能需要满足如下三个原则:首先要满足生产装置的基本功能,保证生产装置的安全性和可靠性。在兼顾生产技术性能的前提下才会考虑降低能耗,提高生产的经济指标;其次要满足经济性要求,应考虑节能和投资回收期;最后的原则要从节能的观点着手,同时考虑能源节约和环境保护两大方面。

3电气节能技术在石化企业工程设计中的应用

电力系统节能

电力系统节能要从变压器选型、系统功率因素提高、线路功率损耗、减少高次谐波这四个方面论述:

变压器选型。变压器是在电力系统中是较为常用且较为普遍的电气装置,尤其在石化企业中,大量的变压器投入使用。7×24小时执行,其消耗电能量也是相当之大。通常我们在选择变压器时,需要根据变压器的负载率这一指标来进行选择。

另外,为了提高石化企业的经济效益,减少生产过程中的能源消耗,建议在工程设计的时候对变压器的选择采用国家新型的、高效节能的产品。

系统功率因数的提高。在电力系统中,功率因数占据着举足轻重的地位。如果能够提高功率因数,那么就意味着能源的利用率会得以提高,同时生产和电力成本、线路电压都会相应减少,而装置的利用率会大大改善。石化企业就会以最小的投资得到最大的经济收益。大多数用电装置均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。

当电气系统的功率因素无限趋向于1时,电路中的无功功率就越小,意味着视在功率的利用率越高,从而电能输送的功率就越大,这样就可以通过提高功率因素来降低电路损耗。一般的,功率因数有两种方式来提高,分别是自然提高和人工补偿。自然提高功率因数比较简单,主要是电动机的选型上,选择合适的电动机和变压器,避免电机的空载执行。第二种人工补偿方式主要采用同步电动机补偿、动态无功功率补偿、并联电容器补偿的方式。

减少线路的功率损耗。根据公式P=I2R可知,只要电流经过有电阻的介质就会产生能量消耗。那么在一个大的工程中,有成百上千的装置以及装置线路,减少线路的功率损耗对于电气节能的贡献是相当可观的。根据R=ρL/S可以得出,在工程设计中应当合理地设计电气线路的走向,减少线路的长度L以及合理地选择线路的粗细S能够有效地降低线路损耗。

降低高次谐波。在我国使用的交流电的频率为50Hz,当正弦波受到外界干扰时就会发生畸变,畸变越严重,高次谐波分量越大,基波的分量越小。在具有高次谐波电压和电流的电网系统中,对电动机的正常执行起作用的仅是电网的电压和电流的基波部分,而系统中的高次谐波电流和电压部分,则只能产生有功损耗和额外的无功损耗。同时,高次谐波会产生过电压、过电流直接影响到工作的可靠性。

解决电网高次谐波主要是采用无源滤波技术电容、电感组成的滤波器吸收高次谐波和有源滤波技术由先进的电子控制和电力电子装置组成,通过探测系统瞬间的畸变波形,并产生与之相反的畸变波形与其抵消,从而输出标准的正弦波。

稳定电压节能

稳定供电电压至额定电压,系统供电效率最高。电压的不稳定,高电压和低电压都不能形成高效供电。绝大多数的用电装置,它在额定电压工况下效率最高。如果供电电压高于额定电压,就会产生过高的空载电流,造成能源的浪费。如果供电电压低于额定电压,负载不变时就会产生过大的负载电流,造成线损的增加,也会造成能源的浪费。要选择合适的供电电压,如果压力变化过大,可使用带有有载调节开关的变压器。

照明系统节能

在满足正常照明需求的前提下,优先选取发光效率高、能源消耗小的节能灯、电磁感应灯、LED灯等。这些灯的寿命长、能耗小,可以满足节能的要求。

在我国,电网的标准电压是220V,但是存在一个电压的-10%~-7%的电压偏差。过高的电压经过照明系统会产生大量的热量,同时也会影响到照明装置的寿命。通过控制照明系统中回路电压,能够起到节约用电和延长照明装置使用寿命的功能。

电子装置节能

在石化企业中,电子装置节能主要包含工作计算机、印表机、影印机的节能和工业使用的PID控制系统节能。在日常工作中,企业的每一位员工需要养成顺手关闭计算机显示器、下班后关闭计算机的习惯,在使用作业系统时尽量设定为省电模式。另外印表机、影印机在不使用的时候选择待机或直接关机减少耗电量。工业使用PID控制系统设计时选择低功耗的模组。

4结语

在能源紧张的今天,各行各业都在忙于节能减排。对于石油化工企业而言,电气节能是一项重要工作。希望通过在工程设计之初充分考虑电气节能的各个方面,有效地降低电气能源消耗成本,给石化企业带来更多的经济效益,这有助于企业的发展。

一、行业社团组织(43)01中国农药工业协会北京亚运村四区16楼848850028488510072302中国氮肥工业协会北京安外六铺炕街1号82032097820321203274210001103中国磷肥工业协会北京安外六铺炕街1号820320598203210001104中国硫酸工业协会北京西城区安外六铺炕街 1号东楼321室820328203000210001105中国氯碱工业协会天津市南开区白提路186号天津电子科技中心1105室022-27428231273109572742822030019206中国腐植酸工业协会北京西城区安外六铺炕街1 号820397628203243210001107中国纯碱工业协会北京亚运村四区16号楼613室848851906494810072308中国橡胶工业协会北京海淀区志强园甲22号楼62264366622284696226701010008809中国涂料工业协会北京市海淀区联慧路99号院(海云轩)1号楼B093室62256821622559616225611010008810中国染料工业协会北京东城区安定门外大街189号宝景大厦1606室64400088-816066440010710001111中国电石工业协会上海福州路107号152室021-6321663212中国化学试剂工业协会北京朝阳区豆各庄1号7号楼B207室520735705207357010002313中国工业气体工业协会北京朝阳区东四环南路1号8737884314中国胶粘剂工业协会北京朝阳区东三环南路19号C座206号876630988766300002115中国氟硅有机材料工业协会北京朝阳北三环东路19号蓝星大厦64436103644460666444611610002916中国化学矿业协会北京西城区六铺炕一号82677394826773898267738610001117中国造纸化学品工业协会杭州市湖墅石灰坝7号0571-883154098831540931001418中国聚氨酯工业协会河南洛阳市邙岭路5号054信箱0379-6230328562306792-2816230328547100119中国膜工业协会北京朝阳区北三环东路19号蓝星大厦644334656443346610002920中国化工装备协会北京西城区六铺炕1号82032356820321438203221310001121中国石油和化工勘察设计协会北京朝阳区安立路60号润枫德尚A座13层64820656648203236482065610010122中国化工施工企业协会北京安外六铺炕1号东楼4048203252032中国工业防腐蚀技术协会北京朝阳区小营路9号C座5I6494683664896750648962456494521510010124中国石油和化工自动化应用协会北京市东城区和平里七区16号楼505室642702427060001325中国化工机械动力技术协会北京朝阳区安华里五区18号楼207室64266995642625006426299510001126中国化工节能技术协会北京安外六铺炕街1号8203738282032中国化工环保协会北京亚运村四区16号楼848854368488570072328中国化工情报信息协会北京安外小关街53号B座415室644440716441214110002929中国监控化学品协会北京安外六铺炕街1号82032955820325508203295510001130中国化工企业管理协会北京朝阳区小营路19号楼A座 6层601号5865014858650中国合成橡胶工业协会北京西城区六铺炕街1号东楼210室820350928203509110001132中国石油和石化工程研究会北京和平里7区16号楼 431室64220211642123436421260510001333中国石油工程建设协会北京西城区安德路112号227室620475786209439210001134中国石油企业协会北京西城区六铺炕街6号6209510072435中国化工供销协会北京和平里7区4号楼84250059842508728425096110001336中国石油化工信息学会北京安外小关街24号 (秘书处)64449094644491006444900510002937中国磁记录材料工业协会河北保定市乐凯南大街1号0312-792256232225637922574323232407105438中国化工教育协会北京朝阳区惠新里3号6491810002939中国化工职工思想政治工作研究会北京西城区六铺炕北小街甲2号82036057820322768203253010001140中国化工学会北京安外小关53号644476441119410002941中国无机盐工业协会东城区和平里七区16号楼259室642106116421061110001342中国石油化工劳动学会北京朝阳区惠新东街甲6号中国石油化工集团公司人事教育部(中国石油化工劳动学会)64998611649986206499865110002943中国化工体育协会北京西城区六铺炕街1号8488536084885085100011

中国石油石化期刊

1.推荐:《石油化工》(月刊),是我国精品科技期刊,内容权威、全面、专业,影响因子高。 《石油化工》为学术与技术相结合的科技期刊,报道我国石油化学工业领域的科技成果,介绍石油化工的新技术、新进展及国内外科技、生产动态。 2.相关期刊杂志:《精细石油化工》、《石油炼制与化工》、《当代石油石化》、《石油化工设备》《石油化工腐蚀与防腐》、《精细石油化工进展》、《石油化工自动化》、《石油化工安全环保技术》、《石油学报》《石油勘探与开发》、《中国石油石化》等,都相对比较专业。 3.一些具有参考的地方级期刊杂志:《齐鲁石油化工》、《宁夏石油化工》、《内蒙古石油化工》 根据自己专业爱好和工作内容、性质要求,来选看相关的、对口的石化期刊杂志 希望有所帮助,谢谢

不是统计源期刊

属于国家级期刊!

《石油石化节能》杂志是国家新闻出版总署批准的石油科技期刊,由中国石油天然气集团有限公司主管、大庆油田有限责任公司主办、大庆油田工程有限公司和大庆油田技术监督中心承办,国内外公开发行,国内统一连续出版物号:CN 23—1572/TE,国际统一连续出版物号:ISSN 2095-1493。《石油石化节能》杂志的办刊宗旨是“宣传石油石化节能方针政策,交流推广节能工作经验,报道石油石化节能领域科研成果及新技术、新工艺、新设备、新材料,推动石油石化节能减排工作稳步发展。

《中国石油石化》杂志原名《中国石油》,是由国务院所属的经济日报报业集团主管、主办的一本面向石油石化行业的国家级综合类新闻月刊。但这好像于 新闻类的刊物,发表学术论文的比较少。

石油化工方向有哪些期刊审稿快发表容易怎么投稿 石油化工类的期刊杂志有: 2.《中国标准化》:《中国标准化》创刊于1958年,由国家质监局主管,中国标准化研究院和中国标准化协会共同主办的标准行业权威学术期刊。宣传重点是政府的标准化方针和政策;标准化基础理论;标准化技术动向;介绍呼类标准制定、实施的情况和经验;报道国内外标准化动态和热点;企业在生产、经销、检验工作中的标准化情况;合格评定工作动态;质量检验和抽查;科技和标准化基础知识等。 3.《石化技术》:是由中国石化集团资产经营管理有限公司北京燕山石化分公司主办的石油化工综合性技术期刊,创刊于1980年,1994年1月经国家科委批准国内外公开发行。本刊国内统一连续出版物号:CN11-3477/TE,国际标准连续出版物号:ISSN1006-0235,由中国国际图书贸易总公司国外发行,国外代号1352Q。 4.《石油和化工设备》:本刊是国家一级协会——中国化工机械动力技术协会会刊,是国家级科技信息型刊物,现为月刊,国内外公开发行。主要报道石油、化工设备及防腐技术的最新动态;交流设备管理经验;介绍石油、石化、化工设备设计、制造、使用、维修、管理和防腐技术,石油、石化、化工设备和防腐蚀方面的新产品、新技术、新材料、新设备,是一本全面反映石油、石化、化工设备及防腐技术的综合性专业期刊。 …………评职称发表论文需要注意些什么呢? 1、发表论文前首先是要了解当地职称政策或者是学校的有关规定,比如对发表论文是否有特殊要求(字符数、文章类型、刊物要求等) 2、 注意时间,不要耽误递交材料的时间。 一般学术期刊从投稿到出刊再到邮递杂志到手,之间需要1-2个月的时间。杂志一般为定期出刊,但不定期截稿,部分投稿较多的杂志截稿会比出刊时间提前2-4个月。 3、鉴别杂志,非法的期刊杂志发表的论文无效。 正规期刊当在国家新闻出版总署查询系统里可以查询到,凡查询不到的,均为非法期刊。作者选择杂志的时候,应当先在新闻出版总署的查询系统里查询后再决定,以防发表论文到非法期刊上而使论文发表无效。 4、控制字符数,杂志都有版面字符要求。 普刊一般在2400-3000字符数1版,如果论文字符数太多,版面要增加,费用就要翻倍。字符数太少,内容不够,审稿通不过。投稿前了解杂志的字符数要求是必要的。 5、论文写作应规范。 论文要有标题,作者,作者单位,摘要,关键词,正文,参考文献(没有可无)等。论文内容要有论点,一些解题类,课堂备案类的文章是最不容易通过审核的。 6、注明联系方式,让编辑能随时与你沟通。 一般情况下,作者投稿需要说明自己的联系方式及通讯地址,这涉及到了杂志邮递,文章沟通等问题。这类联系方式内容是不会被刊登出来的,但必须要添加,一般都添加在文章的最后。

  • 索引序列
  • 中国石油地质研究论文
  • 石油地质论文双语
  • 石油地质类期刊加急
  • 中国石油和石化工程研究会论文
  • 中国石油石化期刊
  • 返回顶部