这是因为细菌感染的原因导致的,土壤应该在冬天的时候进行晾晒,加强管理,注意浇水情况,注意叶面的情况,可以使用一些药物,这样就可以很好的进行预防了,选择合适品种的烟草。
有可能是温度比较低,有可能是没有及时修剪枝叶,有可能是受到了细菌感染,有可能是生长过程中温度比较高,有可能是缺水缺肥;要及时使用农药和化肥,保证土壤肥力和湿度。
(三)烟草病毒病的综合防治由于烟草病毒病的病毒种类多,且多为混杂侵染,传播途径广,因此,对烟草花叶病毒病的防治,须严格实行“预防为主、综合防治”的植保方针,搞好农业、化学等棕防措施。(1)、栽种抗耐病品种 这是防治烟草病毒病既经济、又有效的根本途径。抗TMV病品种有:辽烟8号、辽烟10号和辽烟12号;台烟5号、台烟6号,引进的白肋21、柯克86;辽烟15号、延边9205、中国农业科学院烟草研究所的CV09-2等。近几年方荣祥等转育的抗TMV 的NC89纯合品系,在黑龙江、利川等烟区试验,表现了极强的抗病性。抗CMV的品种有:TT6、TT7系列烤烟品种, NC89、K326、G140均表现一定的抗性,双抗(抗CMV和TMV)的转基因NC89纯合系已经获得,并大面积试验,表现出较好的抗病性。抗马铃薯Y病毒病的品种,NC89和K326抗PVY能力很强,正在进入田间试验。(2)、选用无病株上的种子,从无病株上采种,单收、单藏,并进行细致汰选,防止混入病株残屑。(3)、加强苗床管理,培育无病壮苗。首先要注意苗床选地,苗床要尽可能远离菜地、烤房、晾棚等场所。其次床土及肥料不可混入病株残屑,注意清除苗床附近杂草。第三、苗床的营养土消毒,铲除苗床土中的残留病毒。苗床播种前用1000倍“壮苗灵”+1500倍“天达裕丰”药液、或1000倍“壮苗灵”+1000倍 50%消菌灵药液细致喷洒苗床,杀灭床土中的病毒既其他病菌,防止幼苗感病。第四、培育无病壮苗。烟苗出土后拉十字时,用1000倍“壮苗灵”+1500倍天达裕丰药液喷洒幼苗,促进烟苗根系发达,移栽后缓苗快、抗病力强。第五、加强苗床管理,严格无毒操作规程。及时间苗、定苗,合理施肥浇水、有效地控温控湿。操作时要用肥皂水洗手,严禁吸烟,尽力减少操作工具、手、衣服与烟株接触。(4)适当提早播种、提早移栽。移栽时要剔除病苗。注意烟田不与茄科和十字花科作物间作或轮作,重病地至少要二年内不栽种烟草。(5)加强田期管理,提高烟草的自然抗病能力。烟田要在冬前进行深翻晒土,翌年翻浆时反复细致耙地,熟化耕作层,减少侵染毒源。(6)结合整地增施有机肥料、磷钾肥、微肥和生物菌肥;烟苗定植后,立即喷洒1000倍“壮苗灵”+1500倍天达裕丰药液、或1000倍“壮苗灵”+1000倍 50%消菌灵药液,注意及时追肥、培土、浇水,促使烟株根系发达、生长健壮,提高抗病能力,使烟株尽快通过团棵、旺长这两个最易感病的阶段。田间操作时,事先要用肥皂水洗手,工具要消毒,并禁止吸烟。打顶抹杈要在雨露干后进行,并注意病株打顶、抹杈要最后进行。(6)注意驱避蚜虫、防其传毒。育苗床和烟田,铺设银灰色地膜、或张挂银灰色反光膜条,可有效地驱避蚜虫向烟田内迁飞。(7)药剂防治①、药剂治蚜。栽烟前应把附近茄科作物及杂草上的蚜虫喷药杀灭,避免有翅蚜迁飞传毒。栽烟后40天内要采用黄皿器诱蚜预测,在皿中发现有翅蚜时,田间可立即喷药防治。另外,栽烟时配合使用吡虫啉缓释颗粒剂,可有效地控制烟田蚜虫数量,防止田间病毒病蔓延。
烟草病毒病是世界各烟草产区普遍发生的一类重要病害,国内已从烟草上分离到的病毒有16种。其中发生普遍的有烟草花叶病毒(TMV)、黄瓜花叶病毒(CMV)和马铃薯Y病毒(PVY)。大部分地区病毒病是两种或多种病毒病混合发生。目前我国登记的防治烟草病毒病的生物农药主要有氨基寡糖素、宁南霉素、菇类蛋白多糖、嘧肽霉素。(1)氨基寡糖素2%氨基寡糖素水剂每亩~克或1%氨基寡糖素水剂每亩33~50克、氨基寡糖素水剂每亩100~150克,对水喷雾。(2)宁南霉素8%宁南霉素水剂,使用剂量为每亩~克、2%宁南霉素水剂,使用剂量为每亩300~400克,对水喷雾。(3)菇类蛋白多糖使用菇类蛋白多糖水剂每亩150~200克,对水喷雾。(4)嘧肽霉素使用4%嘧肽霉素水剂每亩200~300克,对水喷雾。
几丁质酶转基因植物几丁质酶(chitinase)广泛存在于植物和微生物中,它能降解几丁质,该酶一般由单基因编码.几丁质是许多植物病原真菌细胞壁的主要成分,因而利用几丁质酶转基因植物在防治植物真菌病害中有重要意义.几丁质酶对真菌的抑制作用是通过水解菌丝尖端新合成的几丁质而发挥的.正常的植物中几丁质酶的活性很低,但当病原真菌侵染植物时能诱导产生很高的几丁质酶活性.Broglie等将菜豆几丁质酶的cDNA与CMV 35S启动子重组,导入烟草和番茄中,转化株对立枯丝核菌的抗性显著提高植物抗毒素转基因植物植物抗毒素是植物对病原真菌侵染抵抗所产生的有毒性低分子化学物质.不同的植物可产生不同的抗毒素,目前已从不同的植物中鉴定了200多种植物抗毒素,它们大多数是类黄酮与类萜类物质.病原真菌对非寄主植物抗毒素比较敏感,植物抗毒素的合成和积累与植物的抗病性密切相关.采用rt-pcr的方法,用针对马铃薯y病毒属病毒3′-端序列的简并引物和烟草花叶病毒(tobacco mosaic virus, tmv)、黄瓜花叶病毒(cucumber mosaic virus, cmv)外壳蛋白基因的特异引物,对采自山东聊城的一表现严重花叶、黄化、蕨叶及果实畸形的南瓜(cucurbita moschata)样品进行了检测,同时扩增到了小西葫芦黄花叶病毒(zucchini yellow mosaic virus, zymv)、西瓜花叶病毒(watermelon mosaic virus, wmv)、tmv和cmv 4种病毒的基因组片段,说明该样品受到zymv、wmv、tmv和cmv 4种病毒的复合侵染。这4个病毒分离物分别被命名为zymv-lc、wmv-lc、tmv-lc和cmv-lc。序列测定及分析结果表明,它们与其它相应病毒分离物外壳蛋白基因核苷酸序列的同源性分别为、、、,推导的氨基酸序列同源性分别为、、、。根据完整cp基因核苷酸序列构建的系统进化树显示:42个zymv 分离物可划分为6个基因型,zymv-lc与con、cal、flo等11个分离物属于基因型Ⅲ。zymv中国分离物的变异性最大,不同地区的zymv分离物表现出一定的地域相关性。wmv-lc与中国hlj、chn两分离物表现出较近的亲缘关系;30个tmv分离物可分为4个组,其中tmv-lc与中国fujian、017等7个分离物属于Ⅱ组;48个cmv分离物分为3个亚组,cmv-lc属于亚组ib。 关键词: 南瓜;小西葫芦黄花叶病毒;烟草花叶病毒;复合侵染;cp基因;序列分析 发表日期: 2007年03月06日 同行评议: (暂时没有) 综合评价:复合侵染南瓜的4种病毒外壳蛋白基因的克隆与序列分析 来自: 免费论文网 复制酶即特异性依赖于病毒RNA的RNA多聚酶。是病毒基因组编码的自身复制不可缺少的部分,特异地合成病毒的正负链RNA。1990年Golemboski等报道他们将TMVU1株编码的复制酶的一部分基因序列,即54kD蛋白基因转入烟草中得到的工程植株用很高浓度的TMVU1(500μg/mL)及TMV RNA(300μg/mL)接种时,均表现出很高的抗性,比一般转外壳蛋白基因的植物介导的植物抗病性高得多。后来豌豆早枯病毒54kD的蛋白基因和CMVFny RNA2编码的切去活性中心部位GDD(Gly-Asp-Asp)的复制酶部分基因片段转入烟草,均获得了高抗的工程植物。此外在马铃薯病毒X和Y中也报道了同样成功的研究结果。转入的这些基因均为切除了复制酶活性中心部位GDD核苷酸序列,大多数人认为表达的这些不稳定蛋白产物会干扰病毒复制过程中复制酶复合体的形成及其功能的行使,从而使工程植株具有抗病性。复制酶策略很有应用前景。 抗病毒转基因植物植物病毒病害已成为植物病害的最大类群之一,随着基因工程技术的发展,为培育抗病毒的植物品种开辟了新的途径.目前已有多种方法获得抗病毒转基因植物.利用植物自身编码的抗病毒基因培育抗病毒植物.病毒外壳蛋白转基因植物病毒复制酶转基因植物.移动蛋白转基因植物.植物病毒系统侵染宿主包括两个重要的过程,病毒通过胞间连丝在细胞间移动和通过微管束系统在组织器官间的移动.核糖体失活蛋白转基因植物
被遗忘的英格兰玫瑰很多人都知道沃森和克里克发现DNA双螺旋结构的故事,更进一步,有人还可能知道他们与莫里斯·威尔金斯因此分享了1962年的诺贝尔生理学或医学奖。然而,有多少人记得罗莎琳德·富兰克林(Rosalind Franklin),以及她在这一历史性的发现中做出的贡献?富兰克林1920年生于伦敦,15岁就立志要当科学家,但父亲并不支持她这样做。她早年毕业于剑桥大学,专业是物理化学。1945年,当获得博士学位之后,她前往法国学习X射线衍射技术。她深受法国同事的喜爱,有人评价她“从来没有见到法语讲的这么好的外国人”。1951年,她回到英国,在伦敦大学国王学院取得了一个职位。在那时候,人们已经知道了脱氧核糖核酸(DNA)可能是遗传物质,但是对于DNA的结构,以及它如何在生命活动中发挥作用的机制还不甚了解。就在这时,富兰克林加入了研究DNA结构的行列——在相当不友善的环境下。她负责起实验室的DNA项目时,有好几个月没有人干活。同事威尔金斯不喜欢她进入自己的研究领域,但他在研究上却又离不开她。他把她看作搞技术的副手,她却认为自己与他地位同等,两人的私交恶劣到几乎不讲话。在那时的科学界,对女科学家的歧视处处存在,女性甚至不被准许在大学的高级休息室里用午餐。她们无形中被排除在科学家间的联系网络之外,而这种联系对了解新的研究动态、交换新理念、触发灵感极为重要。富兰克林在法国学习的X射线衍射技术在研究中派上了用场。X射线是波长非常短的电磁波。医生通常用它来透视,而物理学家用它来分析晶体的结构。当X射线穿过晶体之后,会形成衍射图样——一种特定的明暗交替的图形。不同的晶体产生不同的衍射图样,仔细分析这种图形人们就能知道组成晶体的原子是如何排列的。富兰克林精于此道,她成功的拍摄了DNA晶体的X射线衍射照片。 富兰克林拍摄的DNA晶体的X射线衍射照片,这张照片正是发现DNA结构的关键 此时,沃森和克里克也在剑桥大学进行DNA结构的研究,威尔金斯在富兰克林不知情的情况下给他们看了那张照片。根据照片,他们很快就领悟到了DNA的结构——现在已经成为了一个众所周知的事实——两条以磷酸为骨架的链相互缠绕形成了双螺旋结构,氢键把它们连结在一起。他们在1953年5月25日出版的英国《自然》杂志上报告了这一发现。这是生物学的一座里程碑,分子生物学时代的开端。当沃森等人的论文发表的时候,富兰克林已经离开了国王学院,威尔金斯似乎很庆幸这个不讨他喜欢的伙伴的离去。然而富兰克林的贡献是毋庸置疑的:她分辨出了DNA的两种构型,并成功的拍摄了它的X射线衍射照片。沃森和克里克未经她的许可使用了这张照片,但她不以为忤,反而为他们的发现感到高兴,还在《自然》杂志上发表了一篇证实DNA双螺旋结构的文章。这个故事的结局有些伤感。当1962年沃森、克里克和威尔金斯获得诺贝尔生理学或医学奖的时候,富兰克林已经在4年前因为卵巢癌而去世。按照惯例,诺贝尔奖不授予已经去世的人。此外,同一奖项至多只能由3个人分享,假如富兰克林活着,她会得奖吗?性别差异是否会成为公平竞争的障碍?后人为了这个永远不能有答案的问题进行过许多猜测与争论。与没有获得诺贝尔奖相比,富兰克林的早逝更加令人惋惜。她是一位才华横溢的女科学家,然而知道她和她的贡献的人寥寥无几。沃森在《双螺旋》(1968年出版)一书中甚至公开诋毁富兰克林的形象与功绩,歪曲她与威尔金斯之间的恩怨。许多关于双螺旋的书籍和文章根本不提及富兰克林,尽管克里克在很多年后承认“她离真相已经只有两步”。富兰克林始终相信人们对才能和专业水准的尊重会与性别无关,但她正是这倾斜的世界中女科学家命运的代表。如果她是男性则可能如何,这种假设固然没有意义,但性别的确一直是她在科研领域发挥才能的绊脚石,并使她的成就长时间得不到应有的认可。
沃森Watson, James Dewey美国生物学家克里克Crick, Francis Harry Compton英国生物物理学家20世纪50年代初,英国科学家威尔金斯等用X射线衍射技术对DNA结构潜心研究了3年,意识到DNA是一种螺旋结构。女物理学家富兰克林在1951年底拍到了一张十分清晰的DNA的X射线衍射照片。1952年,美国化学家鲍林发表了关于DNA三链模型的研究报告,这种模型被称为α螺旋。沃森与威尔金斯、富兰克林等讨论了鲍林的模型。威尔金斯出示了富兰克林在一年前拍下的DNAX射线衍射照片,沃森看出了DNA的内部是一种螺旋形的结构,他立即产生了一种新概念:DNA不是三链结构而应该是双链结构。他们继续循着这个思路深入探讨,极力将有关这方面的研究成果集中起来。根据各方面对DNA研究的信息和自己的研究和分析,沃森和克里克得出一个共识:DNA是一种双链螺旋结构。这真是一个激动人心的发现!沃森和克里克立即行动,马上在实验室中联手开始搭建DNA双螺旋模型。从1953年2月22日起开始奋战,他们夜以继日,废寝忘食,终于在3月7日,将他们想像中的美丽无比的DNA模型搭建成功了。沃森、克里克的这个模型正确地反映出DNA的分子结构。此后,遗传学的历史和生物学的历史都从细胞阶段进入了分子阶段。由于沃森、克里克和威尔金斯在DNA分子研究方面的卓越贡献,他们分享1962年的诺贝尔生理医学奖。詹姆斯·沃森沃森(出生于1928年)美国生物学家.20世纪40年代末和50年代初,在DNA被确认为遗传物质之后,生物学家们不得不面临着一个难题:DNA应该有什么样的结构,才能担当遗传的重任?它必须能够携带遗传信息,能够自我复制传递遗传信息,能够让遗传信息得到表达以控制细胞活动,并且能够突变并保留突变。这4点,缺一不可,如何建构一个DNA分子模型解释这一切?当时主要有三个实验室几乎同时在研究DNA分子模型。第一个实验室是伦敦国王学院的威尔金斯、弗兰克林实验室,他们用X射线衍射法研究DNA的晶体结构。当X射线照射到生物大分子的晶体时,晶格中的原子或分子会使射线发生偏转,根据得到的衍射图像,可以推测分子大致的结构和形状。第二个实验室是加州理工学院的大化学家莱纳斯·鲍林(Linus Pauling)实验室。在此之前,鲍林已发现了蛋白质的a螺旋结构。第三个则是个非正式的研究小组,事实上他们可说是不务正业。23岁的年轻的遗传学家沃森于1951年从美国到剑桥大学做博士后时,虽然其真实意图是要研究DNA分子结构,挂着的课题项目却是研究烟草花叶病毒。比他年长12岁的克里克当时正在做博士论文,论文题目是“多肽和蛋白质:X射线研究”。沃森说服与他分享同一个办公室的克里克一起研究DNA分子模型,他需要克里克在X射线晶体衍射学方面的知识。他们从1951年10月开始拼凑模型,几经尝试,终于在1953年3月获得了正确的模型。关于这三个实验室如何明争暗斗,互相竞争,由于沃森一本风靡全球的自传《双螺旋》而广为人知。值得探讨的一个问题是:为什么沃森和克里克既不像威尔金斯和弗兰克林那样拥有第一手的实验资料,又不像鲍林那样有建构分子模型的丰富经验(他们两个人都是第一次建构分子模型),却能在这场竞赛中获胜?这些人中,除了沃森,都不是遗传学家,而是物理学家或化学家。威尔金斯虽然在1950年最早研究DNA的晶体结构,当时却对DNA究竟在细胞中干什么一无所知,在1951年才觉得DNA可能参与了核蛋白所控制的遗传。弗兰克林也不了解DNA在生物细胞中的重要性。鲍林研究DNA分子,则纯属偶然。他在1951年11月的《美国化学学会杂志》上看到一篇核酸结构的论文,觉得荒唐可笑,为了反驳这篇论文,才着手建立DNA分子模型。他是把DNA分子当作化合物,而不是遗传物质来研究的。这两个研究小组完全根据晶体衍射图建构模型,鲍林甚至根据的是30年代拍摄的模糊不清的衍射照片。不理解DNA的生物学功能,单纯根据晶体衍射图,有太多的可能性供选择,是很难得出正确的模型的。沃森在1951年到剑桥之前,曾经做过用同位素标记追踪噬菌体DNA的实验,坚信DNA就是遗传物质。据他的回忆,他到剑桥后发现克里克也是“知道DNA比蛋白质更为重要的人”。但是按克里克本人的说法,他当时对DNA所知不多,并未觉得它在遗传上比蛋白质更重要,只是认为DNA作为与核蛋白结合的物质,值得研究。对一名研究生来说,确定一种未知分子的结构,就是一个值得一试的课题。在确信了DNA是遗传物质之后,还必须理解遗传物质需要什么样的性质才能发挥基因的功能。像克里克和威尔金斯,沃森后来也强调薛定谔的《生命是什么?》一书对他的重要影响,他甚至说他在芝加哥大学时读了这本书之后,就立志要破解基因的奥秘。如果这是真的,我们就很难明白,为什么沃森向印第安那大学申请研究生时,申请的是鸟类学。由于印第安那大学动物系没有鸟类学专业,在系主任的建议下,沃森才转而从事遗传学研究。当时大遗传学家赫尔曼·缪勒(Hermann Muller)恰好正在印第安那大学任教授,沃森不仅上过缪勒关于“突变和基因”的课(分数得A),而且考虑过要当他的研究生。但觉得缪勒研究的果蝇在遗传学上已过了辉煌时期,才改拜研究噬菌体遗传的萨尔瓦多·卢里亚(Salvador Luria)为师。但是,缪勒关于遗传物质必须具有自催化、异催化和突变三重性的观念,想必对沃森有深刻的影响。正是因为沃森和克里克坚信DNA是遗传物质,并且理解遗传物质应该有什么样的特性,才能根据如此少的数据,做出如此重大的发现。他们根据的数据仅有三条:第一条是当时已广为人知的,即DNA由6种小分子组成:脱氧核糖,磷酸和4种碱基(A、G、T、C),由这些小分子组成了4种核苷酸,这4种核苷酸组成了DNA.第二条证据是最新的,弗兰克林得到的衍射照片表明,DNA是由两条长链组成的双螺旋,宽度为20埃。第三条证据是最为关键的。美国生物化学家埃尔文·查戈夫(Erwin Chargaff)测定DNA的分子组成,发现DNA中的4种碱基的含量并不是传统认为的等量的,虽然在不同物种中4种碱基的含量不同,但是A和T的含量总是相等,G和C的含量也相等。查加夫早在1950年就已发布了这个重要结果,但奇怪的是,研究DNA分子结构的这三个实验室都将它忽略了。甚至在查加夫1951年春天亲访剑桥,与沃森和克里克见面后,沃森和克里克对他的结果也不加重视。在沃森和克里克终于意识到查加夫比值的重要性,并请剑桥的青年数学家约翰·格里菲斯(John Griffith)计算出A吸引T,G吸引C,A+T的宽度与G+C的宽度相等之后,很快就拼凑出了DNA分子的正确模型。沃森和克里克在1953年4月25日的《自然》杂志上以1000多字和一幅插图的短文公布了他们的发现。在论文中,沃森和克里克以谦逊的笔调,暗示了这个结构模型在遗传上的重要性:“我们并非没有注意到,我们所推测的特殊配对立即暗示了遗传物质的复制机理。”在随后发表的论文中,沃森和克里克详细地说明了DNA双螺旋模型对遗传学研究的重大意义:一、它能够说明遗传物质的自我复制。这个“半保留复制”的设想后来被马修·麦赛尔逊(Matthew Meselson)和富兰克林·斯塔勒(Franklin )用同位素追踪实验证实。二、它能够说明遗传物质是如何携带遗传信息的。三、它能够说明基因是如何突变的。基因突变是由于碱基序列发生了变化,这样的变化可以通过复制而得到保留。但是遗传物质的第四个特征,即遗传信息怎样得到表达以控制细胞活动呢?这个模型无法解释,沃森和克里克当时也公开承认他们不知道DNA如何能“对细胞有高度特殊的作用”。不过,这时,基因的主要功能是控制蛋白质的合成,这种观点已成为一个共识。那么基因又是如何控制蛋白质的合成呢?有没有可能以DNA为模板,直接在DNA上面将氨基酸连接成蛋白质?在沃森和克里克提出DNA双螺旋模型后的一段时间内,即有人如此假设,认为DNA结构中,在不同的碱基对之间形成形状不同的“窟窿”,不同的氨基酸插在这些窟窿中,就能连成特定序列的蛋白质。但是这个假说,面临着一大难题:染色体DNA存在于细胞核中,而绝大多数蛋白质都在细胞质中,细胞核和细胞质由大分子无法通过的核膜隔离开,如果由DNA直接合成蛋白质,蛋白质无法跑到细胞质。另一类核酸RNA倒是主要存在于细胞质中。RNA和DNA的成分很相似,只有两点不同,它有核糖而没有脱氧核糖,有尿嘧啶(U)而没有胸腺嘧啶(T)。早在1952年,在提出DNA双螺旋模型之前,沃森就已设想遗传信息的传递途径是由DNA传到RNA,再由RNA传到蛋白质。在1953~1954年间,沃森进一步思考了这个问题。他认为在基因表达时,DNA从细胞核转移到了细胞质,其脱氧核糖转变成核糖,变成了双链RNA,然后再以碱基对之间的窟窿为模板合成蛋白质。这个过于离奇的设想在提交发表之前被克里克否决了。克里克指出,DNA和RNA本身都不可能直接充当连接氨基酸的模板。遗传信息仅仅体现在DNA的碱基序列上,还需要一种连接物将碱基序列和氨基酸连接起来。这个“连接物假说”,很快就被实验证实了。1958年,克里克提出了两个学说,奠定了分子遗传学的理论基础。第一个学说是“序列假说”,它认为一段核酸的特殊性完全由它的碱基序列所决定,碱基序列编码一个特定蛋白质的氨基酸序列,蛋白质的氨基酸序列决定了蛋白质的三维结构。第二个学说是“中心法则”,遗传信息只能从核酸传递给核酸,或核酸传递给蛋白质,而不能从蛋白质传递给蛋白质,或从蛋白质传回核酸。沃森后来把中心法则更明确地表示为遗传信息只能从DNA传到RNA,再由RNA传到蛋白质,以致在1970年发现了病毒中存在由RNA合成DNA的反转录现象后,人们都说中心法则需要修正,要加一条遗传信息也能从RNA传到DNA.事实上,根据克里克原来的说法,中心法则并无修正的必要。碱基序列是如何编码氨基酸的呢?克里克在这个破译这个遗传密码的问题上也做出了重大的贡献。组成蛋白质的氨基酸有20种,而碱基只有4种,显然,不可能由1个碱基编码1个氨基酸。如果由2个碱基编码1个氨基酸,只有16种(4的2次方)组合,也还不够。因此,至少由3个碱基编码1个氨基酸,共有64种组合,才能满足需要。1961年,克里克等人在噬菌体T4中用遗传学方法证明了蛋白质中1个氨基酸的顺序是由3个碱基编码的(称为1个密码子)。同一年,两位美国分子遗传学家马歇尔·尼伦伯格(Marshall Nirenberg)和约翰·马特哈伊(John Matthaei)破解了第一个密码子。到1966年,全部64个密码子(包括3个合成终止信号)被鉴定出来。作为所有生物来自同一个祖先的证据之一,密码子在所有生物中都是基本相同的。人类从此有了一张破解遗传奥秘的密码表。DNA双螺旋模型(包括中心法则)的发现,是20世纪最为重大的科学发现之一,也是生物学历史上惟一可与达尔文进化论相比的最重大的发现,它与自然选择一起,统一了生物学的大概念,标志着分子遗传学的诞生。这门综合了遗传学、生物化学、生物物理和信息学,主宰了生物学所有学科研究的新生学科的诞生,是许多人共同奋斗的结果,而克里克、威尔金斯、弗兰克林和沃森,特别是克里克,就是其中最为杰出的英雄。克里克弗朗西斯·哈里·康普顿·克里克(Francis Harry Compton Crick ——)生于英格兰中南部一个郡的首府北安普敦。小时酷爱物理学。1934年中学毕业后,他考入伦敦大学物理系,3年后大学毕业,随即攻读博士学位。然而,1939年爆发的第二次世界大战中断了他的学业,他进入海军部门研究鱼雷,也没有什么成就。待战争结束,步入"而立之年"的克里克在事业上仍一事无成。1950年,也就是他34岁时考入剑桥大学物理系攻读研究生学位,想在著名的卡文迪什实验室研究基本粒子。这时,克里克读到著名物理学家薛定谔的一本书《生命是什么》,书中预言一个生物学研究的新纪元即将开始,并指出生物问题最终要靠物理学和化学去说明,而且很可能从生物学研究中发现新的物理学定律。克里克深信自己的物理学知识有助于生物学的研究,但化学知识缺乏,于是开始发愤攻读有机化学、X射线衍射理论和技术,准备探索蛋白质结构问题。1951年,美国一位23岁的生物学博士沃森来到卡文迪什实验室,他也受到薛定谔《生命是什么》的影响。克里克同他一见如故,开始了对遗传物质脱氧核糖核酸DNA分子结构的合作研究。他们虽然性格相左,但在事业上志同道合。沃森生物学基础扎实,训练有素;克里克则凭借物理学优势,又不受传统生物学观念束缚,常以一种全新的视角思考问题。他们二人优势互补,取长补短,并善予吸收和借鉴当时也在研究DNA分子结构的鲍林、威尔金斯和弗兰克林等人的成果,结果经不足两年时间的努力便完成了DNA分子的双螺旋结构模型。而且,克里克以其深邃的科学洞察力,不顾沃森的犹豫态度,坚持在他们合作的第一篇论文中加上“DNA的特定配对原则,立即使人联想到遗传物质可能有的复制机制”这句话,使他们不仅发现了DNA的分子结构,而且丛结构与功能的角度作出了解释。1962年,46岁的克里克同沃森、威尔金斯一道荣获诺贝尔生物学或医学奖。后来,克里克又单独首次提出蛋白质合成的中心法则,即遗传密码的走向是:DNA→RNA→蛋白质。他在遗传密码的比例和翻译机制的研究方面也做出了贡献。1977年,克里克离开了剑桥,前往加州圣地亚哥的索尔克研究院担任教授。2004年7月28日深夜,弗朗西斯·克里克在与结肠癌进行了长时间的搏斗之后,在加州圣地亚哥的桑顿医院里逝世,享年88岁。
自己对号哈1、植物抗虫基因工程 在国家"863"计划的支持下,中国农业科学院生物技术研究所成功地人工合成和改造了植物抗虫害的Bt基因,获得了高抗棉铃虫的转基因棉花品种和品系。此外,中国农业科学院棉花所、南京农业大学和山西省农科院棉花所等单位还以转基因抗虫棉为亲本,育成了一批抗虫能力在80%以上,单产比主栽品种高15%以上的转基因抗虫杂交棉组合。拥有我国自主知识产权的抗虫棉花的育成和大面积推广应用,标志着我国转基因植物研究开始进入产业化发展阶段。 为了有效控制水稻害虫的危害,中国农业科学院生物技术研究所和华中农业大学合作成功地获得了转Bt基因杂交水稻,对二化螟、三化螟和稻纵卷叶螟的毒杀效果达到95%。浙江农业大学(现已并入浙江大学)也成功地将Bt基因导入水稻早稻品种。目前转Bt基因抗螟虫水稻已进入环境释放阶段。中国科学院遗传所研制成功的转CpTI基因抗虫水稻也分别获准在北京、福建和山西进入中间试验和环境释放。此外,中国农业大学研制的转基因抗玉米螟玉米、复旦大学遗传所研制的转基因抗褐习虱水稻、中国科学院微生物研究所和中国林业科学院林研所研制的抗虫转基因杨树也都进入环境释放阶段。 2、抗病基因工程 中国农业科学院生物技术研究所已成功地人工合成和改造了来自天蚕蛾的抗菌肽基因,并导入我国马铃薯主栽品种米拉,获得抗病性提高I∽Ⅲ级的抗青枯病的转基因株系,现已经农业部批准在四川省进行环境释放。目前抗菌肽基因已经供给国内10多家研究单位,进行抗水稻白叶枯病、马铃薯软腐病、花生和番茄的青枯病、大白菜软腐病、柑桔细菌性溃疡病、桑树和桉树青枯病、樱桃根肿病等抗细菌病基因工程研究。 白叶枯病也是危害水稻生产的最为严重的病害之一。中国农业科学院生物技术研究所与国外合作研制成功的转Xa21基因抗白叶枯病水稻明恢63株系已分别在安徽省和海南省进行环境释放;华中农业大学和中国科学院遗传所研制的转Xa21基因抗白叶枯病水稻也分别进入中试阶段。 真菌病也是严重影响农作物生产的一类病害。中国农业科学院生物技术研究所与中国科学院上海植物生理研究所等单位合作,成功地克隆和修饰了植物来源的几丁质酶基因和葡萄糖氧化酶基因,通过花粉管通道法分别将这两个基因导入棉花,获得了抗黄萎病和枯萎病和枯萎的转基因棉花,这些株系在病圃中表现良好,现已进入中试阶段。 在抗病毒的基因工程方面,国内也取得了很好进展。北京大学克隆了烟草花叶病毒TMV、黄瓜花叶病毒CMV、马铃薯X病毒等中国株系以及水稻矮缩病毒的外壳蛋白基因,研制成功的抗黄瓜花叶病毒甜椒和番茄都已经分别在云南和福建进入中试或环境释放。中国农业科学院油料研究所研制的转基因抗条纹病毒花生、北京市农林科学院蔬菜研究中心育成的抗芜菁花叶病毒白菜和新疆农科院核技术生物技术所获得的抗黄瓜花叶病毒转基因甜瓜都已分别进入中试。此外,国内一些研究单位还获得了抗环斑病毒(PRSV)的番木瓜,抗黄矮病和黄花叶病毒的小麦等抗病毒病的基因工程植株。
曹原的主要研究内容便是魔角石墨烯,而这些研究很有可能帮助他揭开超导的原理。如果基于他的发现能够研制出常温超导材料,那么这个世界就会发生翻天地覆的变化。目前的曹原已经成为了这个领域的领军人物。
因为这种探测器对检测新冠病毒有着特殊的作用,可以和新冠病毒发生反应。
石墨烯探测器能够在五分钟检测出信管病毒,主要原因是因为研究人员将石墨烯薄片和能够靶向新冠病毒上刺突蛋白的抗体结合在一起,所以可以快速检测出来。根据研究人员表示,如果能够加一利用这种科技,以后也可以用来检测新冠病毒的变体。
石墨烯检测器上的石墨烯薄片只有有票的千分之一厚度,它和能够靶向新冠病毒上刺突蛋白的抗体相结合。如果检测的唾液含有新冠病毒,那么就会让石墨烯薄片发生变化,会产生震动,如果没有变化,则没有患新冠病毒。因为在检测的过程中借助了拉曼光谱仪,所以可以在五分钟之内检测出来。
石墨烯是由碳组成的单原子厚的材料。碳原子是由化学键相连接的,所以它产生的弹性以及运动产生的共振声子可以被精确地测量。所以,新冠病毒的分子和石墨烯相互作用的时候,就可以产生非常特殊的,可量化的共振振动。
能够快速的检测出新冠病毒,便是又是之一。而且研究者们表示,这款石墨烯探测器不仅可以快速检测出新冠病毒,相对来说,价格也便宜很多。不过目前还没有应用的十分广泛,希望未来可以早日推广。
很多人可能第一次听到石墨烯探测器,其实它的确算是很新的研究成果,不过作为在冠状病毒检测领域的一个突破,希望未来可以更多的应用,以比现如今新冠病毒检测方式更便宜的面目出现在市场上,才是造福全人类的科学研究。希望人类可以早日战胜新冠病毒,让每个人都能够脱下口罩,好好的生活。
当然是不可能的,如果是真的,那绝对是全球人类的福音,不过国外都没有石墨烯的能量房,只有咱们这里率先发明,明显是有问题的,还是要有最基础的分辨能力,不要被洗脑,如果有人这么说,一定不是真的
美国研究人员说,他们找到一种可以使那些抗药性菌株停止繁殖的抗流感新药,为治疗流感带来希望。《科学》杂志上发表的报告说,科研人员已经在老鼠身上的实验上取得了有效的结果。研究人员目前正在其它动物身上实验,测试它的疗效。这种新药通过阻断流感病毒表面的一种重要酶(神经氨酸苷酶),从而阻止它侵袭其它的细胞。这种酶使流感病毒与人体细胞之间产生联系,再去传染新的细胞。科学家研制出来的这种新型抗流感药可以永久性地附着在这种酶上,阻断它的移动,继而阻止病毒继续扩散传染别的细胞。科学家把这种新药叫做DFSAs, 由于药物的作用,流感病毒如果想继续移动繁殖的话只能先自我毁灭,因此无法再感染别的细胞。
一、病毒和检测1. 2009年5月6日,加拿大完成对3个甲型H1N1流感病毒样本的基因测序工作,这是世界上首次完成对这种新病毒的基因测序,将为研制疫苗打下基础。2. 2009年5月7日,我国军事医学科学院军事兽医研究所研制出甲型H1N1流感病毒检测芯片,这种基因芯片可同时对12个样品进行快速、灵敏、特异性检测,能够检测的项目包括1-16种亚型甲型流感病毒、当前流行的甲型H1N1流感病毒、以及H1、H3、H5、H7、H9等亚型流感病毒,5小时内便可获得检测结果。3. 美国食品药品管理局(FDA)批准法国一家新的流感疫苗生产厂投产,该厂不仅生产季节性流感疫苗,必要时还可用来生产甲型H1N1流感疫苗。另外,甲型H1N1流感疫苗有望被纳入WHO疫苗计划。法国流感病毒参照中心主任利纳表示,鉴于甲型H1N1流感病毒正在世界各地扩散,针对它的疫苗有望被纳入WHO疫苗计划。利纳表示,WHO每年都会根据当年的情况,预测出季节流感病毒的种类,并针对病毒的特性决定生产何种疫苗。二、疫苗研发方面在疫苗研发方面,美国已启动识别出甲型流感病毒毒株疫苗项目。美国国家过敏症和传染病研究所主任福奇表示,分离出病毒毒株后,疫苗研发进入培育种子病毒阶段。种子病毒可用于临床试验的疫苗开发。但他警告,当前科学界对甲型流感的了解尚处在非常初步的阶段,这种病毒会造成什么影响还很难讲。WHO专家小组于2009年5月14日开会,就是否建议药厂全力以赴生产甲型H1N1流感疫苗提出建议,并将把讨论结果呈交WHO 总干事,由其宣布WHO 的决定。三、预防方面我国中医药管理局给出5套中医方案预防甲型流感,主要针对成人和儿童。专家委员会成员刘清泉表示,在甲型H1N1 疫苗没有研发出来的情况下,中医经典的预防方法可以借鉴,但不建议大量服用药物。四、病毒检测和病原学研究我国研制的病毒检测试剂盒香港验证成功,三小时内获得结果。由达安基因股份有限公司与广州华生达救援生物技术有限公司协作研制出的新发人甲型(H1N1)流感病毒核酸检测试剂盒和通用型甲型流感病毒核酸检测试剂盒在香港大学成功获得验证。病例验证结果表明,上述两种试剂盒具有良好的特异性和灵敏性,并能够在三个小时的时间内获得结果。五、药物研制我国自主研发抗病毒一类新药正开展Ⅱ期临床试验。国家食品药品监督管理局指出,中国自主研发的注射剂“帕拉米韦三水合物”为抗病毒一类新药,2008 年6月被SDA批准进行临床试验。已完成了I期临床试验,正在开展Ⅱ期临床试验。此外,国际公认流感治疗药物“达菲”在中国上市。我国两家企业(广东东阳光药业公司和上海制药集团)已被授权生产“达菲”。另外,我国国家食品药品监督管理局已经做好启动抗流感药物特别审批准备。国家食品药品监督管理局紧密跟踪抗流感药物生产和研发情况,根据疫情变化情况以及世界卫生组织(WHO)对甲型流感警戒级别的调整变化情况,依法进行特殊审批和特别审批程序预案的制定,做好应急药品和医疗器械生产和进口审批准备工作。
2009年3月底至4月中旬,墨西哥、美国等地接连爆发甲型H1N1 流感病毒疫情。随着甲型H1N1流感在全世界的迅速蔓延,我国各地先后出现了甲型H1N1流感病例报告。学校是一个人员相对集中的场所,同时高校大学生是易受到社会上疫情危及的高危群体,特别在假期后学生从各地返校,尤易发生甲型H1N1流感传染病传播,现有很多高校相继出现感染病例。现分析引起高校甲型H1N1流感暴发的因素及其所应采取的应对措施,以控制甲型H1N1流感的暴发流行。�0�2�0�2�0�2 1 引起甲型H1N1流感暴发的因素�0�2�0�2�0�2 疾病本身特点�0�2�0�2�0�2 病毒的变异型�0�2�0�2�0�2 甲型H1N1流感病毒属正黏液病毒科甲型流感病毒属的单股RNA 病毒。根据其HA和NA的不同抗原特性可将甲型流感病毒分为多个亚型。HA 和NA具有高度变异性[1]。它可能在病毒复制过程中为了逃避宿主免疫系统,在选择压力下不断发生突变和变异。在不同地区或者不同物种传播的过程中,病毒发生变异引起HA或NA蛋白的微小改变[2]。初步研究检测出这种病毒是甲型流感病毒, 携带有亚型猪流感病毒毒株,包含有禽流感、猪流感和人流感三种流感病毒的脱氧核糖核酸基因片断,同时拥有亚洲猪流感和非洲猪流感病毒特征。是一种抗原发生较大变异的新型甲型流感病毒, 传染性大, 传播迅速。�0�2�0�2�0�2 传播途径的特殊性�0�2�0�2�0�2 甲型H1N1流感病毒主要通过呼吸道飞沫和接触传播的方式在人与人之间流行,流感患者和隐性感染者为主要传染源。人感染甲型H1N1流感病毒的潜伏期为1~7d,较人流感、禽流感潜伏期长,潜伏期内具有潜在传染性[2] 。�0�2�0�2�0�2 甲型H1N1流感的群间传播主要是以感染者的咳嗽和喷嚏为媒介,在人群密集的环境中更易发生感染,而越来越多的研究显示:微量病毒可留存在桌面、电话机或其他平面上,再通过手指与眼、鼻、口的接触来传播。如果接触带有甲型H1N1 流感病毒的物品,而后又触碰自己的鼻子和口腔,就会受到感染。感染者有可能在出现症状前感染其它人,感染后一般在一周或一周后发病。小孩的传染性会更久一些[3]。�0�2�0�2�0�2 学校特殊环境。�0�2�0�2�0�2 学校是一个人员相对集中的场所,呼吸道传染病在学校的高发与学校易感人群聚集之间有着密切的联系。学生学习、生活相对比较集中,彼此之间接触较为紧密。而且目前许多高校学生生活不规律,沉溺于上网, 作息时间不定, 甚至通宵达旦地熬夜, 极易造成身体抵抗力下降而感染上某些传染病[4]。这为流感的传播提供了易感宿主。�0�2�0�2�0�2 学生防护意识缺乏�0�2�0�2�0�2 学生防护意识缺乏,很多人认为自己年轻气盛、身强体壮、免疫力强,对疾病有着较强的抵抗力从而放松了警惕性;或者缺乏疾病相关的认识。�0�2�0�2�0�2 2 对策�0�2�0�2�0�2 针对疾病本身�0�2�0�2�0�2 针对传染病的预防最主要方法是从感染链的发生的三个途径去控制:控制感染源,切断传播途径,保护易感宿主。�0�2�0�2�0�2 感染患者和隐性感染者为主要传染源。人感染甲型H1N1流感病毒的潜伏期为1~7d,较人流感、禽流感潜伏期长,潜伏期内具有潜在传染性。避免接触有流感症状(发热咳嗽流涕等)的病人或肺炎病人,如发现疑似病例或确诊病例要妥善进行隔离,并且及时做好疫情报告。飞沫传播是最主要的传播途,注意个人卫生,经常使用肥皂和清水洗手,尤其在咳嗽或打喷嚏后。当接触疑为流感病毒污染的物体时不要用手摸脸,不用手揉眼睛、抠鼻子或接触口。咳嗽或打喷嚏时用纸巾遮住口鼻,然后将纸巾丢进垃圾桶。房间经常通风,保持室内空气的流动;并尽量少去人口密集的公共场所以减少和流感患者的接触。努力提高自身的免疫力,增加户外活动和锻炼,均衡饮食、合理营养,注意做好防寒保暖等个人防护;勤洗手,养成良好的个人卫生习惯。 �0�2�0�2�0�2 学校�0�2�0�2�0�2 学校加强监管措施 �0�2�0�2�0�2 认真贯彻落实关于做好甲型H1N1流感防控工作的有关文件精神,以构建“预防为主、防控结合”长效管理与应急处理机制为根本,提高快速反应和应急处理能力,统一认识、统一指挥、统一协调、统一行动,做到“早发现、早报告、早隔离、早治疗”,确保发生疫情时,能够及时、迅速、高效、有序地处理,以控制疫情蔓延扩散,维护学校安全与稳定。 �0�2�0�2�0�2 加强环境卫生管理,保持学习、生活环境的清洁。教室、宿舍、餐厅、图书馆等学生和教职员工学习、工作、生活场所要注意开窗通风,保持室内空气流通;要教育学生尽量避免到人群聚集性场所,注意日常个人卫生,养成良好的卫生习惯;有病一定要及时报告班主任或辅导员。�0�2�0�2�0�2 学校积极建立晨检制度,每日对在校学生和教职工进行晨检,仔细询问是否有发热、咳嗽、咽痛等流感样症状。一旦出现发热、咳嗽、咽痛等流感样症状,应指导学生戴上口罩,到校医院或学校所在地医疗机构发热门诊就诊,其间不得返校参加正常教学活动。�0�2�0�2�0�2 学校要严格执行因病缺勤登记追踪制度,应指定专人每日负责学生和教职员工因病缺勤登记和随访工作。一旦出现学生、教职工因病缺勤,应及时进行缺勤原因追踪,如与甲型H1N1流感有关,应在第一时间向当地疾控部门报告,并根据当地疾控部门要求采取适当防控措施。�0�2�0�2�0�2 加强大型活动管理。不宜举办大型室内集会活动,取消一些非必需的大型群体和集中性活动,尽量避免大班上课。�0�2�0�2�0�2 建立大学生管理体系�0�2�0�2�0�2 在学生会新增设保健部,让学生参与学校卫生防疫工作,是新形势下加强学校卫生工作的方式之一。班级设立卫生保健员、系卫生保健部、系部书记、学校卫生防疫小组。一级级一层层监管。学生干部参与,形成了在学院卫生防疫专门机构的指导下,学生传递卫生防疫工作信息的联系网络和工作网络,使学校卫生防疫各项工作能落到实处。学生干部的组织能力、管理能力、协调能力、吃苦能力和人际关系处理能力得到了很大的提高,促进了学生干部的全面发展[5]。�0�2�0�2�0�2 加强健康教育、增强个人防护�0�2�0�2�0�2 学生健康教育为从根本上提高师生的文明卫生素质和自我保健能力[6]。学校应多利用广播、校报、黑板报、班会、讲座等各种形式宣传健康知识,普及甲流感的相关知识,培养学生自我防范意识,和增强卫生防病的自觉性。关于学校防护的 可以了不
哪方面的》?是普通居民的自我保护,还是卫生工作者的防护,还是实验室的防护?
目前的科技医疗水平,各种疾病都能很好的治疗了,所以先要调整好心态别慌张,近些年,为了应对慢性乙肝抗病毒治疗中的耐药问题,有关人士提出先使用耐药率低的药物,如我们提到的润众,也就是恩替卡韦分散片来进行治疗。假如出现了药物耐药,可以使用名正 阿德福韦酯进行替代或联合治疗的策略,这样仍可有效抑制HBV DNA的复制。慢性乙肝抗病毒治疗疗程较长,所以在治疗中要更加关注药物的安全性以及病毒是否发生变异,建议大家在治疗期间,一定要坚持三个月进行一次复查复诊,针对病情变化及时调整治疗策略和治疗药物,一旦发现HBV DNA出现反弹,要警惕是否发生病毒变异。
一般的是可以治好的。乙型肝炎的治疗:土茯苓30克,生地榆15克,老紫草15克,胡黄连10克,红山栀10克,丹参15克,郁金10克,草河车10克,熟大黄4克。水牛角粉10克冲服。 上药水煎服,每日一剂,连服3个月。 发热的,加金银花15克,生石膏30克;食欲不振的,加白蒄仁10克,炒莱菔10克;疲乏无力的,加太子参15克,生黄芪15克;腰背酸痛的,加女贞子10克,宣木瓜15克,五味子15克;肝区灼痛的,加龙胆草4克,川楝子15克;脘腹胀满的,加厚朴10克,积壳10克,大腹皮15克;黄疸不退的,加茵陈30克,金钱草15克 。
基因工程制药------浅谈摘要: 主要介绍基因工程的概念、基因工程技术开发药物的一般过程及基因工程药物,同时探讨了今后利用基因工程技术进行药物开发、研究的发展方向。正文:1 基因工程概述所谓的基因工程是指在体外将核酸分子插入病毒、质粒或其它载体分子,构成遗传物质的新组合,并使之参入到原先没有这类分子的寄主细胞内,而能持续稳定地繁殖。基因工程的第一个重要特征是跨越天然物种屏障的能力,即把来自任何一种生物的基因放置在与其毫无亲缘关系的新寄主生物细胞中去的能力。这表明人们有可能按照主观愿望创造出自然界中不存在的新物种。第二个特征是,它强调了一种确定的DNA小片段在新寄主细胞中进行扩增的事实.才能制备到大是纯化的DNA片断,从而拓宽了分子生物学的领域,使之在生物制药领域有巨大的应用。基因工程自从20世纪70年代初期问世以来,无论是在基础理论研究领域,还是在生产实际应用方面.都已经取得了惊人的成绩。基因组核苷酸全序列的测定与分析,是基因工程技术促进基础生物学研究的一个出色范例。2001年2月12 日,由6国的科学家共同参与的国际人类基因组公布了人类基因组图谱及初步分析结果,这结果为人们提供了约3000 多个基因可用来制药,将推进基因制药产业的快速发展。由于基因克隆技术的发展,已使得基因工程技术在工业生产尤其是制药生产中发挥了重要作用。以前人们利用微生物自身生产有用的产品,如利用青霉菌生产青霉素、利用链霉菌生产链霉素等。但是从这些生物体中分离纯化这些药物,不仅成本昂贵,而且技术上也相当困难。如今将编码这些药物的基因克隆并转移到合适的生物体内进行有效的表达,就可以方便地提取到大量的有用药物。2 基因工程技术开发药物的一般过程利用基因工程技术开发一个药物,一般要经过以下几个步骤:①目的基因片断的获得:可以通过化学合成的方法来合成已知核苷酸序列的DNA片段;也可以通过从生物组织细胞中提取分离得到,对于真核生物则需要建立cDNA文库。 ②将获得的目的基因片断扩增后与适当的载体连接后,再导入适当的表达系统。③在适宜的培养条件下,使目的基因在表达系统中大量表达目的药物。④将目的药物提取、分离、纯化,然后制成相应的制剂。以上方法大部分是以微生物或组织细胞作为表达系统.通过微生物发酵或组织细胞培养来进行药物生产。近年来,通过转基因动物来进行药物生产的"生物药厂"成为目前转基因动物研究的最活跃的领域,也是基因工程制药中最富有诱人前景的行业。转基因动物制药具有生产成本低、投资周期短、表达量高、与天然产物完全一致、容易分离纯化等优势,尤其是适合于一些用量大、结构复杂的血液因子,如人血红蛋白(Hb)、人血白蛋白(HSA)、蛋白C(Protein C)等。英国的爱丁堡制药公司通过转基因羊生产α1-抗胰蛋白酶(α1-AAT)用于治疗肺气肿,每升羊奶中产16g AAT,占奶蛋白含量的 30%,估计每只泌乳期母羊可产70g AAT。另外,转基因植物制药比转基因动物制药更为安全,因为后者有可能污染人类的病原体。目前,已经开发出许多转基因植物药物,例如脑啡肽、α-干扰素和人血清蛋白,以及两种最昂贵的药物即葡萄糖脑苷脂酶和粒细胞-巨噬细胞群集落因子等。3 基因工程药物基因工程药物自20世纪70年代末期以来,有了飞跃的发展。1978年首次通过大肠杆菌生产由人工合成基因表达的人脑激素和人胰岛素,1980年美国联邦最高法院裁定微生物基因工程可以获得专利.1982年第一个由基因工程菌生产的药物--胰岛素.在美国和英国获准使用以来,各种基因工程药物犹如雨后春笋,得到了蓬勃发展。我国的医药技术的研发和产业化也取得了长足的进展。(1) 抗生素类 传统的抗生素生产,主要利用化学合成或微生物发酵来获得,其生产过程中菌种的表达水平比较低,生产成本比较高,而且在使用过程中容易产生耐药菌群。而利用基因工程技术可以对生产菌种进行基因改造,得到表达水平高、产品目的性强的菌株,如大肠杆菌生产青霉素酞胺酶。德国一个科研小组对生产半合成青霉素的材料6APA.用基因工程来增强大肠杆菌的青霉素酰胺酶活性。将大肠杆菌的基因 PBR322的质粒克隆化所形成的菌株,其酶活力比原株提高 50倍.从而提高6APA生产能力。我国王以光利用基因重组技术对螺旋霉素产生菌进行改造,增强了丙酰基转移酶的基因在螺旋霉素产生菌中的表达,并提高了丙酰螺旋霉素的产量。(2) 活性多肽类 在人体中存在一系列含量较低,但生理活性很高,而且在人体代谢过程中起着重要的调节作用的活性多肽类物质如激素等,这些物质在临床上可以作为药物来治疗相应的因此类物质失衡而造成的疾病。此类药物的制剂多来源于各种动物的脏器,生产方法复杂,成本高,个别产品还必须从动物的尸体中进行提取,无法进行大规模工业化生产,自基因工程技术问世以来,通过基因重组技术,可以由微生动进行生产,这是基因工程技术的最大成就之一,以下是这类药物中比较典型的两个。胰岛素: Genentech公司在1978年,由Goeddel等学者应用基因重组技术开发出使用大肠杆菌生产人胰岛素。随着基因工程技术的不断发展,生产胰岛素的工艺和技术也不断得到完善,在临床上已经完全取代了由动物脏器提取得到的产品。目前,我国新疆转基因羊已能够成功表达人胰岛素原,为胰岛素的生产开发了新途径。生长素: 人类生长素临床用于治疗侏儒症和肌肉萎缩症.传统制造方法是由人脑下垂体抽提精制而得,其原料来源困难,产量受到极大限制。全世界侏儒症患者中仅有1%可以得到治疗,原因是生长素价格极其昂贵,达每克5000美元。1979年Genentech公司由Goeddel等学者应用基因重组技术首先开发出使用大肠杆菌生产人生长素.近年来还开发了以酵母菌来生产生长素,其产量可达到×106~× 106分子/细胞。目前,我国基因工程人生长素已研制成功,并投入市场和用于临床使用。除上述药物外,运用基因工程技术生产的这类药物还有神经生长因子(PDGH)、人基底成纤维细胞生长因子、绒毛膜促性腺激素等。(3) 细胞免疫调节因子 基因工程技术用于细胞免疫调节因子的产品较多,临床广泛应用于抗肿瘤和免疫调节等。近年来,由于基因重组和细胞融合两大技术的进步,加上高压液相层析技术、氨基酸序列分拆装置以及蛋白质的精制和解析技术的改进,使一些调节细胞免疫活性物质的研究和开发得到快速发展,如干扰素(INF)、白介素(IL)、集落刺激因子(CSF)和肿瘤坏死因子(TNF)等。干扰素是其中研究较为广泛,技术比较成熟,产业化较早的一个产品。第一代干扰素是从血液中进行提取而得到。据芬兰的K Canted报道,处理23000L血液,所得纯度1%以下的干扰素不足100mg.所以产量很低。而且由于血源质量不能保证,可能造成血源性传染病的传播。第二代干扰素是采用基因工程技术进行生产的,其生产水平可达250000分子/细胞,每升可含亿单位,成本显著下降,产品纯度很高,含量可达90%以上。目前,已经商品化的基因工程干扰素有α、 β、γ三种,而且生产技术也在不断完善。俄罗斯科学家构建了以假单胞菌为载体的表达系统来生产基因工程干扰素.与传统的大肠杆菌表达系统相比其培养周期短,细胞易于破碎便于提取。随着基因重组技术的不断发展,一些研究人员对干扰素基因进行改造,构建靶向干扰素基因及表达载体。夏小兵等利用限制性内切酶分别从含有抗乙型肝炎S抗原(HbSAg)人源单链抗体与人干扰素α质粒中切出目的基因,连接到 pET22b质粒中,构建成单链抗体靶向干扰素表达载体,在大肠杆菌中表达成功。(4) 疫苗传统的疫苗是病源微生物的减毒或灭活物质,但这些疫苗都不理想,有可能发生回复突变,恢复毒性;或者因为灭活不适当引起疾病流行。利用基因工程技术生产的新型疫苗,可以克服传统疫苗价格昂贵、安全性能差等缺点,能为目前尚无有效疫苗的某些特殊疾病如艾滋病,提供有效的治疗手段。第一个商品化的基因工程疫苗是抗人乙型肝炎病毒(HBV)的疫苗。我国大约有10% 的人口受到HBV的侵害, HBV的感染通常还与特殊的肝癌(HCC)有着密切的关系,每年全世界死于HCC的病人有30万左右。HBV具有高度的寄主专一性,只能感染人类和黑猩猩,这意味着只能从肝炎患者身上才能获得有限数量的病毒,供做疫苗使用,而且从患者血液中提取制备的疫苗,还有传染艾滋病的可能。利用基因工程技术生产的抗HBV疫苗克服了传统疫苗的缺点,质量和安全性高,用量极少,一般剂量为10mg以下,接种3次,为普通药品用量的千分之一。1982年P Valenzuela等人将S基因(HBV表面抗原基因)的一个片段克隆在一种载体上,结果在酵母中合成出来HBV表面抗原(HbsAg)颗粒,其产量达25 μg/L,酵母表达系统现在已经能够大规模生产供给人类使用的重组肝炎疫苗。大约20年前,人们发现"裸露"DNA注入体内能够诱发免疫反应,科学家们进行了大量研究,开发出了新型的核酸疫苗。所谓核酸疫苗,是指将编码某种抗原蛋白的外源基因(DNA或RNA)直接转移到动物体内,通过宿主表达系统合成抗原蛋白,诱导宿主对该抗原蛋白产生免疫应答,以达到预防和治疗疾病的目的。现已开发出多种核酸疫苗,例如:流感核酸疫苗、艾滋病疫苗、狂犬病疫苗、结核病疫苗和乙型肝炎疫苗和戊肝疫苗等。(5) 基因治疗制品 基因治疗在1990年开始进行实验, 1993年美国FDA给人类基因治疗下的定义为:"基于对活性细胞遗传物质的改变而进行的医学治疗,这种改变可以在活体外进行,然后应用于人体,或者直接在人体内进行"。因此,基因治疗存在两种方式,即间接体内法和体内法。间接体内法主要是通过在体外进行基因转移,筛选可表达外源基因的细胞,然后再转移到体内;体内法则是直接在体内改变与修复遗传物质。随着分子生物学、基因重组技术的发展,有关目的基因的获得方法已趋成熟,但是,目的基因的转移传递系统、目的基因的表达调控以及疗效和安全性还需进一步研究证实。目前,基因转移系统主要是两类:一类是由病毒介导的基因转移系统,主要包括逆转录病毒(Rt)、腺病毒(Ad)、疱疹病毒(HSV)和腺病毒相关病毒(AAV)载体等。Nnldini等开发出一种基于HIV的重组Rt载体,不需要辅助细胞,能广泛感染各种非分裂细胞,同时保留了能整合在宿主染色体上的特点。世界上第一例基因治疗所采用的载体即是Rt载体,治疗腺苷酸脱羧酶缺乏所致的严重联合免疫缺乏症(ADA-SCID)。另外一类是非病毒介导的基因转移系统,包括脂质体、分子偶联载体、基因枪和裸DNA等。另外,反义核苷酸技术也应用于基因治疗,尤其在抗乙肝病毒的基因治疗方面,包括反义DNA、反义RNA和核酶 RNA等。2001年,Robaczewska等首次通过静脉给予反义 DNA,选择性抑制北京鸭HBV在鸭肝脏中的复制和表达,证明了反义DNA在动物实验中的有效性。美国Viagene公司研究出一种被称为"艾滋病毒免疫制剂",该药为一种鼠逆病毒与核心蛋白编码的基因序列和HIV表面抗原RNA结合产物,在小鼠和灵长类动物试验中确定该药能诱导出强的 HIV-特异性杀伤细胞。4 结束语基因工程技术使药品开发发生了根本性的转变。传统的药品开发方式是在大量的化学合成物质和微生物代谢产物中进行随机筛选,得到其中的有效成分作为新的药物。采用基因工程技术开发新药,是通过对致病机理的研究,找到那些可用于治疗目的的有效成分以及其编码基因,经过基因重组将其转入适当的载体,大量表达其有效成分作为治疗药物。同时,基因工程技术给药品生产技术带来了革命性变化。过去一些生产困难的产品,如激素、酶、抗体等一些生物活性物质,通过基因工程手段可以高质量、高收率地付诸生产,同时生产成本也大幅度降低,提高了患者的用药水平和生活质量。基因工程技术在传统医药不能有效治疗的一些疾病,如癌症、艾滋病、遗传病等的诊断、治疗和预防等方面提供了有效的新手段,并取得了一些重大的突破。如发现了致癌基因,可使癌症的早期诊断和治疗药物的开发成为可能。随着分子生物学和基因重组技术的发展,我们相信这些严重危害人类生命的疾病,在不久的将来会得到有效的预防和治疗。
2021年欧洲肝脏年会暨国际肝脏数字大会(ILC)将于欧洲中部时间6月23日至26日开始。首份HBV新药项目完整数据,将在欧洲时间6月23日上午八点宣布(即北京时间6月23日下午两点左右宣布,中欧地区时间差平均六小时左右)。 乙肝在研新药VNRX-9945,发现和临床前数据,即将在欧肝会宣布 Venatorx Pharmaceuticals和相关研究药物VNRX-9945,将在本届欧肝会上宣布其发现和临床前概况。Venatorx公司专注于改善多重耐药细菌感染和难治性病毒感染患者以实现 健康 结果。该公司成立于2010年,将于2021年6月下旬推出其抗乙肝病毒化合物(VNRX-9945)进入第1期临床试验。 VNRX-9945是一种乙肝病毒抑制剂,即将进入第1期临床试验阶段。按照2021欧肝会信息披露原则,在6月23日大会开始前,全球各研究机构或媒体只可以对外介绍旗下新药项目研究课题、总结,不可以对外将完整试验数据早于大会披露。虽然,这些完整试验数据已经可以在本届欧肝会上查询获取,本着尊重和遵守欧肝会原则,小番 健康 将在明天开始(北京时间和欧洲时间6月24日),向各位读者展示2021年欧洲肝脏大会上的乙肝在研新药完整试验数据。 Venatorx公司介绍,旗下在研新药VNRX-9945一份海报已经被本届欧肝会接受发表,研究课题:VNRX-9945是一种用于治疗乙肝病毒感染的有效、广泛活性核心蛋白抑制剂,阐述VNRX-9945的发现和临床前概况(可见上图:来自Venatorx公司,红色方框是这项课题名称;海报#1699)。这项课题的完整数据,将在欧肝会上介绍。 VNRX-9945是第三代(高效)、广谱活性、口服生物可利用的核心蛋白变构调节剂(CpAM),用于治疗慢性乙肝病毒感染。随着科学研究的不断发展,CpAM也成为了全球最具吸引力的直接作用抗病毒药物,这一靶点可以在阻断新病毒颗粒和cccDNA的形成。 在VNRX-9945的临床前研究中,在体外表现出对多种乙肝病毒基因型的广泛抗病毒活性,并且在乙肝病毒感染动物模型中的定量分析中,将乙肝病毒载量(HBVDNA)抑制至低于下限。全球包括VNRX-9945在内的高效CpAM的发现和进步,代表了一个治疗HBV感染的新机会,因为CpAM和以往核苷(酸)类似物或干扰素的作用机制不同。 对CpAM和新晋在研乙肝新药VNRX-9945的未来临床开发前景,小番 健康 认为,这一靶标化合物可以在慢性HBV患者中实现更为深入、更完整的抗病毒抑制。CpAM这类重要乙肝新型化合物,在未来更有可能进入联合用药阶段,以期望实现相比当前药物更高的治疗目标。 小番 健康 结语:Venatorx Pharmaceuticals,是一家美国制药企业,于2021年3月10日宣布扩大乙肝抗感染药物组合,即VNRX-9945。这是一种核心蛋白变构调节剂(CpAM),计划于2021年第二季度启动候选药物的临床开发。