• 回答数

    5

  • 浏览数

    296

记住我88
首页 > 期刊论文 > 大一高数论文3000字

5个回答 默认排序
  • 默认排序
  • 按时间排序

蔡zhong凯

已采纳

论文为了做到层次分明、脉络清晰,常常将正文部分分成几个大的段落。这些段落即所谓逻辑段,一个逻辑段可包含几个小逻辑段,一个小逻辑段可包含一个或几个自然段,使正文形成若干层次。论文的层次不宜过多,一般不超过五级,具体如下:

高等数学是大学工科里的一门基础学科。在我学的自动化专业中更显得格外重要。经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。

高中学习数学我经历过两个数学老师。先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。

对于这个我第一个高中数学老师我认为他和第二个老师最大的区别就是他上课从来不用ppt,他喜欢写板书,所以每节课后我们都记下满满几页的笔记。这样的教学方式单单就我来说我是不能适应的,因为我喜欢上课跟

着老师教学的思路去学习,但是他要我们上课记下他在黑板上学习的板书,这样就导致我们光顾着去做笔记,却没有跟着他上课的思路去思考问题,不能去理解他讲的是什么,课下对着笔记我们又不记得他上课是怎么讲的。所以高中前部分我的数学一直都不好。

后来因为一些原因我们换了一个数学老师,这是一个我估计快要退休的了老师,这个老师因为教书了很多年很有教书经验,也是他后来拯救了我的高中数学。他给我们上课的第一天就要求我们一定要课前预习和课后复习。

其实之前很多老师也这么要求过我们,但是我都没有很好的去要求自己。我的这个老师虽然年龄有点大,但是一点没有影响他上课的激情,他上课很有感染力,我每节课都跟着他的思路后面去分析问题,解决问题。

课上简单的记一下笔记,但是不能影响我跟着他的节奏去听课,也是后来在他的帮助下高中数学成绩有了突飞猛进。对于高中的数学就做这么多的概述,接下来谈谈大学学习高等数学的心得体会。

我对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:识记的知识相对减少,理解的知识点相对增加;不仅要求会运用所学的知识解题,还要明白其来龙去脉;联系实际多,对专业学习帮助大;教师授课速度快,课下复习与预习必不可少。

扩展资料

论文要求:

1、题名规范

题名应简明、具体、确切,能概括论文的特定内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。

2、作者署名的规范

作者署名置于题名下方,团体作者的执笔人,也可标注于篇首页地脚位置。有时,作者姓名亦可标注于正文末尾。

267 评论

xiaohoulee

高数论文“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。

175 评论

coloredglaze

数学(shuxue)建模论文范文--利用数学(shuxue)建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。 强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的 高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好 数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示, 从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各 个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现 代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合 能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海 战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具 有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要 的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车 流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数 学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并 给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定 义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函 数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前 功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只 重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高 学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质 教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模 教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训 练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识 和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知 识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的 兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就 能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟 为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对 称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型, 并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及 参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问 题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固 数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以 利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据 实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型 来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期 付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问 题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳 定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数 量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻 合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注 意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住 一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实 习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手 拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及 解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、 解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对 应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积 (XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x) =(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+( t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再 由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直 线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就 能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学 应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模 解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得 到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决 的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实 际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场 经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的 知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解 决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模 型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有 突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱 ,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如 1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身 综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数 学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主 要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选 择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强 数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程 的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素 质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工 作者的足够重视

268 评论

土豆0207

大学数学是大学生必修的课程之一,由于大一是过渡期,在大一开设数学这门课程对于教学质量有着重要的作用。下面是我为大家整理的大一数学论文,供大家参考。大一数学论文 范文 篇一:《数学学科德育 教育 渗透思考》 摘要:结合数学学科的特点教师对学生进行道德教育,数学教师要善于在学科教学中渗透德育教育,培养学生尊重事实的科学态度,正确的学习目的,理性思考的精神和科学的态度,培养学生辩证唯物主义世界观,增强学生喜爱数学的兴趣,培养学生高尚的人格特征和思想道德修养。 关键词:数学学科;渗透;德育教育 我国教育部印发《中等职业学校德育大纲》指出,学校要充分发挥主导作用,与家庭、社会密切配合,拓宽德育途径,实现全员、全程、全方位育人。上至教育部下至学校都越来越意识到在学生中进行德育教育的重要性,那么在学校怎么能更好地开展德育教育呢?学科德育就是进行德育教育的重要阵地之一。现今各个国家都把德育教育作为一项非常重要的工作,并且都在积极探讨在学科教学中如何渗透德育教育。因此,我们职业学校的每个教师都应该努力探索德育教育的本质和特点,充分发挥德育的主 渠道 作用。数学学科作为学校学科教育的重要组成部分,有其独特的风格和特点,也应承担着德育教育的任务。第一,数学是一门研究客观物质世界的数量关系及空间形式科学,具有严密的符号体系、独特的公式结构和图像语言,其显著的特点有:高度的抽象性、严密的逻辑性、应用的广泛性和内涵的辩证性。第二,数学学科学习的目的是掌握一定的数学基础知识,形成一定的数学素养,是对学生一生受用的 方法 和能力。这些数学能力包括:空间想象能力、 逻辑思维 能力、基础运算能力和数学建模能力等。第三,数学课作为职业学校 文化 基础课之一,所用资源少,易开展教学活动。结合数学学科的特点,笔者认为可以从以下几点进行德育教育。 1根据中职学校数学学科的特点和数学课的现状,教师的人格 品行和良好的师生关系是进行德育教育的关键数学学科的特点给人的感觉是枯燥、无味,对于职业学校的学生更是如此。德育要讲究艺术性,要充分发挥情感的感染作用。作为一名数学教师在数学课上每位教师尊重和顺应人性、同学的个性,保护同学的尊严,发掘和表扬学生的内在情感,调动他们积极的心理因素。教师动之以情,才能激发学子之情,使之乐其所学。学生感受到教师对他们的关心,从心底上认可这个教师,从而真正建立起新型的科学的师生关系。 2结合数学教材内容,向学生进行爱祖国和爱科学的教育 在用到正负数及运算法则时,教师给学生说明或是让学生自己上网查找相关内容,可以知道在世界闻名的数学典籍《九章算术》中,就已经提出了相关概念,使得代数学早于西方于公元前2000年就已经产生了;著名的勾股定理、“杨辉三角”、圆周率的计算以及著名数学家陈景润的“陈氏定理”、华罗庚发起和推广的优选法等,我国科学的成就令世界各地的每个炎黄子孙自豪,可以激发起学生强烈的爱科学、爱国情和民族自豪感,同时激励学生学习的进取向上精神。 3培养正确的学习动机和目的,提高学生学习数学兴趣,增强社会责任感 我们学习数学的最终目的是能用数学,因而不管是教师还是学生都应该知道数学在我们生活中或是我们所学专业课上的应用。例如我们在学习圆柱时,就可以和汽车专业所学的发动机上的气缸联系起来讲解表面积和体积相关知识;我们在学习分段函数时,就可以和与我们生活相关的水费、电费、出租车收费联系起来等。 4结合数学学科的特点,培养学生理智的思考、按客观规律办事的良好的人格特征 数学是一门自然科学,科学的问题来不得半点虚假,数学语言的精确性使得数学中的结论不会模棱两可。伽利略:世界的奥秘是本巨大的书,而这本书是用数学语言写成的。越来越多的人认为数学语言是各种科学的通用语言,可见数学语言的精确性。在数学的观点下,一加一只能等于2不可能是其他结果,但在其他的学科就不一定了。不管是数学语言还是通过数学推理得到的结果都不允许有任何弄虚作假的行为存在。我们在日常教学中,应该结合数学的思考方式与 学习方法 ,培养学生事实求是,有根有据,勇于改正错误的科学态度和自觉按客观规律办事习惯。 5结合数学学科的特点,对学生进行辩证唯物主义世界观的教育 数学本身的发生和发展过程中就充满着唯物辩证法。恩格斯曾把数学作为“辩证的辅助工具和表现方式”。数学从实践中发现了问题,然后分析已知存在的问题,找出它们间的关系,利用数学知识, 总结 出来的规律,然后回到实践中检验和运用,这正是体现了辩证唯物主义中从感性—理性—实践的认识论观点。 6挖掘数学教材中的美育素材,通过美学教育,培养学生高尚情操和思想道德修养 我国著名数学家华罗庚说:“数学本身也有无穷的美妙。”数学中的符号、图形、数字排列等都蕴藏着丰富的美育因素。可以告诉学生,圆就代表我们的班集体或者是我们的国家,每个同学就像圆上一个个离散的点,集体的形象与荣誉与我们每个人都是息息相关的。在学习集合的交、并、补的运算时,除了说明符号的简洁、和谐美的同时也可灌输团体意识。在学习直角坐标系时,就可以给学生灌输我们做人也应该方方正正坚持自己的原则。学习点的时候,每个点都是由一对有序的实数组成的,可以把坐标看成是在社会中影响我们自身发展的先天因素和后天因素,而后天因素主要决定了我们未来的发展,从而鼓励每个学生从现在开始努力学习、认真做人、锻炼各种能力,一定会有美好的将来。在教学过程中引导学生发现美、欣赏美、讨论美,逐步培养学生的审美意识审美情趣,培养学生高尚情操和思想道德修养,有助于学生全面发展。 综上所述,结合数学学科的特点对学生进行德育教育是可行的。在数学学科教学中,虽然不能像语文、政治那样直接、系统地对学生进行德育教育,但只要我们善于挖掘教材中的德育因素,在教学过程中实事求是,联系实际,善于引导,就能行之有效地进行德育渗透,使学生学习知识的同时各方面的素质不断提高。 参考文献: [1]中等数学教学中的德育新论,网络. [2]高等数学教学中的德育渗透[J].吉林省经济管理干部学院学报. 大一数学论文范文篇二:《浅谈数学教学德育教育的渗透》 摘要:德育在学校教育中占有举足轻重的地位,是方向、是灵魂,位居各育之首。数学作为基础教育的一门重要学科,在培养学生德育方面,应发挥重要的作用。因此,教师应在数学教学中努力寻找德育点,有机渗透德育,把教书与育人紧密地结合在一起。 关键词:小学数学;数学教学;德育教育; 一、引言 有句话说“百年教育、德育为先”,可见学校教育将德育教育放在相当重要的位置。如今,随着社会的快速进步和科学技术的迅猛发展,小学数学德育教育如何从传统的教育模式中挣脱出来,注入完善的、科学性的内涵,形成一套行之有效的新教育模式。数学虽作为一门理性学科,却蕴含着丰富德育内容。可以根据这门学科的特点,进行德育渗透的教育,使得小学生不仅学到书本的知识,还懂得做人的道理! 二、将德育教育渗透到数学学科教材中 根据数学这门学科的特点,以及小学生的接受能力,注入德育教育的、形象生动的图画和有说服力的内容。做到有机结合,自然渗透的效果。众所周知,小学阶段是 儿童 、青少年身心发展的关键时期,对于刚刚步入学校的低年级学生来说,是认知社会和接受新鲜事物的萌芽期,所以小学数学德育教育工作从此刻开始,进行渗透德育教育。小学数学德育教育如细雨,润物无声,数学学科是沙土。在数学教学过程中,教师无时无处不渗透着细雨之水。而小学生犹如长在沙土里的嫩草,吸吮着沙土中的水分。因此,小学数学中德育渗透,就是将德育本身的因素与数学学科所具有的因素有机地结合起来,使德育内容在潜移默化中逐步形成学生个体内在的思想品德。而数学教材是教学工作主要使用的教学工具,也是授课的依据,更是小学生获取知识与理解做人的来源,由此,编制科学有效的数学教材为课堂授课提供有益的方式。在人们以往的观念中,德育教育应该只是和语文、思想品德等学科有关,以目前的教育内涵来看,这种观念是落后的,也是十足错误的。教育学家赫尔巴特曾有教育 名言 :“教学如果没有进行道德教育,只是一种没有目的的手段,道德教育如果没有教学,就是一种失去了手段的目的”。由此可见,将德育教育渗透到数学教学课堂中来是最为重要的,也是最具有原则性的教育。 三、将德育教育渗透到数学教学课堂中 教师在课堂上教学时,充分挖掘数学教材中的德育因素与知识,渗透德育教育。诸如小学数学教材中的例题、习题、注释、解析中,融入不少进行德育的、形象生动的图画,以及由说服力的数学数据或知识点。将德育因素融合数学知识进行传授、能力培养和思想品德教育为一体的综合性教学模式。把显性的教学问题和隐性的德育教育有机地结合起来,从而实现数学的育人功能。无论是在备课中,还是在课堂上,教师要善于找准在数学教学中德育渗透的切入点,以提高课堂教学实效。可以结合教学内容进行德育渗透中华民族悠久灿烂的数学史源远流长,博大精深。也可以运用现代信息技术、多媒体教学手段,将要授课的内容加入生动的德育元素。重要的是在小学数学教学中,要充分联系教材,联系小学生生活实际,善于将渗透德育教育延申到课堂内外。 四、课堂内外相结合,通过数学活动进行渗透德育教育 在小学数学教学的过程中,德育渗透不能只局限在课堂上,还应该与课外学习有机结合,教师可以开展一些课外数学活动渗透德育。要增强数学课堂的趣味性与实践性,营造一种轻松愉快的情境,注重数学知识与现实生活的联系,使学生意识到数学并不是枯燥无味的,数学离不开生活,生活中处处有数学,从而让学生乐此不疲地致力于学习内容。引导学生学会学以致用将知识回归生活,做到学以致用是数学学习的本质归宿,学生要有将数学知识运用到生活中的意识。如在学习乘法估算后,让学生回家后调查每个人一天的用水量,回学校后估算全班60人一天的用水量,再估算全校三千多人的用水量。在巩固新知的同时让学生体会到了水资源的宝贵,珍惜水资源、节约水资源的思想就会在小学生们小小的心灵扎根。又如,在学生学过统计后,让学生回家后调查自己家庭每天使用垃圾袋的数量,然后通过计算一个班的家庭,一个星期,一个月,一年使用垃圾袋的数量,结合我校附近的垃圾场影响环境的现象,最终总结出垃圾袋对环境造成的影响,这样让学生既可以掌握有关数学知识,又对他们进行了环保教育。再比如,培养小学生动手动脑的能力时,督促小学生手、口、脑、眼、耳多种感官并用,这样做,不但能扩大小学生的信息源,创设良好的思维情境。也能满足小学生好动、好奇的特性。例如:教学“长方体认识”,可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒等),通过感知实物,学生对什么样的物体是长方体获得了初步的感性认识,从而感受美、享受美。 五、结合数学学科特点,通过德育渗透,培养良好习惯 数学是一门严谨的学科,科学性与逻辑性很强,但可以让小学生在学好数学的同时从中养成严格、认真的好习惯。显而易见,小学生计算粗心,错误率高。而提高计算能力就一定要养成仔细计算的习惯。在平时的教学训练中,教师要时时提醒学生不要抄错数,看清是什么运算,加减时注意进位和退位等等,在这里就不一一举例了。简而言之,只要教师善于挖掘、善于捕捉,时时注意、注重在数学课堂中对学生的德育渗透,数学学科的的德育教育一定会取得很好的成效,最终达到德育、智育的双重教育目的。 参考文献: [1]齐建华.数学教育学[M].郑州大学出版社.2006.07 [2]管建福.小学数学教学艺术[M]2000 大一数学论文范文篇三:《浅谈大学数学素质拓展课程的教学实践》 0 引言 数学不仅是一种科学的语言和工具,是众多科学与技术必备的基础,而且是一门博大精深的科学,更是一种先进的文化,在人类认识世界和改造世界的过程中一直发挥着重要的作用与影响。建设创新型国家的战略构想,需要大批拔尖创新人才,作为大学中重要基础课的大学数学课程,对此负有重要的责任。数学中许多新概念、新方法的引入和发展,众多数学问题和相关实际问题的解决,十分有利于大学生创新精神、 创新思维 和创新能力的培养[1]。 在大学数学课程学习的过程中,培养学生应用数学的意识和兴趣,逐步提高学生的应用能力是大学数学课程教学改革的重要方向。当前大学数学课的教学,大多仍是以教材为中心,以课堂为中心,实践教学较少,课外科技活动的配合注意不够。这些也都是影响学生数学应用意识和应用能力培养的重要因素,应当有所改革。多年来的教学改革实践表明:开设数学拓展课程与数学选修课程,是激发学生学习数学积极性,培养学生数学应用能力和创新能力的一条行之有效的重要途径。 1 开设数学选修课程的必要性 数学的教学不能仅仅是看出知识的传授,而应该使学生在学习知识、培养能力和提高素质诸方面都得到教益,兼顾数学文化和教学素养方面的要求。 大学非数学专业数学课程分为必修和选修课程,一般工科的本科学生高等数学,线性代数,概率论与数理统计为必修课程。而选修课程则由学生依据自身发展需求和学习时间规划,自主选择。选修型课程以拓展知识结构。数学类选修课的目的是引导学生广泛涉猎不同学科领域[2],拓宽知识面,学习不同学科的思想和方法,进一步打通专业,拓宽知识结构,强化素质,自觉养成主动学习、独立思考的习惯,不断提高自我建构知识、能力和素质的本领,培养探索和创新精神。全面提升素养。促进学生个性的发展和学校办学特色的形成,是一种体现不同基础要求、具有一定开放性的课程。 大学数学教育应以培养学生数学能力和提高学生的数学素养为目标。当前,数学课程教学内容与社会的发展不适应问题主要表现在课程教学内容未能及时反映数学发展的最新成果,依然固守形式演绎体系而忽略了非常重要但非演绎的、非严格的重要内容;局限于于课本,只讲课本中呈现的内容而忽略了课程内容的来源与出处的讲解[3]。在教学上,大学数学教学方式单一,越来越形式化,过于注重概念、定理的推导和证明、计算以及解题的技巧,使得数学远离我们周围的世界,远离我们的日常生活。过分强调数学的逻辑性和严密性,导致学生觉得数学过于抽象无法理解[4]。在教学过程中采用传统陈旧的教育理念:重理论轻计算、重技巧轻思想、重推理轻应用。 在具体教学过程中,多数教师仍局限于传授知识本身,特别是局限于解题方法与技巧的训练,而对于如何在知识载体上培养学生的数学思想、 理性思维 和审美情操,提高他们的数学素养,却重视不够。应积极引导教师运用自己的科研能力去深入钻研教学内容,改进 教学方法 ,在传授数学知识的过程中落实数学在培养学生能力和素质方面的作用。应全面落实“知识传授,能力培养,素质提高”三位一体的教育理念[5]。 数学上的不少概念、方法或理论,有些本身就来自其在现实生产和生活中的原型,并且和人文、管理、工程技术有着密不可分的联系,发现并指出这些的联系,对激发学生学习数学的兴趣,增强他们对数学的理解,是大有益处的。当然这也要求教师广泛的涉猎不同的学科领域,对大学数学教师无疑是一个新的挑战。 2 已开设的拓展课程及模块建设 在上述思想指引下,同时为了适应社会的更高要求和不同层次学生的自身需求,结合我校的实际情况,学校出台相应课程改革 措施 ,主要开展了两个方面的建设工作: 2.1 拓展课程的模块建设:在现有的工科数学必修课《高等数学》、《线性代数》、《概率论与数理统计》等课程的基础上,开设了《数学建模》、《工程数学中的理论与方法》、《数学文化》、《投资理财常识》等课程,建立并完善了各门课程的课程简介、教学大纲、教学进度及推荐参考书目等,并结合多媒体的教学手段,搭建并完成了《数学建模》课程的网络教学平台,已对全校师生开放。现正在进行《数学文化》、《工程数学中的理论与方法》两门课程的网络平台建设工作。所开设的《工程数学中的理论与方法》,拟开设的《工程问题中的数学计算-MATLAB》主要针对我校的理、工、农、医专业的学生;《投资理财常识》及拟开设的《运筹学》主要针对我校管经类、质量工程类的学生。 2.2 拓展实践的模块建设:以素质拓展作为目标的课程设置,旨在提高学生应用数学知识解决实际问题的动手能力和创新能力,我们主要加强了以下几个方面的工作: ①以项目管理的方式鼓励学生积极参加各类科技活动:提倡学生积极申报项目,如大创项目等,鼓励学生积极参与教师的各类研究项目中,以科研小组或科技小组的形式,发表小论文、小发明、小制作、小专利等; ②以培养学生创新意识为导向的各类学科竞赛活动:为进一步培养学生利用理论知识来解决实际问题的分析能力和应用能力,积极鼓励学生参加各类学科竞赛,如:大学生数学建模比赛、大学生统计建模比赛、大学生创业设计大赛等; ③以学习的态度鼓励学生参加 社会实践 和社会调查活动。社会是一个丰富的大舞台,只有融入社会这个大舞台,才能不断积累社会 经验 ,不断增长社会实践的活动能力,从而提高自身的社会管理和适应能力,将来能更快和更好的为社会服务。 3 取得的成绩和存在的不足 数学建模课程是以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力,提高他们学习数学的兴趣和应用数学的意识与能力。 工程中的数学理论与方法主要在我校特定的环境下,在学习完工程类数学必修课的基础上,针对高年级学生,加深和延拓数学的理论知识和计算方法,为数学知识要求高的专业(如工程力学专业、通信工程专业等)及准备报 考研 究生的同学提供数学帮助。 数学文化课程在探讨数学文化的起源、收集了众多的数学 故事 和数学家的故事基础上,结合数学思想、数学方法的形成和发展,阐述了数学发展和数学教育中的人文成分,揭示了数学与社会、数学与其他文化的关系。通过该门课程的学习,让学生更进一步了解生活中的数学、数学中的美,学会欣赏数学文化及弘扬数学文化,推动数学教学的进程。 投资理财常识主要向学生介绍股票基金,期货彩票等的基础知识和交易技巧,教学中用到一些基础性的数学知识如差分方程,大数定理等,更多的则是经济、管理人文知识的熏陶,通过学习该课程,学生感觉数学的应用领域广泛,从而进一步激发学生学习数学的积极性。 通过对我校教学情况的初步了解,尤其是针对昆明理工大学数学类拓展课程开设情况的深入调查,发现大多数的学生对课程满意或非常满意。学生感觉最大的收获在于拓展了知识层面,开拓了视野,感觉数学比以前教材中的内容要丰富和有趣的多。但在《数学文化》这类知识性比较强的课程上,学生输入的多,输出的少,不利于学生知识水平的提高。另外,学生对所开设的选修课程知识了解甚少。这表明,学生进行学习所依托的课程知识基础薄弱。通过统计《数学建模》课程学生对课程、教师和自己的期望中了解到,大多数的学生期望通过老师的讲授,能够在课堂上全面了解所学课程知识。只有半数学生希望老师给学生提供自己动手的机会,更多的学生还是习惯于在课堂上扮演倾听的角色,缺乏用数学解决实际问题的意识和能力。最后,担任选修课程的大学数学教师自身的课程水平和教学能力也有待进一步提高。开设大学数学选修课程对广大数学教师也是一个很大的挑战。尤其是在开设的初期,教师除了要改变自己的教学理念和教学方法,还要努力扩大自己的知识面,制定教学大纲,完善教材和教学内容。 4 结束语 大学数学教学是高等教育的一个有机的组成部分,大学数学选修课程是以数学知识与应用技能、学习策略和跨学科运用为主要内容。如何建立和完善行之有效的大学数学提高阶段的课程体系,以满足新时期学生对数学学习的需求以及国家和社会对人才培养的需要,成为当今高校大学数学教学管理部门越来越关注的问题。大学数学选修课程的开设,适应了社会的更高需求,同时也满足了更高层次学生的自身需要。但是,要真正实现课程开设的目的,仍需更多的努力,不断的完善。 首先,急需向各高校教学管理部门、教师,尤其是学生传达课程改革的必要性,提供良好的改革环境和条件。 其次,要用科学的教学理念改革数学选修课程教学实践,完善教学内容,改善教学方法,实施科学的课程评估方式。如“投资理财常识”之类的课程,已不是单纯的数学基础课程,除用到一些基础性的数学知识外,更多的则是经济、管理人文知识,能否将这类课程纳入人文类选修课程,使学社学习知识的同时,获得相应的学分,这是教学管理部门需要解决的问题。 第三,时刻以学生为中心,所开设课程要能够满足学生的需要,能够激发学生的学习兴趣。 第四,教师要进一步提高和完善自己,适应学生的个性要求,改善教学方法,开发学生的主动性和创造性,全面提高学生的综合素质。 最后,针对课程教学中出现的问题,和课程教学效果要能够做到及时调查,不断对课程及教学做出相应调整和改善。大学数学选修课程的开设顺应了时代的要求和学生的需要,只要对之进行不断的完善,必然能够为较高层次的学生开拓出一片新的天地,为他们将来更好地适应社会的需求做好储备。 猜你喜欢: 1. 学习大学数学的心得 2. 数学文化论文3000字 3. 数学大学本科生毕业论文 4. 大学数学科技论文范文 5. 大学数学教育论文范文

231 评论

不让一个字注册

大学高数小论文

在学习和工作的日常里,大家对论文都再熟悉不过了吧,通过论文写作可以提高我们综合运用所学知识的能力。那么一般论文是怎么写的呢?以下是我整理的大学高数小论文,欢迎大家借鉴与参考,希望对大家有所帮助。

【摘要】本文结合自己对高等数学的教学实践,以及高等数学的教学特点,给出了培养学生主动学习高数的方法和途径。

【关键词】高数;自学能力;会学;乐学

同志曾说:“会学比学会更重要,学会思考比学会知识更重要”。人们常说的“授之以鱼,不如授之以渔。”也就是这个道理。教是为了不教,学是为了会学。因此如何培养学生自学能力,使之找到适合学生自己的独立学习方法尤为重要。笔者结合自己高等数学的教学实践,以及针对石大商学院学生的特点,谈谈教师如何在教学中培养学生自主学习的能力。

一、是明确目标,端正学习态度,认识学习高数的重要性。

刚上大学,有的学生觉得学习数学一下子变得困难起来,开始怀疑自己的能力,有的甚至认为自己没有数学细胞,觉得数学越学越难学,越学越糟糕。其实,同学们没有找到真正的原因。与初高中相比,大学数学内容丰富,推理论证性强,抽象,教学难度大,学习要求明显提高。对于非数学专业的学生来说,感觉高数对自己以后找工作也没用,就是一门基础学科,学与不学都一样,另外再加上原来是文科的学生来说,更感觉是天书,一遇到学习困难就缴械投降,失去了学习的兴趣,从此就不再愿意学习数学。那么这个时候,带课教师的正确引导就变的更为重要。带课教师在高等数学教学前,非常有必要针对这门新课程进行入学教育,结合学生的专业,做些简单的介绍,使学生初步了解这门课程的内容、重要性、学习目的、学习方法及课程大致的教学安排。了解这些是为避免学生开始时就不自觉地进入被动的学习,在学之前就知道为何要学、如何去学。这也为以后的自主学习开了个好头。

二、是努力让学生对高数爱学,乐学,会学。

教学水平的高低通过学生来检验,教学效果优良的课程,学生一定由爱学到会学。其实也就是逐渐培养学生的自学能力,变被动学习为主动学习的一个过程。那么这个过程该如何体现呢?

(1)认真开列自学提纲

主要由教师根据某一单元的教学内容,抓住教学的重难点,给学生列出自学提纲。列题纲的目的就是为了激发学生的兴趣和体现学生积极主动性学习。同时,为了提出高质量的自学提纲,教师就必须要吃透课本,很好的把握教材的重难点。如在讲《线性代数》的矩阵概念和运算这一节的内容时,可以给学生列出这样的提纲。

1、什么是矩阵?也就是矩阵的概念。

2、矩阵与行列式的区别在哪?从形式上有什么区别?

3、矩阵都有哪些运算?具体的'每一种运算都是如何来进行的?在数k乘矩阵的运算与数k乘行列式的运算的区别在哪?在此基础上,学生就可以自学来解决这些疑问。

(2)提高学生的数学阅读能力

提高学生的数学阅读能力是培养学生自学能力的关键。自学能力的核心是数学阅读能力,数学阅读能力提高了,也会促进其他能力的发展。由于大多学生受传统教学的影响,习惯听老师讲,思维上养成惰性,被动的接受,从来不去自己主动的学习,老师讲多少就听听多少。这也是一部分学生对数学经常有“一讲就懂,一看就会,一做就错”的原因。只会用公式去套题,或用题去套公式,没有正确的解题思路,不会思考,更不善于思考,也就不能举一反三。因此,要让学生学会自学,必须学会阅读,这就需要教师加强对数学阅读的指导。把握数学阅读的“四种读法”。“四种读法”是指:

a、“泛读”:要求对本节课的大致内容有初步了解,了解基本内容;

b、“细读”:要求对所读内容有全面的一个了解,弄清定理、公式的性质,明确公式、例题的渐进梯度和知识关联的范围;

c、“精读”:在泛读的基础上,对与重点、难点有关的内容进行阅读,着重掌握数学内容的知识体系,既要知其然,又要知其所以然;

d、“熟读”:要求学生通过阅读,总结规律,融会贯通,基本内容烂熟于心。

(3)注重练习,及时的进行归纳总结

数学课不同于其它课,最大的窍门在于多练,孰能生巧。只有通过大量的做练习题,才能更好地巩固本节课的知识点,才能掌握更多的解题技巧,才能把失误降到最低点。平时练习太少,计算能力太差,考试的时候一做就错。另外,在做完题后及时的进行总结。就拿行列式的计算来说,只有多多练习,在做完题后,及时针对不同的行列式进行方法总结,你才能掌握求解行列式的技巧,比如定义法,目标行列式法,降阶法,升阶法,归纳法等等。掌握了方法后,在做题的时候,才能根据行列式的特点选择正确的计算方法。

(4)引导学生做好预习、复习,培养自学习惯

为了培养学生的自学能力,预习和复习也是非常重要的。通过预习,学生才能更清楚的知道自己对本节的哪个知识点看不懂,带着问题听课,听课的时候有所侧重,这也在某种程度上起到一种激发学生学习的兴趣,正因为不会,上课才要更好好的听老师讲,使学生“乐学”。学生一旦有了学习兴趣,特别是直接兴趣,学习活动对他来说就不是一种负担,而是一种享受、一种愉快的体验,学生会越学越想学、越学越爱学,有兴趣的学习事半功倍。相反,如果学生对学习不感兴趣,情况就大相径庭了,学生在逼迫的状态下被动学习,学习的效果必定是事倍功半。当然课后复习也特别的重要,学生往往不太重视对概念的理解,以致导致学生课堂上啥都听懂了,下去做题问题就出现了,其实这是学生对概念没吃透,稍微变下题型就不知道从哪下手。复习不是翻开书走马观花,要找到自己不会的地方,增强记忆。因此这一方面,老师一定引导学生围绕学习重点,理解相关的内容,在概念,理论以及方法上下功夫。

(5)创造良好的课堂氛围

大量的教学实践证明,要求学生循规蹈矩,洗耳恭听的课堂学习环境是不可能吸引学生好奇、自由想象和大胆质疑的,学生在这种环境中,学的被动,学的压抑,当然不可能调动起学习积极性。因此我们要营造良好的学习氛围,才能使学生愉快地、主动地参与到学习中来。要摒弃传统的“注入式”教学模式,给学生一定的时间和空间,启发诱导学生积极思考,主动参与,鼓励学生发表不同的见解,活跃氛围,让他们真正体会到他们是学习的主人。教师在讲课过程中要吸引学生眼球。教师讲课的内容要承前启后,突出重点,讲透难点;讲课的语言要规范,准确,力求生动;讲课的声音不仅要洪亮,而且要悦耳;语调要抑扬顿挫,有起伏,有高潮,还可以适当采取诙谐幽默的语言。教师在讲课时目光一定要关注学生的表情,看学生是否听课,注意力是否集中,是否听懂,切不可背向学生念讲稿。在教学的过程中,教师要调动学生的思维,可以恰当的在课堂中提问,或自问自答,或组织学生当堂讨论,或者给学生上台展示的机会,或者是如果课时容许的情况下辅导学生备课主讲某节内容,然后教师讲评,最后教师把学生讲的不到位的地方,再加以补充,效果很好。

在课堂练习中,让个别同学在黑板上做,做完教师并不要急于评价谁是谁非,而让其他学生自己来评讲,解错了,要分析原因,找出错误的症结,再重新做一遍。这样做,不但使得练中有思,而且锻炼和培养了学生的思维品质,正确的该怎么做;解对了,要想有没有更好的解法,鼓励学生采用多种方法解决问题;这样大家集思广议,不但把问题解决了,而且还可以拓宽大家的思路,使他们相互启发,共同进步。

(6)充分利用现代化高科技的教学手段

充分利用现代化教学手段,提高学生自学的能力。两方面,一方面是老师要根据该课程的特点,高数内容多且抽象,若能采取多媒体+适当板书的讲授,定能事半功倍。另外在课件的制作过程中可以使用动画,图案的效果,达到吸引学生的注意力。另一方面就是学生要利用网络优势,学会查找学习资料以及充分利用相关媒体资源。特别要注意网上学习资料的下载和学习,比如本学校的网络教学平台,任课教师一般会在教学平台上传该课程的教学大纲,教学日历,以及相关的学习课件,练习题。

这是笔者借鉴同行以及自己在教学过程中的一些体会,目的在于培养大学生学习数学的一种自学能力,或者说一种兴趣,要培养学生爱学,乐学数学;不要一提起数学,大家都很头疼的。总之,只有转变教学观念,只有以学生为中心,充分发挥学生的主体作用,通过教师适当的点拨引导,才能全方位地提高学生的综合素质,达到培养和提高自学能力的目的。

参考文献:

[1]徐振华.关注学生差异,提升有效教学[J].教育研究与实验,2010(12).

[2]马德炎.谈创新与大学数学教育[J].大学数学,2003(1).

131 评论

相关问答

  • 数学论文3000字高级数学

    “数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点

    爱延续泉泉 4人参与回答 2023-12-11
  • 大一天文学论文3000字

    古代天文学的论文 古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,下面是关于古代天文学的论文的内容

    有名无姓123 4人参与回答 2023-12-12
  • 大一新生3000字论文

    思修课的作业吗,我会

    huang8023ta 6人参与回答 2023-12-10
  • 大一下学期高数论文3000字

    随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。 一、高等数学在地方高等职业教育中遇到的问题及

    ansenhachi 5人参与回答 2023-12-11
  • 大一军理论文3000字

    自己写和抄的老师会一眼看出来的。

    我的飞飞 6人参与回答 2023-12-09