• 回答数

    5

  • 浏览数

    107

宜瑞科技
首页 > 期刊论文 > 与函数零点问题有关论文参考文献

5个回答 默认排序
  • 默认排序
  • 按时间排序

crystal85k

已采纳

函数的零点等价于对应方程的根,计算方法主要是解方程。对区间上的可导函数而言,函数的极值点是导函数的变号零点,这时极值点的计算方法是先求导,再求导函数的零点,再讨论零点两侧的导数符号,最后结论。所以要经历求导运算,解方程,解不等式等。对于区间上的不可导函数而言,函数的极值可能存在,因而极值点存在。往往用初等方法。需讨论。例如y=|x|,因为y=|x|≥0,当且仅当x=0时,y min=0.所以极值点x=0.亲,以上是提供,供参考。您可以发散一下,并举些具体例子。必要时把零点和极值点的定义加进去。

100 评论

30岁男人的世界

函数的零点是考纲上要求的基本内容,也是高中新课程标准新增内容之一,是函数的重要性质。接下来我为你整理了浅谈高中数学零点问题,一起来看看吧。

一、求函数的零点

例1求函数y=x2-(x<0)2x-1(x≥0)的零点。

解:令x2-1=0(x<0),解得x=1,

2x-1=0(x≥0),解得x=。

所以原函数的零点为和-1和。

点评:求函数f(x)的零点,转化为方程f(x)=0,通过因式分解把方程转化为一(二)次方程求解。

二、判断函数零点个数

例2求f(x)=x-的零点个数。

解:函数的定义域(-∞,0)∪(0,+∞)。

令f(x)=0即x-=0,

解得:x=2或x=-2。

所以原函数有2个零点。

点评:转化为方程直接求出函数零点,注意函数的定义域。

三、根据函数零点反求参数

例3若方程ax-x-a=0有两个解,求a的取值范围。

析:方程ax-x-a=0转化为ax=x+a。

由题知,方程ax-x-a=0有两个不同的实数解,即函数y=ax与y=a+x 有两个不同的交点,如图所示。

(1)0此种情况不符合题意。

(2)a>1。

直线y=x+a 在y轴上的截距大于1时,函数y=ax与函数y=a+x 有两个不同的交点。

所以a<0与0点评:采用分类讨论与用数形结合的思想。

四、用二分法近似求解零点

例4求函数f(x)=x3+x2-2x-2的一个正数零点(精确到0.1)。

解:(1)第一步确定零点所在的大致区间(a,b),可利用函数性质,也可借助计算机,但尽量取端点为整数的区间,并尽量缩短区间长度,通常可确定一个长度为1的区间。

(2)列表如下:

零点所在区间中点函数值 区间长度

(1,2)f(1.5) >0 1

(1,1.5) f(1.25) <00.5

(1.25,1.5) f(1.375) <00.25

(1.375,1.5) f(1.438)>0 0.125

(1.375,1.438) f(1.4065)>0 0.0625

可知区间(1.375,1.438)长度小于0.1,故可在(1.375,1.438)内取1.4065作为函数f(x)正数的零点的近似值。

点评:用二分法求函数零点近似值的过程中,首先依据函数性质确定函数零点存在的一个区间,此区间选取应尽量小,并且易于计算,再不断取区间中点,把区间的范围逐步缩小,使得在缩小的区间内存在一零点。当达到精确度时,这个区间内的任何一个值均可作为函数的零点。

函数的零点是沟通函数、方程、图像的一个重要媒介,渗透着等价转化、化归、数形结合、函数与方程等思想方法,是一个考察学生综合素质的很好知识点.近几年的数学高考中频频出现零点问题,其形式逐渐多样化,但都离不开这几种常用的等价关系:函数y=f(x)有零点?圳方程f(x)=0有实数根?圳函数y=f(x)的图像与x轴有交点.也可拓展为:函数y=F(x)=f(x)-g(x)有零点?圳方程组y■=f(x)y■=g(x)有实数根?圳函数y1=f(x)与函数y2=g(x)的图像有交点.

围绕它们之间的关系,就高考中的一些典型题型加以剖析:

类型一:函数零点的分布

解决零点的分布问题,主要依据零点的存在性定理:如果函数y=f(x)在区间[a,b]上的图像是连续不断的一条曲线,并且有f(a)・f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.而零点的个数还需结合函数的图像和性质,尤其是函数的单调性才能确定.

例1:(2013高考数学重庆卷)若aA.(a,b)和(b,c)内

B.(-∞,a)和(a,b)内

C.(b,c)和(c,+∞)内

D.(-∞,a)和(c,+∞)内

解析:由题意a0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0.显然f(a)・f(b)<0,f(b)・f(c)<0,所以该函数在(a,b)和(b,c)上均有零点,故选A.

变式:(高考广东卷、高考山东卷)若函数为f(x)为奇函数,当x<0时,f(x)=-lg(-x)+x+3,已知f(x)=0有一个根为x0,且x0∈(n,n+1),n∈N*,则n的值为________.

解析:由题意,设x>0,则-x<0,f(-x)=-lgx-x+3=-f(x),所以当x>0时,f(x)=lgx+x-3在(0,+∞)上是增函数,f(2)<0,f(3)>0,所以x0∈(2,3),则n=2.

类型二:函数零点的个数

判断函数零点个数可利用定义法,即令f(x)=0,则该方程的解即为函数的零点,方程解的个数就是函数零点的个数;也可根据几何法,将函数的零点问题转化为两个函数图像的交点问题来解决.

例2:(2012高考数学湖北卷)函数f(x)=xcosx2在区间[0,4]上的零点个数为( )

A. 4 B. 5 C. 6 D. 7

解析:定义法,令f(x)=0,可得x=0或cosx2=0,所以得x=0或x2=kπ+■,k∈Z,又注意到x∈[0,4]可得k=0,1,2,3,4,所以方程共有6个解,因此函数f(x)=xcosx2在区间[0,4]上有6个零点,故选C.

类型三:利用函数零点求参数

在高考中,除了要我们求函数的零点个数外,还常出现一种题型就是:先给出函数的零点个数,再来解决其他问题(如求参数).要解决此类问题常根据函数y=F(x)=f(x)-g(x)有零点?圳方程组y■=f(x)y■=g(x)有实数根?圳函数y1=f(x)与y2=g(x)函数的图像有交点.

例3:(2009高考数学山东卷)若函数 f(x)=ax-x-a(a>0且a≠1)有两个零点,则实数a的取值范围是 .

解析:我们可将上述函数的零点转换成两个函数的图像的交点个数问题,根据例3的几何法:

1.构造函数.设函数y=ax(a>0,且a≠1)和函数y=x+a,则函数f(x)=ax-x-a(a>0且a≠1)有两个零点, 就是函数y=ax(a>0且a≠1)与函数y=x+a有两个交点.

2.通过图像描绘题意――将数转化成形.

3.由图像得出结论――将形转化成数.

当时0当时a>1(如图2),因为函数y=ax(a>1)的图像过点(0,1),而直线y=x+a所过的点(0,a)在点(0,1)的上方,此时两函数有两个交点.所以实数a的取值范围是{a|a>1}.

上述各例子剖析了近几年数学高考中函数零点问题的典型题型及解法,值得一提的是,各种类型各种方法并不是完全孤立的,利用数学的转化与化归、数形结合等思想,函数F(x)=f(x)-g(x)的零点问题看成方程根的个数或者函数图像y=f(x)、y=g(x)的交点个数问题,使得复杂的问题通过变换转化为简单的问题,难解的问题转化为易解的问题,未解决的问题转化为已解决的问题.

91 评论

山东指纹锁

我知道能函授问题明白道理

171 评论

smilejune521

如果你的学术生涯中遇到这样的论文,相信你会感到惊讶。这是来自美国加州大学洛杉矶分校的数学家张益唐博士带领团队完成,他们证明了其为Landau-Siegel零点猜想。这一“中国人”这是全世界华人数学家向全世界发出的祝贺之声!此前,张益唐团队曾获得数个重要的成果及论文。

该论文从理论到应用证明了该猜想是数理逻辑的“基石”,其重要性将影响人类对数学问题的解决以及知识获取。其在数学和物理学界引起了广泛的关注。论文引用自美国数学协会(AAA)的统计,张益唐领导的研究团队在一年内向学术界公布了4个Landau-Siegel零点猜想的证明。同时张博士还表示,这些结果对于未来数理逻辑相关领域的研究将产生重要影响并引发全世界数学家向该方向迈进;而对于数学界来说,这也是值得纪念与庆贺的事情。

虽然中国数学家已经为世界数学做出了巨大贡献,但与国际上相比,中国的数学家还很少。近年来,我国取得的杰出贡献在国际上已经越来越受瞩目。特别是在数理逻辑领域上取得杰出的成就,特别是在Landau-Siegel零点猜想上取得突破性进展对整个数理逻辑领域起到极大的推动作用。张益唐获得这一结果显示出他在这一领域中超群精湛的数学水平及卓越的推理能力具有重要意义。

此外与张益唐同在加州大学洛杉矶分校的杨柳岩教授也在今年6月在《数学年刊》上发表了论文,证明了其对零点猜想所做出的工作。张益唐在文章中提到这个猜想是由他的同事们共同努力而得到的结果。我们也希望该论文能够影响到更多人对Landau-Siegel零点猜想提出相关质疑及研究热情。

238 评论

上海草根

函数零点的7种问题及解法:

1. 基本问题说明

函数零点及其个数的相关问题包括:根据题设中函数概念、性质等已知条件,求解函数的零点、判定函数整个定义或或某个区间内零点的个数、判定函数零点所在区间(范围)等;

或者根据已知的函数零点及其个数有关条件,逆向求解函数相关问题,如参数问题。

这类问题属于考查的重点。当题目是以三次函数或超越函数方式出现时,一般都有一定难度。

提示:一元二次函数根的分布将作为一个独立问题在后文进行论述。

2. 解决问题的一般方法

1) 判定函数零点所在区间(范围)

由零点存在性定理:

① 如果f(x)在区间(a,b)内连续,且f(a)f(b) < 0,则至少有一个根;逆推,不一定成立!只有单调时才能逆推!

② 判定“零点在某区间(a,b)的个数是唯一”的方法

a) f(x)在区间(a,b)上连续,且f(a)f(b) < 0;

b) 在区间(a,b)上单调。

2) 判定函数零点个数

① 解方程法

当f(x)=0的根易求解时适用。

所求得f(x)=0的根即为所求零点。

提示:x^2+2x+1=0有两个等根,但y=x^2+2x+1只有一个零点——既要知道方程与函数的联系,也要知道二者概念上的差别。

② 导数法

当f(x)=0的根不易求解或无法求解时适用。一般方法为:

a) 需要时,先把方程问题转化为函数零点问题;

b) 然后借助导数来确定函数的单调区间;

c) 每个单调区间上最多有一个零点,所以可以通过判断每一个单调区间端点值的符号,来判断这个区间上有没有零点

i. 符号相反时,有一个零点;

ii. 均为正值或负值时,没有零点;

iii. 如果有一个端点值为0,要看实际题意,例如开、闭区间。

③ 图像法

当f(x)=0的根不易求解或无法求解时适用。

a) 通过图像,判断与x轴的交点个数。此时不用解出具体值,只需分析与判断图像趋势或走向。但不要忘记分析‘增速不同的两根相交曲线’再次相交的可能性。

332 评论

相关问答

  • 函数零点的研究论文

    我知道能函授问题明白道理

    海棠花花 7人参与回答 2023-12-08
  • 与七数劫有关论文参考文献

    初中学生的七年级数学学习随着我国新课程标准的实施以及素质教育的不断深入,初中七年级数学处于数学学习的过渡阶段,培养学生的自主学习能力对其未来的学习与发展具有重要

    美美吻臭臭 5人参与回答 2023-12-08
  • 与沟通问题有关论文参考文献

    (如何获取全文? 欢迎:购买知网充值卡、在线充值、在线咨询) CAJViewer阅读器支持CAJ、PDF文件格式,AdobeReader仅支持PDF格式

    zoemai0505 2人参与回答 2023-12-07
  • 与走进新零售有关论文参考文献

    销售毕业论文参考文献 大学生活要接近尾声了,大家都知道毕业生要通过毕业论文,毕业论文是一种有准备的检验学生学习成果的形式,那么问题来了,毕业论文应该怎么写?下面

    辉帅LED照明 2人参与回答 2023-12-05
  • 与点灯人有关论文参考文献

    毕业论文 (设计)指导书(适用于2007届电子信息工程、计算机控制专业)目 录毕业论文(设计)任务书一.毕业论文(设计)的目的和任务二.毕业论文(设计)的

    荷塘荔色 5人参与回答 2023-12-08