clover2011
一、什么是潮汐
严格意义的潮汐,是指由于日、月引力的作用,地球的岩石圈、水圈和大气圈产生的周期性运动和变化。完整的潮汐研究对象包括地潮、海潮和气潮。
由于海潮现象十分明显,且与人们的日常生活、经济活动、交通运输等关系密切,所以习惯上将潮汐狭义理解为海洋潮汐。海洋潮汐一般每日发生两次,发生在白天的称为“潮”,发生在晚上的称为“汐”,部分地区只发生一次。当外海潮波沿江河上溯,又会引起江河下游发生潮汐。
根据周期,潮汐又可分为三种类型:
不论那种潮汐类型,在农历每月初一、十五以后两三天内,各要发生一次潮差最大的大潮。在农历每月初八、二十三以后两三天内,各有一次潮差最小的小潮。
由太阳引起的潮汐称 太阳潮 ,由月球引起的称月球潮汐,也称 太阴潮 。
二、潮汐产生的原因
古人早已发现潮汐与月相变化之间存在密切的关系,但对此无法作出合理解释。直到牛顿发现万有引力定理,才为解释这个现象提供了理论基础。但即使如此,对于潮汐的形成原因还是存在普遍的误解。
误解一:月球对海水的引力导致地球对着月亮的海面向上隆起,形成潮汐。
误解二:月球和地球实际是在围绕共同的质心旋转,旋转的离心作用对地球背面海水和正面海水都会产生向外拉拽的效果,导致地球呈现椭球形,从而形成潮汐。
这是网上流传最多的观点,我解释一下:
地球向月点B、北极点F、背月点D距离轴线距离不同,因此它们的运动轨迹为图中半径不同的虚线圆圈。因为“角速度相同的情况下,离心力与旋转半径成正比”,所以这三个点的离心作用由弱到强,黄色箭头长度显示了各点离心力的大小,箭头方向显示了离心力的方向。由于转轴在地表以下,所以B点离心力是指向月亮的,F和B点则远离月亮。
站在F点的观察者,由于自身处在一个旋转的参考系中,所以他观察到的D点离心力等于D点箭头长度减去F点箭头长度,B点离心力则等于其箭头长度加上F点箭头长度(见下面俯视图中橙色箭头),计算可知两者长度相等,因此观察者看到B、D两点受到大小相等方向相反的离心力作用,两处的海水向外拉伸,因此发生了涨潮。
可能不太好理解,举个例子:假设你和两个小球共处于一个电梯中,初始时都是静止状态。这时电梯缆绳突然断了,你和小球随着电梯轿厢开始自由落体,正常情况下你会看到两个小球漂在空中,与你的距离既不变远也不变近,你会认为它们和你都没有受到力的作用,虽然实际上你们都受到了重力的作用。假如由于某种奇异的机制(比如外星人作祟),其中一个小球落得比你快,另一个落得比你慢,虽然两者实际都还在加速下落,但在你看来,你会认为其中一个球受到了向上的拉力,另一个受到了向下的拉力。
位于F点的观察者观察B、D点,与轿厢中的人观察两个小球是类似的,他观察到的B、D点离心力的大小是等于两点实际值减去F点的实际值的。这个分析是不是很有道理?它的确能说明向月点和背月点都受到了向外的拉力。但是, 它只分析了向月点、北极点和背月点的受力,没有分析其它区域的受力 ,我们还不能据此就认为它对潮汐成因的解释是对的。
我们在地球表面上放置一个可移动的点A,按照上面的分析计算A点受到的离心力(用箭头AA1表示其大小和方向),再将其减去F点受到的离心力FF1,得到图中A3点的位置,AA3表示的就是F点观察者所看到的A点受力。移动A点位置,观察A3点轨迹,就能得出地球不同位置的受力图,然后直观看出前面的解释是否正确。
先让A点在地球经线上移动,见下面的侧视图:
A3点轨迹连成了一个椭圆,说明B、D两点的离心力的确大于经线上其它部位,符合前面的分析结果。
我们再让A点在地球赤道上移动,见下面的俯视图:
怎么回事,A3的轨迹竟然是个圆形!?为了确认没有看错,我在图中画上一个以地球球心为圆心的绿色圆形辅助线,然后再揉揉眼睛仔细看,没有看错,A3轨迹确实是圆形的!
这说明了什么?这说明在离心力作用下,地球赤道上各个位置受到的向外拉拽的力量是相同的,这种力会使地球向“两极更扁、赤道更鼓”的铁饼形变化,而不是“向月点和背月点更鼓”的椭球形,因此不会出现同期性的潮汐。 对地球上的观察者来说,地月互绕只不过是给地球自转叠加了一个分量而已。 可以断定: 前面的第2个解释是错误的!
网上基于第2种解释的观点很多,部分解释会加上一句“离心力和月球引力的共同作用导致了地球的椭球形”,语焉不详,其实并没有解释清楚潮汐的成因。
那么正确的解释是什么呢?
这次我们对地球各点受到的与月球有关的力做一下客观分析。每个点受到的与月球相关的力只有两个:地月互绕产生的离心力和月球引力。我们对图4做一些修改,将箭头A1A3改为A1A2,A1A2是A受到的实际月球引力,它与A1A3的不同之处在于:因为月球距离影响引力,所以A1A2的大小会随A的位置变化而变化,而不是像A1A3那样保持不变。据此做出的动图如下:
仔细观察可以看出与图4的不同:A2轨迹是个椭圆,虽然在地月直线方向上与辅助圆是重合的(图5右上角),但在垂直方向A2却在辅助圆以内(图5左侧和右侧),尽管差别很微小。这说明在赤道上向月点和背月点海水受到的向外拉拽力比侧面的要大。
上面这个图有些复杂,下面的描述加简单,更能说清楚它的本质。
图4、图5表明,地月互绕带来的离心作用只能给赤道上各点带来相同大小的离心力,月球引力的不同才会带来真正的变化,那我们干脆抛开离心力,只考虑月球引力。再画图分析一下。
上面两个图表示的是赤道上各点和F点受力情况,箭头方向表示受力方向,长度表示受力大小。图6表示的是实际月球引力,图7表示的是站在F点的观察者观察到的受力。为突出效果,图中将引力变化幅度做了放大,图7呈现了明显的椭球形。
我们知道,做匀速圆周运动的物体实际是向着圆心做加速运动,地球也是如此:地球由于月球引力而向月球做加速运动,由于背月点海水受到的引力较小,引力带来的加速比地球小,因此被地球拉着飞向月球;而向月点海水受到的引力比较大,相比地球有更快飞向月球的趋势,因此它拽拉地球往前跑。所以,对于地球来说,背月点和向月点的海水都有飞离的趋势,这就是潮汐的动力来源。
根据表1数据计算(考虑地月互绕,但不考虑地球自转):
虽然引潮力很小,但地球表面70%以上区域被海洋覆盖,月球引力作用于所有区域,累积起来对水体的运动产生很大影响。同时,地球的自转使得海岸挤压隆起的水体,进一步加大了潮汐效果。
大家也许听说过:海底地震在深海区域引起的海啸一般不并太高,可能也就几十厘米,海啸经过时船只甚至没有感觉,但当海啸传播到近海时,会被海床陡然抬高,甚至高达十几米,产生巨大的破坏力。潮汐也类似,在某些近岸环境会展现巨大的威力。
太阳同样会对潮汐产生很大影响,但由于距离太远,虽然质量远大于月亮,太阳产生的引潮力大小只是月球的46%左右。
朔点时刻太阳和月球在地球的一侧,有最大的引力,所以会引起大潮,在农历每月的十五或十六附近,太阳和月亮在地球的两侧,太阳和月球的引力你推我拉也会引起大潮;在月相为上弦和下弦时,即农历的初八和二十三时,太阳抵消了月球的一部分潮汐效应,所以就发生了小潮。
由于月球每天在地球上东移13度多(360/27.32),地球自转这个距离需50分钟左右,所以每天月亮上(下)中天时刻比前一天推迟约50分钟(即:1太阴日 ≈ 24时50分),故每天涨潮时刻也推迟50分钟左右。
地潮、海潮和气潮的发生都是由上述原因引起的,三者之间又互有影响。大洋底部地壳的弹性和塑性也会导致海潮形变,即地潮对海潮有一定影响;而海潮引起的海水迁移,改变地壳承受的负载,又会使地壳发生变曲;气潮作用于海面上引起附加的振动,使海潮的变化更趋复杂。
三、潮汐的应用
(一)能源开发 1. 潮汐能 潮汐能是指海水潮涨和潮落形成的水的势能。由于地球的自转,这种水位变化以周期12小时25分的深海波浪形式由东向西传播(太阳潮周期为12小时)。根据平衡潮理论,如果地球完全由等深海水覆盖,月球所产生的最大引潮力可使海水面升高0.563m,太阳引潮力的作用为0.246m。和水力发电相比,潮汐能的能量密度很低,但一般平均潮差达到3m以上就有实际应用价值。世界大的潮差能达13~15m。
2. 开发潜力 尽管潮汐很复杂,但对任何地方的潮汐都可以进行准确预报。海洋潮汐从地球的旋转中获得能量,并通过浅海区和海岸区的摩擦以1.7TW的速率消散。吸收能量过程会使地球旋转减慢,但减慢非常微小,也不会由于潮汐能的开发利用而加快。只有在地理条件适宜的地方,才有可能从潮汐中提取能量。据估算,有开发潜力的潮汐能量每年约200TW·h。
3. 潮能储量 全世界潮汐能的理论蕴藏量约为3×10^9 kW。我国海岸线曲折,全长约1.8×10^4 km,沿海还有6000多个大小岛屿,组成1.4×10^4 km的海岸线,漫长的海岸蕴藏着十分丰富的潮汐能资源。我国潮汐能的理论蕴藏量达1.1×10^8 kW,其中浙江、福建两省蕴藏量最大,约占全国的80.9%,但这都是理论估算值,实际可利用的远远比这少。
4. 发电站 1912年,世界上最早的潮汐发电站在德国的布斯姆建成。1966年,世界上最大容量的潮汐发电站在法国的朗斯建成。我国在1958年以来陆续在广东省的顺德和东湾、山东省的乳山、上海市的崇明等地,建立了潮汐能发电站。加拿大安纳波利斯潮汐电站、法国朗斯潮汐电站、基斯拉雅潮汐电站是世界三大著名潮汐电站。
(二)军事应用 1661年4月21日,郑成功率领两万五千将士从金门岛出发,到达澎湖列岛,进入台湾攻打赤嵌城。郑成功的大军舍弃港阔水深、进出方便但有重兵把守的大港水道,选择了鹿耳门水道。鹿耳门水道水浅礁多,航道不仅狭窄而且有荷军凿沉的破船堵塞,所以荷军此处设防薄弱。郑成功乘着涨潮航道变宽且深时,攻其不备,顺流迅速通过鹿耳门,在禾寮港登陆,直奔赤嵌城,一举成功。
1939年,德国布置水雷,拦袭夜间进出英吉利海峡的英国舰船。德军精确计算潮流变化的大小及方向,确定锚雷的深度、方位,用漂雷战术取得较大战果。
1950年朝鲜战争初期,朝鲜人民军长驱直入打到釜山一带。美国纠集联合国多国部队杀到朝鲜,但在选定登陆地点时犯了难——适合登陆的港口都有朝鲜人民军重兵把守,强行登陆代价巨大。最终美军司令麦克阿瑟指挥美军于仁川成功登陆。原来,仁川港位于朝鲜的西海岸,平时易守难攻,朝鲜人民军认为美军不可能从仁川登陆,加之战线拉得太长,所以对仁川港疏于防守,兵力薄弱。可是仁川每年有3次最高的大潮,潮差可达9.2米,为亚洲之最。美军利用9月15日的大潮,穿过了平时原本狭窄、淤泥堆积的飞鱼峡水道和礁滩,出人意料地在仁川港登陆。朝鲜人民军因此被拦腰截断,前线后勤完全失去保障,腹背受敌,损失惨重,几乎陷入绝境。美军和联合国军仅用1个月,几乎席卷朝鲜半岛,兵临鸭绿江边,取得空前胜利。
四、潮汐对天体的影响
(一)潮汐与地球自转变慢 由于各层海水做相对运动时的粘滞力以及海水与陆地和海床的摩擦作用,潮汐对地球自转有制动作用,使地球自转逐渐变慢。研究表明,地球自转周期每个世纪变长1-2毫秒。按这个减慢效应推算,距今3.7亿年前的泥盆纪一年约有400天,这与泥盆纪珊瑚化石的生长环数目相符(珊瑚环一天长一环)。
(二)月球总是以同一面对着地球 人们发现月球总是以同一面对着我们,它的另一面在地球上是看不到的。这是因为月球自转周期恰好和月球绕地球转动的周期相等,而这两个周期相同则是潮汐长期作用的结果。地球对月球的引潮力为月球对地球引潮力的22.17倍,加上月球的转动惯量比地球小得多,因此潮汐造成的自转速度减慢对于月球尤为显著。早期的月球有较大的自转速度,在潮汐的作用下,月球自转逐渐减慢,最后和月球绕地球转动的周期相等,此时,月球潮汐消失,月球的自转周期不再发生变化,所以今天的月球总是以相同的一面对着地球。
(三)潮汐与月地距离的增大 潮汐使得地球自转变慢,导致地球自转角动量减少。由于地月系统的总角动量保持不变,且月球绕地球旋转的方向与地球自转方向相同,故地球自转角动量减少,势必使得月球对地月系统质心的角动量增大,以保持地月系统的总角动量守恒。这一效应使得月球与地球的距离缓慢增加。据观测,月球正以每年3.81厘米的速度远离地球。
月球缓慢地远离地球,也可以用地球潮汐凸起部分导致的月球加速来解释。潮汐的凸起部分被地球的自转带向东面,因为凸起部分离月球更近,凸起部分对月球的引力更大,使得地球引力中心偏向地球和月球质量中心连线的东面,于是对月球在它的轨道运动方向产生了一个很小的加速,使月球的速度加快,缓慢地向外盘旋。
1. 文章中 GeoGebra 动图源文件链接: 2. 为降低理解难度,文中把加速度描述为“力”,实际上,加速度乘以质量才等于力。
脑子已停机
桥的概念桥是一种架空的人造通道。由上部结构和下部结构两部分组成。上部结构包括桥身和桥面;下部结构包括桥墩、桥台和基础。它们高悬低卧,形态万千,有的雄距山岙野岭,古朴雅致;有的跨越岩壑溪间,山川增辉;有的坐落闹市通衢,造型奇巧;有的一桥多用,巧夺天工。不管风吹雨淋,无论酷暑严冬,它们总是默默无闻地为广大的行人、车马跨江过河,飞津济渡。桥的意义与特点建桥最主要的目的,就是为了解决跨水或者越谷的交通,以便于运输工具或行人在桥上畅通无阻。若从其最早或者最主要的功用来说,桥应该是专指跨水行空的道路。故说文解字段玉裁的注释为:“梁之字,用木跨水,今之桥也。”说明桥的最初含意是指架木于水面上的通道,以后方有引伸为架于悬崖峭壁上的“栈道”和架于楼阁宫殿间的“飞阁”等天桥形式。中国山川众多、江河纵横,是个桥梁大国,在古代无论是建桥技术,还是桥梁数量都处于世界领先地位。千百年来,桥梁早已成为人们社会生活中不可缺少的组成部分。但由于我国幅员辽阔,从南到北,从东到西,在地理气候、文化习俗以及社会生产力发展水平上,都存在较大的差异。因此,各自立足于自己的实际条件和根据自己的需要,经过长期的时间,遂创造出多种多样的桥梁形式,并逐步形成了自己的特色,具体说来大致有如下特点:(一) 地域性。我国土地辽阔,南北之间和东西之间的桥梁,受所在自然地理和人文社会的影响,因地制宜,都形成了各自相对独立的风格和特色。如北方中原地区,黄河流域,地势较为平坦,河流水域较少,人们运输物资多赖骡马大车或手推板车。因此,这里的桥梁多为宽坦雄伟的石拱桥和石梁桥,以便于船只从桥下通过;西北和西南地区,山高水激、谷深崖陡,难以砌筑桥墩,因此,多采用藤条、竹索、圆木等山区材料,建造绳索吊桥或伸臂式木梁桥;岭南闽粤沿海地区,盛产质地坚硬的花岗岩石,所以石桥比比皆是;而云南少数民族地区,因竹材丰富,便到处可见别具一格的各式竹材桥梁。从桥梁的风格上看,北方的桥如同北方的人,显得粗犷朴实;南方的桥也同南方的人,显得灵巧轻盈。当然,这跟自然地理也有极大关系,如北方的河流因水流量欺负变化很大,又有山洪冰块冲击,故桥梁必须厚实稳重;而南方河流水势则较平缓,又要便于通航,故桥梁相对较纤细秀丽。(二) 多种多样性。我国是个文明古国,地大物博,山河奇秀,南北地质地貌差异较大,因此对建桥的技术要求也高。大约在汉代时,桥梁的四种基本桥型:梁桥、浮桥、索桥、拱桥便已全部产生了。这四种桥根据其建筑材料和构造形式的不同,又分别演化出:木桥、石桥、砖桥、竹桥、盐桥、冰桥、藤桥、铁桥、苇桥、石柱桥、石墩桥、漫水桥、伸臂式桥、廊桥、风雨桥、竹板桥、石板桥、开合式桥、溜索桥、三边形拱桥、尖拱桥、圆拱桥、连拱桥、实腹拱桥、坦拱桥、徒拱桥、虹桥、渠道桥、曲桥、纤道桥、十字桥,以及栈道、飞阁等等,几乎应有尽有,什么形式的古桥,在我国都能找到。(三) 多功能性。我国古代的匠师建桥,很注意发挥桥梁的最大效益,既能考虑到因地制宜、一切从实用出发,又能考虑使桥梁尽量起到多功能的作用。如江南的拱桥多为两头平坦,中间高拱隆起,使之既产生造型上的弧线美,又利于行舟。而南方地区广见的廊式桥,则更充分反映了一桥多用的特点。南方雨多日照强,桥匠便在桥上修建廊屋,这不仅为过往行人提供了躲避风雨日照、便于歇息的场所,而且还增加了桥梁的自重,以免洪水把桥冲掉,并起到保护木梁、铁索不受风雨腐蚀的作用。特别是很多此类廊桥,因是人员过往要冲,故还利用它兼作集市、住宿和进行商业活动。如广东潮安县的湘子桥,这座桥全长五百余米,?quot;一里长桥一里市"之称,桥中设一段可以开合的浮桥,以利通航;桥上建廊屋、楼后做集市,其间店面栉比,自晨至暮,熙熙攘攘,热闹非凡,以至不闻不见咆哮的潮水和宽阔的江面,故民间流传有“到了湘桥问湘桥”的笑话。(四) 群众公益性。桥梁自产生始,便以属于民众共有的社会性出现。我国的传统建筑,一般为私有性,唯有桥梁(除私有的园林中桥梁外),不管是官修私建的,都为社会所公有。故数千年来,爱桥护路成为一种良好风尚,而“修桥铺路”则是造福大众的慈善行为,被民众所推崇。因此,修桥或建桥具有广泛的群众性。查看史志,我国历来修桥建桥的方式,大概有四种:一是民建,即由一家一姓独立建桥;二是募捐集资,报经官府支持,协力兴建。此种最为多见,如著名的赵州桥、泉州洛阳桥等,都是用此方式建成的;三是官倡民修,由地方官倡导,士绅附和认捐,并指派官吏或商绅主持完成。此多属较大的桥梁;四是全由官府拨款施工兴建的。所以,我国古桥遍布各地,连穷乡僻壤也多建桥。其数量之多,分布之广,居世界首位。桥的产生与发展在人为桥梁之前,自然界由于地壳运动或其他自然现象的影响 ,形成了不少天然的桥梁形式。如浙江天台山横跨瀑布上的石梁桥,江西贵溪因自然侵蚀而成的石拱桥(仙人桥)以及小河边因自然倒下的树干而形成的 “独木桥”,或两岸藤萝纠结在一起而构成的天生“悬索桥”等等。人类从这些天然桥中得到启示,便在生存过程中,不断仿效自然。开始时大概是利用一根木料在小河上,或氏族聚居群周围的壕沟上搭起一些独木桥(桥之所以始称“梁”,也许便是因这种横梁而过的原故),或在窄而浅的溪流中,用石块垫起一个接一个略出水面的石蹬,构成一种简陋的“跳墩子”石梁桥(后园林中多仿此原始桥式,称“汀步桥”、“踏步桥”)。这些“独木桥”“跳墩子桥”便是人类建筑的最原始的桥梁,以后随着社会生产力的发展,不断由低级演进为高级,才逐渐产生各种各样的跨空桥梁。我国的桥梁,大致经历了四个发展阶段。第一阶段以西周、春秋为主,包括此前的历史时代,这是古桥的创始时期。此时的桥梁除原始的独木桥和汀步桥外,主要有梁桥和浮桥两种形式。当时由于生产力水平落后,多数只能建在地势平坦,河身不宽、水流平缓的地段,桥梁也只能是写木梁式小桥,技术问题较易解决。而在水面较宽、水流较急的河道上,则多采用浮桥。第二阶段以秦、汉为主,包括战国和三国,是古代桥梁的创建发展时期。秦汉是我国建筑史上一个璀璨夺目的发展阶段,这时不仅发明了人造建筑材料的砖,而且还创造了以砖石结构体系为主题的拱券结构,从而为后来拱桥的出现创造了先决条件。战国时铁器的出现,也促进了建筑方面对石料的多方面利用,从而使桥梁在原木构梁桥的基础上,增添了石柱、石梁、石桥面等新构件。不仅如此,它的重大意义,还在于由此而使石拱桥应运而生。石拱桥的创建,在中国古代建桥史上无论是实用方面,还是经济、美观方面都起到了划时代的作用。石梁石拱桥的大发展,不仅减少了维修费用、延长了桥的使用时间,还提高了结构理论和施工技术的科学水平。因此,秦汉建筑石料的使用和拱券技术的出现,实际上是桥梁建筑史上的一次重大革命。故从一些文献和考古资料来看,约莫在东汉时,梁桥、浮桥、索桥和拱桥这四大基本桥型已全部形成。第三阶段是以唐宋为主的,包括两晋、南北朝和隋、五代时期,这是古代桥梁发展的鼎盛时期。隋唐国力较之秦汉更为强盛,唐宋两代又取得了较长时间的安定统一,工商业、运输交通业以及科学技术水平等十分发达,是当时世界上最先进的国家。东晋以后,由于大量汉人贵族官宦南迁,经济中心自黄河流域移往长江流域,使东南水网地区的经济得到大发展,经济和技术的大发展,又反过来刺激桥梁的大发展。因此,这时创造出许多举世瞩目的桥梁,如隋代石匠李春首创的敞肩式石拱桥--赵州桥,北宋废卒发明的叠梁式木拱桥--虹桥,背诵创建的用筏形基础、植蛎固墩的泉州万安桥,南宋的石梁桥与开合式浮桥相结合的广东潮州的湘子桥等。这些桥在世界桥梁史上都享有盛誉,尤其是赵州桥,类似的桥在世界别的国家中,晚了七个世纪方才出现。纵观中国桥梁史,几乎所有的重大发明和成就,以及能争世界第一的桥梁,都是此时创建的。第四阶段为元、明、清三朝,这是桥梁发展的饱和期,几乎没有什么大的创造和技术突破。这时的主要成就是对一些古桥进行了修缮和改造,并留下了许多修建桥梁的施工说明文献,为后人提供了大量文字资料。此外,也建造完成了一些像明代江西南城的万年桥、贵州的盘江桥等艰巨工程。同时,在川滇地区兴建了不少索桥,索桥建造技术也有所提高。 到清末,即1881年,随着我国第一条铁路的通车,迎来了我国桥梁史上的又一次技术大革命。桥的类型与形式按主要材料分木、石、砖、竹、藤、铁、盐、冰桥木桥是最早的桥梁形式,我国秦汉以前的桥几乎都是木桥。如最早出现的独木桥、木柱梁桥。约商周时便出现浮桥,战国前后又出现排柱式木梁桥和伸臂式木梁桥。但因木材本身的特性,如质松易腐以及受材料强度和长度支配等,不仅不易在河面较宽的河流上架设桥梁,而且也难以造出牢固耐久的桥梁来,因此,南北朝始遂为木石混合或石构桥梁所取代。石桥和砖桥。一般是指桥面结构也是用石或砖料来做的桥,但纯砖构造的桥极少见,一般是砖木或砖石混合构建,而石桥则较多见。到春秋战国之际便出现了石墩木梁跨空式桥,西汉进一步发展为石柱式石梁桥,东汉则又出现了单跨石拱桥,隋代创造出世界上第一座敞肩式单孔弧形石拱桥,唐代李昭得造出了船形墩多孔石梁桥。宋代是大型石桥蓬勃发展的时期,创造出像泉州洛阳桥和平安桥那样的长达数里横跨江海交汇处的石梁桥,以及像北京芦沟桥和苏州宝带桥那样的大型石拱桥。竹桥和藤桥。主要见于南方,尤其是西南地区。一般只用于河面较狭的河流上,或作为临时性架渡之用。早期的主要是一种索桥,南北朝时称竹质的溜索桥为“笮桥”。后来出现了竹索桥、竹浮桥和竹板桥等。铁桥,在古代包括铁索桥和铁柱桥两种。前者属于索桥类,较多见,约在唐代便出现;后者属于梁桥类,实为木铁混合桥,极少见,在江西见一例。盐桥和冰桥。主要见于特殊的自然环境中。前者主要见于青海盐湖地区,后者主要见于北方寒冷地区。按结构及外观分梁桥、浮桥、索桥和拱桥这四种基本类型。梁桥。又称平桥、跨空梁桥,是以桥墩做水平距离承托,然后架梁并平铺桥面的桥。这是应用最为普遍的一种桥,在历史上也较其它桥形出现为早。它有木、石或木石混合等形式。先秦时梁桥都是用木柱做桥墩,但这种木柱木梁结构,很早就显出其弱点,不能适应形势的发展。因此,起而代之的是石柱木梁桥,如秦汉时建成的多跨长桥:渭桥、灞桥等。约在汉代时桩基技术发明,于是出现了石桥墩,标志着木石组合的桥梁能够越跨较宽大的河道能经受住汹涌洪浪的冲击。但由于石墩上的木梁不耐风雨侵蚀,于是便在桥上建起了桥屋,保护桥身,此桥型(廊桥)后多见于南方,但最早都见于黄河流域。中小型的石梁或石板桥,构造方便,材料耐久,维修省力,是民间最为喜用的一种桥形,尤其是南宋后,在福建泉州地区十分盛行,创造了许多长大的石梁桥。梁桥若中间无桥墩者,称单跨梁桥;若水中有一桥墩,使桥身形成两孔者,便称双跨梁桥;若两墩以上者,便称多跨梁桥。浮桥。又称舟桥、浮航、浮桁,因其架设便易,常用于军事目的,故也称“战桥”--一种用于数十百艘木船(也有用木筏或竹筏连横于水上的)连锁起来并列于水面,船上铺木板供人马往来通行的桥。若按严格意义上的桥:是以跨空和有柱墩为标志的话,那它还不是十足意义上的桥。浮桥主要建于河面过宽及河水过深或涨落起伏大,非一般木石柱梁桥所能济事的地方。浮桥两岸多设柱桩或铁牛、铁山、石囷、石狮等以系缆。隋大业元年在洛阳洛水上建成的天津桥,是第一次用铁链连接船只的浮桥。浮桥目前在我国南方如江西、浙江、广西等地方仍常见用。浮桥的优点:一是施工快速,清咸丰二年(公元1852年),太平军围攻武昌,只用一夜时间就建成两座横跨长江的浮桥。二是造价低廉,明代邹守益在《修凤林浮桥记》中,曾对石桥与浮桥做过比较:“若用石梁桥,要费千金,而用浮桥,则费五百金便可,可根据需要而定。”三是开合随意,拆除和架设都很方便。缺点是载重量小,随波上下动荡不定,且抵御洪水能力弱,常需及时拆撤,并要人照看,管理繁琐,舟船、桥板与系船的缆绳要经常修葺和更换,维护费用昂贵。因此,很多浮桥的最后归宿,都向木梁桥、石梁桥或石拱桥发展。索桥。也称吊桥、绳桥、悬索桥等,是用竹索或藤索、铁索等为骨干相拼悬吊起的大桥。多建于水流急不易做桥墩的陡岸险谷,主要见于西南地区。其做法是在两岸建屋,屋内各设系绳的立柱和绞绳的转柱,然后以粗绳索若干根平铺系紧,再在绳索上横铺木板,有的在两侧还加一至两根绳索作为扶栏。始见于秦汉,如秦李冰曾在四川益州(今成都)城西南建成的一座笮桥,又名"夷里桥",便是座竹索桥。现存著名的有建于明清时的泸定铁索桥、灌县竹索桥等。过索桥感觉非常惊险,正如古人形容过索桥的那样:“人悬半空,度彼决壑,顷刻不戒,陨无底谷。”唐代和尚智猛称:“窥不见底,影战影栗。”其实真正渡之还是安全的,正如《徐霞客游纪》对贵州盘江桥评价的那样:“望之飘然,践之则屹然不动。”拱桥。在我国桥梁史上出现较晚,但拱桥结构一经采用,便迅猛发展,成为古桥中最富有生命力的一种桥型,即使在今天,它也仍有继续发展的广阔前景。拱桥有石拱、砖拱和木拱之分,其中砖拱桥极少见,只在庙宇或园林里偶见使用。一般常见的是石拱桥,它又有单拱、双拱、多拱之分,拱的多少视河的宽度来定。一般正中的拱要特别高大,两边的拱要略小。依拱的形状,又有五边、半圆、尖拱、坦拱等之分。桥面一般铺石板,桥边做石栏杆。拱桥的形象最早见于东汉画像砖上,是由伸臂木石梁桥在发展过程中又受墓拱、水管等形状影响而产生的。文献记载见于南北朝时的《水经注》中,现存最早的实物和最具代表性的是隋代李春设计建造的赵州桥。石拱桥的发券,明以后,尤其在清代,则盛行用整券,即“桶状发券”。其他造型飞阁和栈道、渠道桥和纤道桥,以及曲桥、鱼沼飞梁和风水桥。“飞阁”,又称阁道、复道,即天桥。古代宫殿楼阁间的跨通道。《三辅黄图》:“乃于宫(指汉未央宫)西跨城池作飞阁通建章宫,构辇道以上下。”秦汉皇宫楼殿间联以阁道通行,因上下有道,故称复道。秦始皇筑阁道由阿房宫通骊山,人行桥上,车行桥下,堪称中国最早的立交桥。“栈道”,又称栈阁、桥阁,单臂式木梁桥。在山区陡峭的地方,架木铺成的道路。“渠道桥”,既是引水渠道又作行人用的桥梁。也即在桥上砌水渠以引水。如建于金代的山西洪洞县惠远桥。故今山西民间尚有“水上桥、桥上水”的俚语。“纤道桥”,一种为便于拉纤而建造的、与河流平行的带状长桥。多见于浙江境内的运河地区。有的长达一二公里乃至五六公里,如绍兴阮社有一座“百孔官塘”纤道桥,建于清同治年间,桥长380余米,115个跨,桥面用三块条石拼成,底平接水面。“曲桥”,园林中特有的桥式,故也称园林桥。桥与径、廊均为园林中游人赏景的通道。“景莫妙于曲”,故园林中桥多做成折角者,如九曲桥,以形成一条来回摆动,左顾右盼的折线,达到延长风景线,扩大景观画面的效果。曲桥一般由石板、栏板构成,石板略高出水面,栏杆低矮,造成与水面似分非分、空间似隔非隔,尤有含蓄无尽之意。桥的材料与构造
土壤重金属的污染问题与防治路径论文 在平平淡淡的日常中,大家对论文都再熟悉不过了吧,论文是探讨问题进行学术研究的一种手段。相信许多人会觉得论文很难写吧,下面是我
财政学的多元化特点要求财政学教学方法必须更加多样化,并且不断革新,与时俱进。下面是我为大家整理的,供大家参考。 一个国家的发展离不开科技创新,科技创新离不开资金
如今越来越多的环境问题出现,也影起了越来越多人的关注,温室效应是很早就提出的了,可能人们现在更多的去关注新出现的环境问题,对温室效应的关心也不多了,我们必须面对
薪酬管理对企业员工工作绩效的影响研究论文 摘要: 随着社会经济的不断发展,我国的国际化水平越来越高,企业所面临的市场竞争也越来越激烈。市场的竞争也正是人才的竞争
水利工程建设对生态环境产生的影响分析论文 在日常学习和工作中,许多人都有过写论文的经历,对论文都不陌生吧,论文写作的过程是人们获得直接经验的过程。那么一般论文是