修中圈儿
简单说一下时代背景,如规划模型在经济学精确化条件下越来越重要,作为运筹学的重要分支,应用……再解释一下数学规划的定义,稍加阐释,百度上有,不过太简单,然后说一下数学规划的分类。最核心的环节是,对分类在经济学中应用的举例,注意详略得当,重点介绍线性规划,非线性规划,动态规划,以上三类书上都有例子。其余的不必展开论述。最后总结一下就好了 。附:类似论文一篇浅析数学在经济学中的应用摘要:半个多世纪以来经济学领域中数理形式的运用是—个重要的发展趋势,对经济理论和实践也有重要的影响。西方经济学知识的普及也已将数学知识渗透到了经济学的方方面面。将当今经济学名刊稍作翻阅便会发现,大量数学方法的运用甚有超越数学专业学生的趋势,经济学论文的质量要看其数学方法应用的程度,经济学硕士博士的录取要看其数学背景的深厚,数学几乎有一统经济学天下之势。经济学遇上数学将会演绎如何的理性之美?关键词:经济学;数学;西方经济学一、经济学的定义资源的有限性和人类欲望的无穷性是经济学诞生的根基,这是一个常人皆知浅之又浅但又非常深刻的道理。经济学要解决的其实就是一个如何选择的问题,也就是说,经济学就是要解决选择以什么样的方式把有限的资源合理有效的配置进而达到满足人类无穷之欲望的目的。所以西方经济学里经济学被定义为研究稀缺资源配置的学科,它以理性的假设为逻辑起点,研究人类行为,这些基于现实基础研究的问题与现实经济生活中存在的问题紧密相连,研究的结论能有助于解释或理解现实经济问题。但是,经济关注人类行为本身的目的最终就是为了追求资源配置的效率(efficiency)。经济学作为一门研究人类社会的事实的学科,有着它独特的味道。它可以联系到政治,社会等各种学科。对于经济学家,当他试图解释这个世界的时候,他就是经济学家,当他试图改变这个世界的时候,他就是政客。特殊的双重身份也说明经济学的多元性。甚至有人提出这样一种见解,认为经济学在本质上和史学没有什么差别,只是史学研究的大多是过去的事情,而经济学关注的历史长度就没那么长了,而且经济学更多的借用了数学和统计的工具来阐释问题。二、数学在经济学中的应用西方经济学者大量的把数学引入经济学,就是试图以一种精确的方式阚释世界,进而试图把现代西经济学发展成为一门精确的科学。以高鸿业主编的《西方经济学(微观部分)第四版)>为例,在说明边际效用时应用的极限和求导;在分析蛛网模型时应用的拉格朗日乘数法;在论证边际技术替代率时应用的多元函数微分法;在阐述寡头厂商之间的博弈策略时应用的博弈论与均衡的概念;以及无处不在的各种函数曲线的应用和函数表达式的推导。而这些只是经济学学习的入门课本上的一些例子。而在整个经济学领域里,边际分析、瓦尔拉斯一般均衡论、线性规划、投入产出分析、博弈论以及随机数学、模糊数学和非线性科学在经济中也有着广泛的应用。这些本来属于数学范畴的工具现在充满了经济学研究的方方面面。同时诺贝尔经济学奖的设立似乎也是一个强有力的明证。但我们也不可否认,数学作为一门工具,在对经济学理论的解释中也发挥了重要的作用。下面来看几个经典的例子。1.边际理论公元17世纪,随着欧洲封建社会开始解体和资本主义工场手工业向机器大生产的过度,向数学提出了一系列必须从运动变化和发展的观点来研究事物的新问题。于是,从量上描述事物的运动和变化规律的数学部分——变量数学便应运而生。19世纪70年代初期,杰文斯、门格尔和瓦尔拉斯三位不同国籍的学者将他们的“欲望”概念或者“效用”概念和“微分”的基本概念结合起来,“边际效用”使出现了。经济学史上著名的“边际革命”也随着微积分思想向经济学渗透而爆发。在边际革命鼎盛时期之后,边际分析方法本身朝着更深更广的方向发展。而边际分析这一脱胎于微积分思想的有力工具,也在经济学的各个研究领域一宏观经济学、线性规划分析、经济计量学、福利经济学等等中得到了普遍的应用。2.一般均衡理论1 8世纪的欧洲,自由竞争的资本主义正处于上升的历史阶段。经济学家们注意到在一个社会里有众多的消费者和生产者,他们各自独立做出的决策不但没有引起混乱,反而在实际中产生了一种最优的经济状态。1776年,亚当·斯密就在他那本堪称“经济学的圣经”的‘<国民财富的性质和原因的研究》中提出,这是由于有一只“看不见的手”在起作用。而在一百年后,法国经济学家瓦尔拉斯把斯密的这一思想提炼成一般均衡问题,把用文字表述的思想借助19世纪已经发展成熟的线性代数理论转化成了数学问题。按照线性代数的观点,商品空间可以看作一个线性空间,每一种商品的需求或供给可以看作是一种约束,这种约束用状态变量所满足的方程来表示。而找到一组确定的值满足所有方程,就找到了均衡体系。瓦尔拉斯在1874年出版的代表作《纯粹经济学要义势中,从交换均衡入手,分析了由交换均衡、生产均衡、资本积累均衡和货币均衡四个方面构成的体系,阐明了在纯粹竞争条件下整个经济处于完全均衡状态时各种经济变量的均衡值的决定条件与相互关系。瓦尔拉斯借助于线性代数创造的这样一套全新的理论概念体系当时并没有被同时代的经济学家立刻适应和接受,反而对他诸多责难。但是,这一开拓性的工作却对后世产生了持久的深远影响。三、数学方法在经济学中是工具通过上面的几个例子,可以看出,数学的灵活运用对于一个经济理论的阐述的确起到了非同小可的作用。但我们必须看到,对于经济理论,数学方法是一种分析、论证和研究的工具,这种工具能否产生有用的成果,取决于应用数学的经济理论是否正确。数学方法可以为正确的理论服务,也可以为错误的理论效劳,方程式证明是对的,只是公式上的对,内容上却可能是错的,数学方程式大有用场,但数学本身是没有内容的。大概地对比精确的错可取,世界如此复杂,而统计学的陷阱多如牛毛,可取的结论也要先求大概地对为好,所以,经济学中数学的应用应该是一个附加条件慎之有慎而绝不是人人想用就可用的问题。记得复旦大学陆铭教授在源于经济学和数学关系的一篇文章中说道,“在经济学里直觉非常重要。有了直觉以后,在做一个数学模型之前,应该在脑子里面有一个故事和逻辑,用数学把这个故事和逻辑写下来。数学的确可以帮助你得到一些结论,但我的经验告诉我,百分之七十甚至百分之八十的结论,可能你在写数学之前就已经知道了;确确实实有百分之二、三十的结论,如果你不写数学可能你就不知道,或者你知道的很模糊。为什么我这样说?回过头来想想看刚刚讲到的起点问题,如果你相信仅仅依靠数学可以帮你把经济学解释清楚,那我就要问,你的起点是哪儿来的?当你去写你的数学的假设时,当你去假设人的行为决策模式的时候,当你去假设模型中的市场结构的时候——是用垄断的市场结构,还是完全竞争的市场结构?在不在你的模型里放政府?——实际上你要做的是用数学来表达一个你对经济现实的认识。如果你说我对这个现实没有认识就直接写数学了,那非常危险的一个结果就是你的起点就错了,于是你的结论不可能是对的,哪怕你数学上非常花俏”。而且陆铭教授还强调了“数学之后”的问题,他说,“你们把数学推导完了,有没有想过在数学逻辑的背后,它的故事是什么,它的经济学含义是什么。这往往是同学们所忽略的。在学习和读论文的过程当中,如果你们忽略这一点,你们学到的就只是数学,而不是经济学。你们在写论文的时候,把数学写完了,写上两个字“证毕”,你的论文最多完成了百分之五十。你要知道,在数学层面上,只要动—叫叫、小的假设,就完全可能得到不同的结论,因此,脱离经济学机制而存在的数学结论是毫无意义的”。所以思想应该是最重要的,数学是工具,目的是为了把问题看清楚,得出结论。经济学中的数学工具很重要——就仿佛和外国人交流用英语一样重要。但是,与和外国人用英语交流一样,更重要的你想要交流的思想。在经济学中,数学是全球经济学家都能听懂的语言,同样,语言很好并不必然意味着你的思想就很深刻。现在的经济学流派里,不大使用数学的新制度经济学就很有解释力。在经济史上的伟大经济学家,纳什作为一位数学系的博士生,因其博士论文在博奕论中的开拓性贡献而获得了一九九一年诺贝尔经济学奖。纳什能够获奖,依靠的仅是数学吗?是通过数学所透析出的思想,一种具有开拓性的思想。还有科斯,他从来不用数学,仅凭二十余岁时发表的《企业的性质》及以后发表的《联邦传播委员会》而获得诺贝尔经济学奖,成为经济史上一位举足轻重的人物,科斯的产权理论和交易费用理论,证明了产权制度对经济的重要性,并在此基础上形成一个当前在经济学中十分重要的新制度经济学派。科斯没有凭借任何数学工具,凭借的完全就是一种思想,一种开拓于前人的思想。还有一些经济学家反对在经济学中运用数学工具,如获一九七四年诺贝尔经济学奖的缪尔达尔,他是代表弱势群体说话的经济学家,他对美国黑人和发展中国家人民的关注是经济学人文关怀的体现。同年获奖的经济学家哈耶克是自由主义大师,他对自由问题的论述,无疑是对人类的最大关怀。
蚊防四宝
售书问题优化模型摘要优化问题是工程技术、经济管理和科学研究等领域重做常见的一类问题,在解决极值问题中起着重要作用。零一规划也是常用的数学工具,能够有效的表示事物的有效性。本文是以一极具有实际意义的问题,而随着信息时代的发展,大学生接受知识的途径多种多样,报纸、杂志、图书一直赢得大学生不同程度的青睐,而且出现了电子图书这个时代的产物,对于这个实际意义较大的问题就应有简单易懂的模型,让人看起来比较容易接受。考虑到建立销售点,使它供书的人数达到最大,那就要在条件约束下建立优化模型,而选择两地之间是否有销售的关系为他们的决策变量,那样就使人易懂,易于理解。通过建立线性规划模型,并应用Linggo软件得到最优解,B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。最优解可以有多种选择方法,这就有选择的灵活性。本模型适用于只考虑人数最大的地址的选择,具有较强的实用性和普遍性。关键字 售书问题 优化模型 零一规划 Linggo1.问题的重述一家出版社准备在某地向七个区大学生供应图书,每个区的大学生数量如图所示(单位:千人),出版社准备在该市设立两个图书代理销售点,每个代理点只能想该地区和一个相邻的地区售书,出版社知道售书覆盖的人群越大,所获得的利润也就也大,所以出版社要选择两个恰当的代理销售点使覆盖的人群最大。现在所要解决的是选在合适的代理销售点。2.问题分析 书是人们进步的阶梯,售书问题普遍受到人们的关注。近年来随着科学技术的发展,电子图书、网上书城等的出现,人们阅读的方式越来越多,而书的销售问题也越来越受销售商的关注。如何选择待销售点才能使卖出的书最多,销售商获得的利益最大,成为问题的关键所在。在许多候选地区中选择最优的地区,制定最优的规划方案,显然必须建立优化模型,每个地区都选与不选的可能性,这就必须用到0—1规划模型,立两个销售代理点, 在满足以下的条件的情况下,要想得到一个最优计划,出版社就需要设计一个合理有效的投资方案:1.只能建立两个销售代理点。2.每个销售代理点只能向本区和一个相邻区的大学生售书在上述要求中,将每两个相邻地区之间连线表示该地区建立售代关系,这种售代关系据有建立与不建立两种选择,显然每个地区只能选择一个销售或者代理,最优方案就是选择权值最大与次大的连线,将上述方案限制转化为约束条件,并使目标函数,约束条件决策标量转化为数学符号,利用LINGGO 软件来求最优解接,3符号的说明符号表示 符号说明A 34千人的地区B 29千人的地区C 42千人的地区D 21千人的地区E 56千人的地区F 18千人的地区G 71千人的地区x1 AB两地区之间建立代售关系x2 AC两地区之间建立代售关系x3 BE两地区之间建立代售关系x4 BD两地区之间建立代售关系x5 CD两地区之间建立代售关系x6 DG两地区之间建立代售关系x7 DF两地区之间建立代售关系x8 DE两地区之间建立代售关系x9 EF两地区之间建立代售关系x10 FG两地区之间建立代售关系X11 BC两地区之间建立代售关系Q 所能供应的大学生的数量4.问题假设选择代理销售点时,只考虑该地区总人数以及相邻地区,对人员的迁入迁出,人员的消费能力,人们的需求不予考虑;1、 只有两个销售代理点,且每个销售代理点只能向该区和他临近的去售书。2、 7个销售区中没有人员的流动3、 书的供应量远远满足学生的需求4、 销售代理点向两个地区的学生销售书的价格相同。5、 不考虑邻区因学生买书的路费问题而减少书的购买。6、 售书多少与人数多少成正比。7、 人人的消费能力是相等的。5.模型的建立决策变量:设在ABCDEFG中的某两地之间代售关系Xi(i=1,2,3…10).Xi=1表示在其建立代售关系。Xi=0表示没有建立代售关系目标函数:所能供应的大学生的数量Q千人;则Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10+71*x11;约束条件1.只能建立两个销售代理点。x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;2.与A建立代售关系只能有一个即x1+x2<=1;与B建立代售关系只能有一个即x2+x5+x11<=1;与C建立代售关系只能有一个即x1+x3+x4+x11<=1;与D建立代售关系只能有一个即x4+x5+x6+x7+x8<=1;与E建立代售关系只能有一个即x3+x8+x9<=1;与F建立代售关系只能有一个即x7+x9+x10<=1;与G建立代售关系只能有一个即x6+x10<=1;综上所述:Max Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10;x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;x1+x2<=1;x2+x5+x11<=1;x1+x3+x4+x11<=1;x4+x5+x6+x7+x8<=1;x3+x8+x9<=1;x7+x9+x10<=1;x6+x10<=1;6.模型的求解在lingo中输入以下代码,见附录1.通过运行LINDO教学软件,我们可以得到该售书问题的最优解,即建立代售关系的最优方案,其截图为: Objective value: 177.0000 Variable Value Reduced Cost X1 0.000000 22.00000 X2 0.000000 9.000000 X3 1.000000 0.000000 X4 0.000000 38.00000 X5 0.000000 25.00000 X6 1.000000 0.000000 X7 0.000000 49.00000 X8 0.000000 11.00000 X9 0.000000 11.00000 X10 0.000000 0.000000X11 0.000000 0.000000从中可以看到在B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。(详细结果见附录2)但考虑到地区中人数的问题,以及现实中去买书的路费问题,所以销售代理点应建立在人数较多的地区,在B、E地区中E区人较多为56千人,在D、G地区中G区中人数较多为71千人,所以最好把两个销售代理点建在E区和G区。7.模型的评价和推广 通过查看该区图可以粗略知道应选择人数最大地区为代售点,在题中假设的前提下,选择人数最大的地区为代售点,覆盖了大部分人口,此模型的建立,很好的应用数学知识将选择销售代理点的问题抽象化,使选择我们的选择不再主观、盲目,而是更全面、深入、条理。选择最少的变量考虑问题简化了模型建立的分析。这也是模型最大的弊端数据的真实性受到了很大的限制对实际应用很不利。虽然假设的变量比较多,但人们可以较容易理解。题中假设的太多假设,有些脱离实际,考虑现实当中的销售点间的运输路程、交通便利程度、学生在校期间的对书的消费情况,不同人群之间的消费能了等情况,8.参考文献【1】姜启源 谢金星 叶俊 数学建模(第三版)高等教育出版社 2003【2】http://hi.baidu.com/lanke_ic/blog/item/9584fe17da9e1b59f2de3269.html9.附录附录1:max=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10;x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;x x1+x2<=1;x2+x5+x11<=1;x1+x3+x4+x11<=1;x4+x5+x6+x7+x8<=1;x3+x8+x9<=1;x7+x9+x10<=1;x6+x10<=1; 附录2:Global optimal solution found. Objective value: 177.0000 Total solver iterations: 0Variable Value Reduced Cost X1 0.000000 22.00000 X2 0.000000 9.000000 X3 1.000000 0.000000 X4 0.000000 38.00000 X5 0.000000 25.00000 X6 1.000000 0.000000 X7 0.000000 49.00000 X8 0.000000 11.00000 X9 0.000000 11.00000 X10 0.000000 0.000000 Row Slack or Surplus Dual Price 1 177.0000 1.000000 2 0.000000 85.00000 3 1.000000 0.000000 4 1.000000 0.000000 5 0.000000 0.000000 6 0.000000 3.000000 7 0.000000 0.000000 8 1.000000 0.000000 9 0.000000 4.000000 10 0.000000 4.000000
joanna0727
数学与应用数学毕业论文篇3 浅谈离散数学的应用及教学 我国传统数学教育模式内容相对陈旧、体系单一、知识面窄、偏重符号演算和解题技巧,脱离实际应用,缺乏应用数学知识解决实际问题的实践意识和能力,创新精神和创新能力不足。然而,高科技信息时代的迅速发展对学生的数学素质又提出了新的要求,现有教育模式所培养的学生在某种程度上已经不能适应社会的需要。实践表明,数学研究化图论能激发学生学习欲望,是培养学生主动探索、努力进取的学风和团结协作精神的有力 措施 ;是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和 创新思维 、锻炼创新能力、培养高层次人才的一条重要途径。因此高校教师在实际的教学过程中要把数学研究化图论的思想、方法及内容融入到当今的大学数学教学中去,是一种行之有效的素质教育方法。本文主要从以下几个方面对图论部分的教学进行了讨论: 一、整合教学资源,重视双基学习,激发学生兴趣 图是一类相当广泛的实际问题的数学模型,有着极其丰富的内容,是数据结构等课程的先修内容。学习时应掌握好图论的基本概念、基本方法、基本算法,善于把实际问题抽象为图论的问题,然后用图论的方法解决问题。那在实际的教学过程中,要充分利用课堂上的时间让学生掌握好这些基本概念、基本方法、基本算法则是显示一名大学教师基本功的时候。因此,教师在讲解最常用的概念如:无向图,有向图,顶点集,边集,n阶图,多重图,简单图,完全图,图的同构,入度,出度,度,孤立点等时,要细讲而精讲,要讲到根上,不仅要帮助学生理解每个概念的具体含义,更重要的是要引导学生总结规律,探索方法,培养能力。教师要充分相信学生,注意从学生的思维角度去剖析问题,运用设疑、讨论、启发、诱导等方式,给他们充分的时间去思考、体会和消化。 图与网络有个自然的对应关系,网络设计和分析中的许多问题可以归结图论问题。因此,图论是网络设计和软件分析的最有力的数学工具。图论数学是应用最广的数学分支之一,不仅在网络设计和软件分析中有着重要的应用价值,在 企业管理 ,交通规划,战争指挥,金融分析等领域都有重要的应用。因此在图论数学的教学中不能仅仅注重讲授概念、定理,还要用实例使学生对图论数学产生兴趣,进而解决生活中出现的一些简单的图论数学问题,以达到培养能力为主的教育目标。例如,我在讲解通路、回路、图的连通性时,为了更好的让学生理解这些概念,我提出一个问题:人、狼、羊、菜用一条只能同时载两位的小船渡河,“狼羊”、“羊菜”不能在无人在场时共处,当然只有人能架船。这种情况下怎样安排才能达到最优的状态呢?这个问题的提出,极大的激发了同学们的兴趣,他们努力思索问题的解决之道。在此基础上,我进一步引导他们建立图模型:顶点表示“原岸的状态”,两点之间有边当且仅当一次合理的渡河“操作”能够实现该状态的转变。起始状态是“人狼羊菜”,结束状态是“空”。问题的解决:找到一条从起始状态到结束状态的尽可能短的通路。最后得出这样的结论:在“人狼羊菜”的16种组合中允许出现的只有10种。即下图所示: 这样我就完成把单纯的图论概念和实际生活相结合的转变。同学们在这个过程中通过自己动手具体分析、积极思索,提高了分析问题、解决问题和运用数学的能力。 二、积极采用多媒体教学,使抽象复杂的内容变得具体形象 大学教材中关于图论部分的定义、定理很多,而且内容比较抽象。在教学中,如果教师沿用传统的教学方法,即:介绍定义——引入定理——证明定理,这种讲课方法不仅时间长,而且也不能吸引学生的兴趣。再加上该课程具有较强的抽象性与推理性,一些问题无法在黑板上讲清楚。因此,在数学化研究图论教学中,在继承传统教学的基础上适当使用现代教育技术进行辅助教学,可以把语言、文字、声音、图形、动画、视频图象等多种媒体有机地集成一体,制作和应用多媒体课件。使学生通过多个感觉器官来获取相关信息,提高教学信息传播效率,把抽象问题具体化和形象化,有效地激发学生的学习兴趣,使得教学效果更加形象、生动、具体、准确。 例如,教师在讲授关于“中国邮递员问题”的知识时,可以先用PPT 展示一个实心的正十二面体,20个顶点标上邮递员途经街道的名称,要求邮递员从邮局出发,遍历各街道一次,最后回到邮局。给学生一段时间寻找路径后,用动画显示出寻找路径的过程。然后教师引导学生将上述的中国邮递员问题建立成一个数学模型即:在一个赋权连通图上求一个含所有边的回路,且使此回路的权最小。显然,若此连通赋权图是 Euler 图,则可用 Fleury 算法求 Euler 回路,此回路即为所求。给出Euler 图的定义以及Fleury 算法,从中让学生归纳演示Fleury 算法。这些知识都掌握以后,可以向学生介绍一下赋权连通图在计算机网络布局中的应用,学生在对赋权连通图的认识从具体—抽象—具体的过程中达到了对赋权连通图的深刻理解。 当然制作一个多媒体课件并不是简单的把书本上的概念和定理照搬到PPT 上,而是用具体形象的媒体冲击同学的感官视觉效果,使其能从中更加深刻体会抽象的概念和定义。例如,在讲解图的相关概念时,对于每一种图可以用具体的图形来演示说明,这样学生可以通过形象的图形对抽象的文字有更加深刻的理解。除了教学课堂上使用多媒体之外,教师还可以通过网络辅导学生课后的学习以及布置与指导,通过电子信箱、BBS讨论等多种形式和手段提供学习支持服务。 三、加强师生课堂互动,调动学生学习的主动性图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论数学知识的 应用无所不在,在教学过程中, 我们可根据教学内容结合学生熟悉的生活、生产、科技和当前商品 经济中的一些实际问题如利息、股票、利润、人口等,引导学生从生活中熟悉的方面入手开始学习数学。 图论的教学决不能只是告诉学生现有的结论,然后让他们死记硬背一些公理算法之后,就希望他们立马可以解答出理论很深奥、算法很复杂的数学问题。为了调动学生主动学习的积极性,我在实际的教学过程中会利用好课堂提问这个环节。上课前几分钟的提问,可以通过学生的回答来了解他们对上节课程的掌握程度。而课堂上的提问,可以让学生不宜走神、时刻保持警惕、仔细认真听讲老师讲课的每一个环节,可以积极促使学生在课堂上通过回答教师的提问而解读信息,实施对信息的加工,进而加深对信息的理解。当然教师的提问不应该是随意的、盲目的,而应该是精心准备的,紧扣课堂上所讲授内容的重点及学生最容易混淆、模糊的环节。对于当代大学生而言,老师提问的问题应当有一定的深度和广度,能引导学生深入思考, 把课堂上被动的吸收知识、填鸭式的教学模式变成主动的思考问题、积极回答问题的过程。学生主体参与是数学图论教学的核心,教师主导作用是数学图论教学的保障。在数学图论教学中,通过提问可以引发学生进行深入思考,充分调动他们的积极性,发挥他们的潜能,这样就可以使学生的能动性、自主性、创造性得到长足的进步。 四、加强学生的图论数学思想及运用 网络工具 图论的数学教学实际上就是帮助同学们形成把现实问题转化成点和线的数学思维过程。而教师在具体的教学过程中,就要有目的的引导学生运用数学思想来认识世界。通过这样的教学过程,可以增加学生对图论知识的了解,培养他们提高运用数学图论思维的能力。比如,我在讲解图论之前会给同学们介绍图论问题的由来,即追溯到1736年哥尼斯堡七桥问题,或给学生介绍中外数学名家的光辉 事迹 与献身精神。让他们在加强数学思想的同时,不忘加强自身思想品德的 教育。 图论即形象地运用一些点以及点与点之间的连线构成的图或网络来表示具体问题。利用图与网络的特点来解决系统中的问题,比用线性规划等其他模型来求解往往要简单、有效得多。图论就是研究图和网络模型特点、性质和方法的理论。图和网络之间存在密切的 联系,因此,教师要创设条件, 因材施教,例如运用一些优秀的数学软件如Matlab,MathCAD, 几何画板等,充分利用网络画图的能力来培养学生的数学思维逻辑能力,使每个学生都得到不同程度的 发展和提高,同时培养学生的思想品德和世界观, 让学生的综合素质得到提高。 总之,若教师通过知识的载体,对学生实施能动的 心理和智能的引导教学,提高了学生的数学素质,培养了他们创造性应用的能力,这就算是一种成功的教学。当然教师的职责是通过教学培养学生数学思想,并把这种思想应用到实际的生活中。但传统的教育模式已经根深蒂固的深入到我们的思想当中,尤其是教师也是传统教育模式培养出来的,所以,要想跳出这个怪圈,教师和学校都需要努力去思索和探讨。根据新时代的需求,培养出适应新时代发展的具有自学能力乃至科研能力的更高的人才,这需要我们共同的努力。 猜你喜欢: 1. 应用数学专业论文 2. 数学与应用数学毕业论文 3. 应用数学毕业论文题目 4. 应用数学系毕业论文 5. 数学应用数学本科毕业论文
兴业腾达装饰
售书问题优化模型摘要优化问题是工程技术、经济管理和科学研究等领域重做常见的一类问题,在解决极值问题中起着重要作用。零一规划也是常用的数学工具,能够有效的表示事物的有效性。本文是以一极具有实际意义的问题,而随着信息时代的发展,大学生接受知识的途径多种多样,报纸、杂志、图书一直赢得大学生不同程度的青睐,而且出现了电子图书这个时代的产物,对于这个实际意义较大的问题就应有简单易懂的模型,让人看起来比较容易接受。考虑到建立销售点,使它供书的人数达到最大,那就要在条件约束下建立优化模型,而选择两地之间是否有销售的关系为他们的决策变量,那样就使人易懂,易于理解。通过建立线性规划模型,并应用Linggo软件得到最优解,B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。最优解可以有多种选择方法,这就有选择的灵活性。本模型适用于只考虑人数最大的地址的选择,具有较强的实用性和普遍性。关键字 售书问题 优化模型 零一规划 Linggo1.问题的重述一家出版社准备在某地向七个区大学生供应图书,每个区的大学生数量如图所示(单位:千人),出版社准备在该市设立两个图书代理销售点,每个代理点只能想该地区和一个相邻的地区售书,出版社知道售书覆盖的人群越大,所获得的利润也就也大,所以出版社要选择两个恰当的代理销售点使覆盖的人群最大。现在所要解决的是选在合适的代理销售点。2.问题分析 书是人们进步的阶梯,售书问题普遍受到人们的关注。近年来随着科学技术的发展,电子图书、网上书城等的出现,人们阅读的方式越来越多,而书的销售问题也越来越受销售商的关注。如何选择待销售点才能使卖出的书最多,销售商获得的利益最大,成为问题的关键所在。在许多候选地区中选择最优的地区,制定最优的规划方案,显然必须建立优化模型,每个地区都选与不选的可能性,这就必须用到0—1规划模型,立两个销售代理点, 在满足以下的条件的情况下,要想得到一个最优计划,出版社就需要设计一个合理有效的投资方案:1.只能建立两个销售代理点。2.每个销售代理点只能向本区和一个相邻区的大学生售书在上述要求中,将每两个相邻地区之间连线表示该地区建立售代关系,这种售代关系据有建立与不建立两种选择,显然每个地区只能选择一个销售或者代理,最优方案就是选择权值最大与次大的连线,将上述方案限制转化为约束条件,并使目标函数,约束条件决策标量转化为数学符号,利用LINGGO 软件来求最优解接,3符号的说明符号表示 符号说明A 34千人的地区B 29千人的地区C 42千人的地区D 21千人的地区E 56千人的地区F 18千人的地区G 71千人的地区x1 AB两地区之间建立代售关系x2 AC两地区之间建立代售关系x3 BE两地区之间建立代售关系x4 BD两地区之间建立代售关系x5 CD两地区之间建立代售关系x6 DG两地区之间建立代售关系x7 DF两地区之间建立代售关系x8 DE两地区之间建立代售关系x9 EF两地区之间建立代售关系x10 FG两地区之间建立代售关系X11 BC两地区之间建立代售关系Q 所能供应的大学生的数量4.问题假设选择代理销售点时,只考虑该地区总人数以及相邻地区,对人员的迁入迁出,人员的消费能力,人们的需求不予考虑;1、 只有两个销售代理点,且每个销售代理点只能向该区和他临近的去售书。2、 7个销售区中没有人员的流动3、 书的供应量远远满足学生的需求4、 销售代理点向两个地区的学生销售书的价格相同。5、 不考虑邻区因学生买书的路费问题而减少书的购买。6、 售书多少与人数多少成正比。7、 人人的消费能力是相等的。5.模型的建立决策变量:设在ABCDEFG中的某两地之间代售关系Xi(i=1,2,3…10).Xi=1表示在其建立代售关系。Xi=0表示没有建立代售关系目标函数:所能供应的大学生的数量Q千人;则Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10+71*x11;约束条件1.只能建立两个销售代理点。x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;2.与A建立代售关系只能有一个即x1+x2<=1;与B建立代售关系只能有一个即x2+x5+x11<=1;与C建立代售关系只能有一个即x1+x3+x4+x11<=1;与D建立代售关系只能有一个即x4+x5+x6+x7+x8<=1;与E建立代售关系只能有一个即x3+x8+x9<=1;与F建立代售关系只能有一个即x7+x9+x10<=1;与G建立代售关系只能有一个即x6+x10<=1;综上所述:Max Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10;x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;x1+x2<=1;x2+x5+x11<=1;x1+x3+x4+x11<=1;x4+x5+x6+x7+x8<=1;x3+x8+x9<=1;x7+x9+x10<=1;x6+x10<=1;6.模型的求解在lingo中输入以下代码,见附录1.通过运行LINDO教学软件,我们可以得到该售书问题的最优解,即建立代售关系的最优方案,其截图为: Objective value: 177.0000 Variable Value Reduced Cost X1 0.000000 22.00000 X2 0.000000 9.000000 X3 1.000000 0.000000 X4 0.000000 38.00000 X5 0.000000 25.00000 X6 1.000000 0.000000 X7 0.000000 49.00000 X8 0.000000 11.00000 X9 0.000000 11.00000 X10 0.000000 0.000000X11 0.000000 0.000000从中可以看到在B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。(详细结果见附录2)但考虑到地区中人数的问题,以及现实中去买书的路费问题,所以销售代理点应建立在人数较多的地区,在B、E地区中E区人较多为56千人,在D、G地区中G区中人数较多为71千人,所以最好把两个销售代理点建在E区和G区。7.模型的评价和推广 通过查看该区图可以粗略知道应选择人数最大地区为代售点,在题中假设的前提下,选择人数最大的地区为代售点,覆盖了大部分人口,此模型的建立,很好的应用数学知识将选择销售代理点的问题抽象化,使选择我们的选择不再主观、盲目,而是更全面、深入、条理。选择最少的变量考虑问题简化了模型建立的分析。这也是模型最大的弊端数据的真实性受到了很大的限制对实际应用很不利。虽然假设的变量比较多,但人们可以较容易理解。题中假设的太多假设,有些脱离实际,考虑现实当中的销售点间的运输路程、交通便利程度、学生在校期间的对书的消费情况,不同人群之间的消费能了等情况,8.参考文献【1】姜启源 谢金星 叶俊 数学建模(第三版)高等教育出版社 2003【2】http://hi.baidu.com/lanke_ic/blog/item/9584fe17da9e1b59f2de3269.html9.附录附录1:max=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10;x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;x x1+x2<=1;x2+x5+x11<=1;x1+x3+x4+x11<=1;x4+x5+x6+x7+x8<=1;x3+x8+x9<=1;x7+x9+x10<=1;x6+x10<=1; 附录2:Global optimal solution found. Objective value: 177.0000 Total solver iterations: 0Variable Value Reduced Cost X1 0.000000 22.00000 X2 0.000000 9.000000 X3 1.000000 0.000000 X4 0.000000 38.00000 X5 0.000000 25.00000 X6 1.000000 0.000000 X7 0.000000 49.00000 X8 0.000000 11.00000 X9 0.000000 11.00000 X10 0.000000 0.000000 Row Slack or Surplus Dual Price 1 177.0000 1.000000 2 0.000000 85.00000 3 1.000000 0.000000 4 1.000000 0.000000 5 0.000000 0.000000 6 0.000000 3.000000 7 0.000000 0.000000 8 1.000000 0.000000 9 0.000000 4.000000 10 0.000000 4.000000 你也可以到这个网站找找!
实验三 多元回归模型【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。【实验内容】建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本
建模论文建模论文写作指导(一)、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成
以下就是我为大家带来的无线 网络技术 论文三篇。 无线网络 技术论文一 试想一下,在有线网络时代,用户的活动范围受限于网线,无论到哪里必须要拖着长长的缆线
运筹学作为一门现代科学,是在第二次世界大战期间首先在英美两国发展起来的,有的学者把运筹学描述为就组织系统的各种经营作出决策的科学手段。P.M.Morse与G.E
火爆推荐:如何设置论文的参考文献标注格式养成一个良好的写作习惯对您论文录用率至关重要。文章之所以要标明参考文献,是因为您文章内容中有引用他人学术成果的内容,除非