Lucy…黄小猪
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。708字
小呆呆321
数形结合就是运用图形来简化解题思路,数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。多做几个类似的题目啊....找本专题什么的强化一下就可以了
冒火得很000
对数量积性质的新认识 【摘 要】:教学活动要遵循内在规律,只有当一切外在事实(知识)通过教师的主导作用,最后被主体(学生)认识之后,这外在东西才会为主体真正占有,这种转化只有在参与实践中才能体会并重新构建、形成知识体系。我们的教材中的好多知识表面上是孤立的,若我们的的教师在引领学生认知这些内容的同时,有“意识”的揭示这种“知识链”,内化我们学生的理解,让学生对知识的构建“水到渠成”!这不失为一种有效教学的好途径。【关键词】:数量积 向量 角度 距离作为新课程改革,高中数学教材的两个显著变化就是“向量和导数”的引入。其目的也很明确:为研究函数、空间图形,提供新的研究手段,即充分体现它们的工具性。但这种“工具性”,只有在深刻理解的基础上才能用好,而要想用活,这又需要我们在实践中不断“开发”新的认识,丰富知识网络,形成较完善的“认知模块”、“知识体系”。例如全日制普通高级中学教科书《数学•第二册(下B)》P33¬中,关于空间向量的数量积有这样三条性质:(1) ,(2) ,(3) 。作为“工具性”,性质(2)(3)比较明显,会立即得到充分的应用。可是对于性质(1),当时,在上新授课时我总认为:这条性质没有什么“本质上”的用处,有点像“房间里的摆设”——配角。但是随着时间的推移,笔者发现了她的奥妙之处:在后继的有关空间问题中的“三大角度”和“三大基本距离”的坐标法的研究中有着奇妙无穷的用途,并带来意想不到的“知识链”反应,极大地丰富了关于空间向量的“数量积”这一运算的“认知模块”的内涵。本文便梳理和佐证这一认知,以飨读者。(一)性质的产生与内含已知向量 和轴l, 是l上与l同方向的单位向量,作点A在l上的射影 ,作点B在l上的射影 则 叫向量 在轴l上或在 方向上的正射影,简称射影。 可以证明得, (证明略,图如下所示。)此性质的内含理解有四点:①结果是一个数量(本身含正负号);②其正负号由向量 所成角的范围决定;③加上绝对值 便是一条线段长度(这里 刚好组成一个直角三角形的两条直角边);④可以推广为求一条线段在另一条直线上的正射影(此线段所在直线与已知直线的位置关系可以异面直线)。(二)性质的“知识链”对教材引进空间向量的“坐标法”来解决空间中“三大角”问题,我们的学生可以说是欣喜若狂啊,因为学生觉得这种方法好!可操作性强!(只要能建系,有坐标就行!)但在实际应用中,学生觉得这些结论不易理解,加上这些结论只能逐步形成和完善,靠死记硬背吧,今天记了明天又忘了!等到用时,仍是“生硬、呆板”,甚至张冠李戴。如何突破这一问题?我认为其根本原因是:在学生的认知结构里,这一性质未能如愿地形成“知识链”。那么,这一性质是怎样与相关问题产生“对接或联系”的呢?(1)它是空间三大角(即线线角、线面角、二面角的平面角)用向量法求解的“对接点”。1.1线线角 的求法的新认识:我们把这两条线赋予恰当的两个向量,问题就化归为两个向量的夹角(两个向量所成的角的范围为 ),即 ,我们能否加以重新认识这个公式呢?如图,,此时OB1可以看作是 与 方向上的单位向量 的数量积 ,这就是由数量积这条性质滋生而成的;故此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。1.2线面角 的求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,此时OP又可以看作是 在 上的投影,即 与 方向上的单位向量 的数量积 , ,故 (这里刚好满足三角函数中正弦的定义:对边比斜边)。1.3二面角的平面角 的求法的新认识: = (其中 是两二面角所在平面的各一个法向量)此结论重新可以理解为: (这里刚好满足三角函数中余弦的定义:邻边比斜边)。★三大角的统一理解: 、 、 、其从上述梳理完全可以看出其本质特征:这里的“空间角”的求法,完全与直角三角形中的三角函数的“正弦或余弦的定义”发生了对接——对边或邻边就是斜边的向量在此边向量上的投影,即斜边向量与对边或邻边方向上的单位向量的数量积,而理解与掌握这里的“空间角”的直角三角形的构图,学生完全可以达到“系统化”和“自主化”,因为直角三角形中的三角函数定义,他们太熟悉了!即将知识的“生长点”建立在学生认知水平的“最近发展区”,那学习就会水到渠成! (2)它又是空间三大距离(即点线距、点面距、异面直线间距离)用向量法求解的“联系点”。空间中有七大距离(除球面上两点间的距离外)基本上可转化为点点距、点线距、点面距,而点线距和点面距又是重中之重!另外两异面直线间的距离,高考考纲中明确要求:对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离。因此对异面直线间的距离的考查有着特殊的身份。教材按排中引进了向量法来解决距离问题,也给问题的解决带来新的活力!不用作出(或找出)所求的距离了。2.1点面距求法的新认识: (其中 为平面 的一个法向量),此结论重新可以理解为: ,即 在 上的投影,即 与 方向上的单位向量 的数量积 。2.2点线距求法的新认识:1)新认识之一:如图,若存在有一条与l相交的直线时,就可以先求出由这两条相交直线确定的平面的一个法向量 ,则点P到l的距离 。2)新认识之二:若不存在有一条与l相交的直线时,我们可以先取l上的一个向量 ,再利用 来解,即: ,而数量OB可以理解为 在l上的向量 的投影,也即为: 。2.3异面直线间距离求法的新认识: 从这几年的高考《考纲说明》观察,我们不难发现,对异面直线间距离的考查本意不能太难,但若出现难一点的考题,命题者又能自圆其说的新情况。实际上,这种自圆其说法归根到底在于高考考纲中的说法:只要求会计算已给出公垂线或在坐标表示下的距离。那也就是说,在不要作出公垂线(也许学生作不出!)的情况下,也可以求出它们的距离的!那就是用向量法!如图所示:若直线l1与直线l2是两异面直线,求两异面直线的距离。 略解:在两直线上分别任取两点A、C、B、D,构造三个向量 ,记与两直线的公垂线共线的向量为 ,则由 ,得 ,则它们的距离就可以理解为: 在 上的投影的绝对值,即: 。 ★三大距离的统一理解: (点面距)、 (异面距)、 (点线距之一)、 且 (点线距之二)、其本质特征是:一个向量在其所求的距离所在直线的一个向量上的投影,也即数量积此性质的直接应用。由上述的剖析过程不难再看出:空间中的三大角与三大基本距离的计算,都隐藏于这个“特定”的数量积的性质之中,体现在这个公式结构的“统一美”之中,把问题的本质揭示得“淋漓尽致”,而又不失自然!这给“立体几何” 中向量的工具性的体现,增色了几分美感与统一感!(三)性质的应用例1、(2005年山东省(理科)高考第20题)如图,已知长方体 直线 与平面 所成的角为 , 垂直 于 , 为 的中点.(I)求异面直线 与 所成的角;(II)求平面 与平面 所成的二面角;(III)求点 到平面 的距离.解:在长方体 中,以 所在的直线为 轴,以 所在的直线为 轴, 所在的直线为 轴建立如图示空间直角坐标系;由已知 可得 , ,又 平面 ,从而 与平面 所成的角为 ,又 , , ,从而易得 (I) 因为 所以 ,易知异面直线 所成的角为 (II) 易知平面 的一个法向量 ,设 是平面 的一个法向量, 由 即 所以 即平面 与平面 所成的二面角的大小(锐角)为 (III)点 到平面 的距离,即 在平面 的法向量 上的投影的绝对值,所以距离 = 所以点 到平面 的距离为 例2、(2005年重庆(理科)高考第20题)如图,在三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1,已知AB= ,BB1=2,BC=1,∠BCC1= ,求:(Ⅰ)异面直线AB与EB1的距离;(Ⅱ)二面角A—EB1—A1的平面角的正切值. 解:(I)以B为原点, 、 分别为y、z轴建立空间直角坐标系.由于BC=1,BB1=2,AB= ,∠BCC1= ,在三棱柱ABC—A1B1C1中有B(0,0,0),A(0,0, ),B1(0,2,0),A1(0,2, ) ,设 ; ,则 得, (令y=1),故 =1(II)由已知有 故二面角A—EB1—A1的两个半平面的法向量为 。 。通过上述几个高考题的分析,我们不难看出:立体几何中的几何法的“难在找(或作)所求的角度或距离”,通过这个数量积的性质的转化(方法的转化与知识之间的转化),其“难”渐渐地溶解于“转换与化归”之中及学生的细心地“计算”之中,从而也焕发了数量积这条性质的奥妙之处,也就更体现了“向量”这个工具在立体几何中应用的优越性、工具性。因为”程序化”的计算使我们的学生的“信心”倍增!同时让我们的学生也懂得了“知其所以然”,再也不用为记这一个“好结论”而烦恼了!参考文献:1、2005年普通高等学校招生全国统一考试大纲 (高等教育出版社)2、《浙江省高考命题解析——数学》 (浙江省高考命题咨询委员们编著)3、基础教育课程改革教师通识培训书系第二辑《课程改革发展》(中央民族大学出版社 周宏主编)
今生无悔瓶
美术论文参考文献摘抄
当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。下面是我整理的美术论文参考文献摘抄,欢迎大家分享。
[1]彭吉象.艺术学概论[M].北京:北京大学出版社,2006.
[2]冯友兰.中国哲学简史[M].天津:天津社会科学院出版社,2005.
[3]张法.中国艺术_历程与精神[M].北京:中国人民大学出版社,2003.
[5]王瑞成、宋清秀.中国文化简史[M].上海:上海文艺出版社,2001.
[6]贺西林、赵力.中国美术史简编[M].北京:高等教育出版社,2003.
[7]中央美术学院人文学院美术史系、外国美术史教研室.外国美术简史[M].北京:中国青年出版社.2007.
[8]孔六庆.中国画艺术专史_花鸟卷[M].南昌:江西美术出版社,2008.
[9]陈传席.中国绘画美学史[M].北京:人民美术出版社,2002.
[10]王伯敏.中国绘画史[M].上海:上海人民美术出版社,1982.
[11]张建军.中国画论史[M].济南:山东人民出版社,2008.
[12]周积寅.中国画论辑要[M].南京:凤凰出版传媒集团,2005.
[13]顾丞锋.西方美术理论教程[M].北京:北京大学出版社,2008.
[14]王朝闻.美学概论[M].北京:北京人民出版社,1981.
[15]宗白华.美学散步[M].上海:上海人民出版社,2005.
[16]李泽厚.华夏美学[M].天津:天津社会科学院出版社,2001.
[17]朱光潜.西方美学史[M].北京:人民文学出版社,1963.
[18]朱狄.当代西方美学[M].武汉:武汉大学出版社,2007.
[19]邓福兴.中国古代美术批评史纲[M].哈尔滨:黑龙江美术出版社,2000.
[20]徐书城.宋代绘画史[M].北京:人民美术出版社,2000.
[1] 孟艳双. 北宋山水画审美思想在现代城市山水画中的运用研究[D]. 燕山大学 2014
[2] 陈跃. 数学多媒体教学初探[J]. 职业. 2010(23)
[3] 伍健. 多媒体数学教学软件的创新与应用[J]. 南昌高专学报. 2011(02)
[4] 葛晋,张文敏. 多媒体数学教学探析[J]. 承德石油高等专科学校学报. 2006(02)
[5] 金昊. 多媒体技术辅助立体几何图形教学研究[D]. 山东师范大学 2013
[6] 田毅. 现代信息技术与数学教学[J]. 科技情报开发与经济. 2005(23)
[7] 李芹. 多媒体技术在数学教学中的应用[J]. 南昌高专学报. 2005(04)
[8] 吴华,宋西红,盛晓明. 网络多媒体课件系统与数学教学的整合[J]. 数学教育学报. 2004(01)
[9] 周建明,薛有奎. 多媒体数学教学尝试[J]. 潍坊教育学院学报. 2000(03)
[10] 孙济生,刘向群. 多媒体技术在现代教育中的应用[J]. 教育信息化. 2004(10)
[11] 彭慧. 多媒体在数学教学中应用的探索[J]. 成功(教育). 2011(03)
[12] 周杨静,刘志峰. 设计类课程多媒体教学质量保障机制研究[J]. 电脑知识与技术. 2009(06)
[13] 马晨. 多媒体技术在中学教学中的应用及对策研究[D]. 山东师范大学 2007
[14] 蔡静. 多媒体背景下的展示设计研究[D]. 南京艺术学院 2009
[15] 乔韦. 当代中国山水画形式美表现分析[D]. 西北民族大学 2014
[16] 姚佳. 浅谈写意人物画之“意”与漫画之“漫”的联系[D]. 西北民族大学 2014
[17] 刘莉. 色彩运用在冯远写意人物画中的情感体现[D]. 西北民族大学 2014
[18] 孔瑞娜. 藏族题材写意人物画初探[D]. 西北民族大学 2014
[19] 高燕. 中学语文多媒体技术优化教学效能研究[D]. 湖南师范大学 2010
[20] 沈霞. 多媒体技术在新职业英语教学应用中的设计研究[D]. 北京工业大学 2012
[1] 陈萍. 莆仙宫庙壁画艺术研究[D]. 福建师范大学 2012
[2] 郑芳芳. 明清易代背景下的清前期人物画研究[D]. 福建师范大学 2012
[3] 骈岑. 3~6岁儿童绘画表现能力发展的研究[D]. 上海师范大学 2014
[4] 林颖. 中国高等师范院校中国画教育的若干问题思考[D]. 福建师范大学 2012
[5] 黄菁. 民间美术在水墨人物画创作中的运用与拓展[D]. 福建师范大学 2012
[6] 王雅欣. 探寻学龄前校外儿童水粉画教学的新思路[D]. 福建师范大学 2014
[7] 王艳梅. 清代杨柳青人物题材吉祥画的艺术特色[D]. 福建师范大学 2012
[8] 王盼美惠. 5-6岁幼儿绘画表征特征研究[D]. 南京师范大学 2014
[9] 陈艺红. 男权世界中的女性世界[D]. 福建师范大学 2010
[10] 刘德宾. 中国画与中国戏曲的艺术特征探微[D]. 福建师范大学 2005
[11] 张玲. 从林风眠的调和论看近现代中国画的中西融合[D]. 福建师范大学 2004
[12] 毛蓉蓉. 中国人物画造型的传承与时代性[D]. 福建师范大学 2009
[13] 黄霖清. 论形成(影响)现当代中国人物画造型特点的.若干因素[D]. 福建师范大学 2009
[14] 柳健. 以幼儿认知能力培养为目标的色彩启蒙教育研究[D]. 聊城大学 2014
[15] 秦芳. 以绘画视知觉视角下研究4-5岁幼儿绘画语言表达特点[D]. 新疆师范大学 2014
[16] 王蓉蓉. 三大学术思想对中国传统绘画的影响[D]. 福建师范大学 2008
[17] 郑艳. 中国“学院派”美术教育与传统美术教育之间的架构[D]. 福建师范大学 2008
[18] 倪婷婷. 德化现代陶瓷艺术性弱化问题研究[D]. 福建师范大学 2012
[19] 张永海. 画中的人生与如画的人生[D]. 福建师范大学 2008
[20] 洪文峰. 花枝春满 天心月圆[D]. 福建师范大学 2010
[21] 吴晨阳. 一脉相承-浅析两宋至现代闽籍中国画人物画家绘画风格中“线”的继承性[D]. 福建师范大学 2011
[22] 曾春丽. 初探福建工艺美术对福建本土中国画画家画风的影响[D]. 福建师范大学 2011
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它
数学教学的知识具有抽象性、严谨性、广泛性、辩证性等基本特征,相比于其他的学科,数学教学知识素养具有更高的要求。下面是我为大家整理的高中数学小论文,供大家参考。
参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献在注释中已注明,不再出现于文后参考文献中。一般的正文是小四号字体,参考文献是五号字体
论文用几号字体 当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学
一般来说,参考文献需要用小一号或五号的字体。 扩展资料 不同的论文、不同的`学校