吃货爱漫游
1、二阶行列式、三阶行列式的计算,楼主应该学过。但是不能用于四阶、五阶、、、2、四阶或四阶以上的行列式的计算,一般来说有两种方法。 第一是按任意一行或任意一列展开: A、任意一行或任意一列的所有元素乘以删除该元素所在的行和列后的剩余行列式, B、将他们全部加起来; C、在加的过程中,是代数式相加,而非算术式相加,因此有正负号出现; D、从左上角,到右下角,“+”、“-”交替出现。 上面的展开,要一直重复进行,至少到3×3出现。3、如楼上所说,将行列式化成三角式,无论上三角,或下三角式,最后的答案都是 等于三角式的对角线上(diagonal)的元素的乘积。
猫与老虎
1、利用行列式定义直接计算:行列式是由排成n阶方阵形式的n²个数aij(i,j=1,2,...n)确定的一个数,其值为n项之和。2、利用行列式的性质计算。3、化为三角形行列式计算:若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。行列式怎么计算1行列式行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。2行列式的性质①行列式A中某行(或列)用同一数k乘,其结果等于kA。②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。④行列式A中两行(或列)互换,其结果等于-A。⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。n阶行列式设是由排成n阶方阵形式的n2个数aij(i,j=1,2,...,n)确定的一个数,其值为n!项之和式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那么数D称为n阶方阵相应的行列式.例如,四阶行列式是4!个形为的项的和,而其中a13a21a34a42相应于k=3,即该项前端的符号应为(-1)3.若n阶方阵A=(aij),则A相应的行列式D记作D=|A|=detA=det(aij)若矩阵A相应的行列式D=0,称A为奇异矩阵,否则称为非奇异矩阵.标号集:序列1,2,...,n中任取k个元素i1,i2,...,ik满足1≤i1
南得珍贵
最低0.27元/天开通百度文库会员,可在文库查看完整内容>原发布者:明烛天南2011行列式的计算方法摘要:线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,行列式的计算是一个重要的问题。本文依据行列式的繁杂程度,以及行列式中字母和数字的特征,给出了计算行列式的几种常用方法:利用行列式的定义直接计算、化为三角形法、降阶法、镶边法、递推法,并总结了几种较为简便的特殊方法:矩阵法、分离线性因子法、借用“第三者”法、利用范德蒙德行列式法、利用拉普拉斯定理法,而且对这些方法进行了详细的分析,并辅以例题。关键词:行列式矩阵降阶TheMethodsofDeterminantCalculationAbstract:Solvingmultiplelinearequationsisthemaincontentofthelinearalgebra,determinantsproducedinsolvinglinearequations,determinantcalculationisanimportantissue.Thisarticleisbasedonthecomplexitydegreeofthedeterminant,andthecharacteristicsoflettersandnumbersofthedeterminant,andthengivesseveralcommonlyusedmethodstocalculatethedeterminant:directcalculationusingthedefinitionofdeterminant,intothetriangle,reductionmethod,edgingmethod,recursion,andsummarizesseveralrelativelysimpleandspecificmethods:matrix,linearseparationfactormethod,toborrow"thethirdparty"method,usingVandermondedeterminantmethod,us
数学专业毕业论文选题方向 1动态规划及其应用问题。 2计算方法中关于误差的分析。 3微分中值定理的应用。 4模糊聚类分析在学生素质评定中的应用。 5关于古典概型
作者首先应该对论文的写作背景做简单介绍,然后应该对文章的主要内容进行简单的介绍,主要是对文章的提纲做简要的介绍,最后要对文章的研究意义进行介绍。 摘要包括论文的
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊
范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊
2,3阶行列式的对角线法则, 4阶以上(含4阶)是没有对角线法则的!解高阶行列式的方法 一般有用性质化上(下)三角形,上(下)斜三角形, 箭形按行列展开定理La