就愛翻毛腔
学生进教室后自动识别个人信息,系统自动签到签退,全程监控学生上课听讲情况,就连发呆、打瞌睡和玩手机等行为都能被识别出来……近日,位于江苏南京的中国药科大学在部分教室“试水”安装了人脸识别系统,引起社会的广泛关注。 国内已有很多学校安装了人脸识别系统,其引发争议的一个共同问题是,是否侵犯隐私?首先要承认,对于被监控的学生来讲,恐怕普遍会有种不适感,因为自己多低一会儿头,可能就会被“记录在案”,这无形中是一种压力。人脸识别的第二个问题是,是否对学习有帮助?根据学校方面的调研,人脸识别技术不仅可以高效率地进行考勤,还可以发现和捕捉学生的学习情况,有助于激励和鞭策学生将主要精力放在学习上。有人则认为这不是必然结果,如果课堂总是很“水”,即便能留住学生的人,也未必能留住学生的心,甚至还会让学生对学习产生反感。 梳理这些争议,其实跟两种思维有关。一种是“管理思维”,一种是“教育思维”。持“管理思维”的人,对于人性缺乏信任,认为充分的自由未必能转化为学习的自律,因此对有利于提高工作效率、减轻工作强度的措施情有独钟。而持“教育思维”的人,总是相信人性的魅力,认为只要课程足够好,学生就自然喜爱,不必采取人为干预。这两种看法都有道理。现在外界的诱惑太多了,有些学生对学习提不起兴趣,当然需要严管厚爱;但众多“逃课族”“低头族”的出现,也说明了教学乏善可陈,呼唤更多“金课”。
Tania慧慧
《刷脸背后》(张重生著)电子书网盘下载免费在线阅读
资源链接:
链接:
书名:刷脸背后
作者:张重生著
豆瓣评分:6.3
出版社:电子工业出版社
出版年份:2017-8-1
页数:234
内容简介:
人脸识别是当今热门的研发方向,在安防、金融、旅游等领域具有十分广泛的应用。本书全面、系统地介绍“刷脸”背后的技术,包括人脸检测、人脸识别、人脸检索相关的算法原理和实现技术。本书中讲解的算法具有高度的可操作性和实用性。通过学习本书,研究人员、工程师能够在3~5个月内,系统了解、掌握人脸检测、人脸识别、人脸检索相关的原理和技术。本书内容新颖、层次清晰,适合高校教师、研究人员、研究生、高年级本科生、人脸识别爱好者使用。
作者简介:
张重生,男,博士,教授,硕士生导师,河南大学大数据研究中心、大数据团队带头人。研究领域为大数据分析、深度学习、数据挖掘、数据库、数据流(实时数据分析)。
博士毕业于 INRIA,France(法国国家信息与自动化研究所),获得优秀博士论文荣誉。2010年08月至2011年3月,在美国加州大学洛杉矶分校(UCLA),计算机系,师从著名的数据库专家Carlo Zaniolo教授,从事数据挖掘领域的合作研究。 2012-2013,挪威科技大学,ERCIM/Marie-Curie Fellow。
辉love玉
《刷脸背后》(张重生著)电子书网盘下载免费在线阅读
资源链接:
链接:
书名:刷脸背后
作者:张重生著
豆瓣评分:6.3
出版社:电子工业出版社
出版年份:2017-8-1
页数:234
内容简介:
人脸识别是当今热门的研发方向,在安防、金融、旅游等领域具有十分广泛的应用。本书全面、系统地介绍“刷脸”背后的技术,包括人脸检测、人脸识别、人脸检索相关的算法原理和实现技术。本书中讲解的算法具有高度的可操作性和实用性。通过学习本书,研究人员、工程师能够在3~5个月内,系统了解、掌握人脸检测、人脸识别、人脸检索相关的原理和技术。本书内容新颖、层次清晰,适合高校教师、研究人员、研究生、高年级本科生、人脸识别爱好者使用。
作者简介:
张重生,男,博士,教授,硕士生导师,河南大学大数据研究中心、大数据团队带头人。研究领域为大数据分析、深度学习、数据挖掘、数据库、数据流(实时数据分析)。
博士毕业于 INRIA,France(法国国家信息与自动化研究所),获得优秀博士论文荣誉。2010年08月至2011年3月,在美国加州大学洛杉矶分校(UCLA),计算机系,师从著名的数据库专家Carlo Zaniolo教授,从事数据挖掘领域的合作研究。 2012-2013,挪威科技大学,ERCIM/Marie-Curie Fellow。
URL: 论文pdf Google出品。亚毫秒级的移动端人脸检测算法。移动端可达200~1000+FPS速度。主要以下改进: 在深度可分离卷积中
威尔考勤系统不仅限于基本的上下班考勤,对于企业的规范化管理更是至关重要。通过该系统的约束,可彻底改变人性的懒惰、上班拖沓等现象,让员工养成优秀的习惯,将更好的状
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读! 图像识别技术研究综述 摘要:随着图像处理技术的迅速发展,图像
可以。 毕业论文是可以用别人训练出来的,但是自己也要有创新,不能全部使用,不然是不会过的。毕业论文(graduation study)是专科及以上学历教育为对本
计算机人脸识别是一个复杂和困难的问题,其原因是:(1)人脸是由复杂的三维曲面构成的可变形体,难以用数学描述;(2)所有人的人脸结构高度相似,而人脸的图像又受年龄