• 回答数

    3

  • 浏览数

    268

拉菲兔兔
首页 > 期刊论文 > 中学数学概念体系研究论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

热爱每一刻

已采纳

初中数学概念教学论文

范文一

一、问题的提出

数学概念是反映数学对象的本质属性的思维形式,是数学基础知识的核心,是构建数学理论大厦的基石,是形成数学知识体系的主要元素,是导出数学定理和数学法则的基础,是数学思想与方法的载体。正确理解数学概念既是掌握数学基础知识的前提,也是进行判断、推理、计算和证明的依据,许多数学问题的解决常常离不开数学概念。只有真正掌握了数学中的基本概念,才能把握数学的知识系统,才能有正确,合理,迅速地进行运算,推理和论证。因此,搞好数学概念的教学,帮助学生了解数学概念的发生、发展的过程,把握数学概念的本质特征,体会蕴含在数学概念中的数学思想方法,掌握数学概念在解决数学问题中的应用,从而有效地训练学生的思维,培养学生的创新精神和创造能力,是提高数学教学效益的关键。

二、理论依据

1.《数学课程标准》强调:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型。要让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,首先要为学生提供一个具体的问题情境,学生通过感知概念的表象等方式,进而理解概念的本质,初步建立新的知识结构的过程。重点指向的是学生学习概念内核,最后达成运用概念,巩固、拓展的环节。

2.教育心理学理论。布鲁纳认为,获得的知识如果没有完满的结构将它联系在一起,那是一个多半会被遗忘的知识,一串不连贯的论据在记忆中仅有短促的可怜的寿命。因此,概念教学必须返璞归真,揭示数学概念的形成过程,让学生从概念的现实原型,概念的抽象过程,数学思想的指导作用,形象表述和符号化的运用等多方位理解一个数学概念,使之符合学生主动建构的教育原理。

3.数学教育学指出,教学中应加强对基本概念的理解和掌握,对一些核心概念要贯穿于初中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。有效的数学概念教学,决不是以让学生学会概念为终极目标,而是让学生在参与数学活动的过程中生成和建构数学概念,更要让学生在知识和能力上获得全面的发展,从而促进数学素养的有效提升。

三、概念生成教学的案例研究

笔者以浙教版八年级上册4.3《中位数与众数》为课例进行了一次尝试,让学生经历这样一个过程,不但能使学生逐步掌握概念本质,还能使学生感受到探究与合作的无限快乐,感觉到自己精神,智慧力量的增长,使学生的个性得到充分的发展,学习效率提高。

本节教材是八年级下册第四章统计初步第三节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节课的重点在于众数与中位数的求法与应用;众数与中位数概念的形成与定义既是重点又是难点。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。

数学概念教学的核心是“归纳”:将凝结在数学概念中的数学家的思维活动的线索揭示出来,用一些学生熟悉的典型事例作载体,引导学生分析各事例的.具体属性、抽象概括出本质属性、归纳总结得出数学概念等思维活动而获得数学概念。我追求一种有意义的活动式学习,主动建构,必要变式训练,重过程也重结果。

1.创设问题情境,揭示数学概念来源

学生的思路应该在学生自己的头脑中产生,教师的作用在于系统地给学生发现事物的机会,启动学生在允许的条件下亲自去发现尽可能多的东西。

因此在教学中,教师应创设情境,使学生在情境中像数学家那样去想数学,经历比较,抽象,概括,假设,验证和分化等一系列的概念形成过程,从中学到研究问题和提出概念的思想方法,在获得概念的同时培养学生的探索能力和创新精神。形成数学概念首先要有十分相关的感性材料,让数学知识与学生的现实生活密切结合,使学生感受到数学是有趣的,是有实际意义的,不仅有利于学生对于所研究对象的感性认识,并在此基础上认识其本质,还能促进数学直觉的形成,数学思维的发展,更能促进学生在以后遇到相关问题时自觉地运用有关的数学经验去思考、解决问题。

2.提供探究任务,明晰数学概念内涵

为鼓励全体学生积极参与并提高课堂效率,我们要求学生自主探索和小组合作学习,利用表格呈现出“众数、中位数”意义。学生清晰地认识到了自己的工作目标,就可以形成与获得所希望的成果,利用别的数集验证或纠正猜想,使合作学习取得成功。由此让学生熟悉归纳猜想的数学思想方法,体验克服困难的兴奋与团结协作的价值。概念的形成是一个积累渐进的过程,因此在概念的的教学中要遵循从具体到抽象,从感性认识到理性认识的原则。学生的思维特点是从具体形象思维逐步向抽象思维过渡的,这种过渡在很大程度上还是依靠丰富的感性材料,所以数学概念不是靠教师讲出来的,而是靠学生自己去感悟,体验的。

3.回归问题原型,实施适度变式训练

在教学中可借助富有探究性、挑战性的问题,让学生在尝试中亲自体验数学概念,通过自己的思考建立起对概念的理解,逐渐认识概念本质。为了巩固学习成果和检验迁移水平,我们将情境改造,形成“貌似神非”和“貌非神是”的新问题,加强变式训练。为了激发学生的内驱力,最有效的方法就是“重视教学与现实生活的联系”使学生引起认知冲突,直面数学困惑,置身于渴望解决问题的情境之中。

4.通过自主评价,深化数学概念理解

通过自主评价,促使学生反思他们的体验和获得的知识等,提高反思性学习的能力。计算平均数的时候,所有的数据都参加运算,它能成分利用数据所提供的信息,在现实生活中较为常用;但它容易受到极端值的影响。中位数的优点计算简单,受极端值影响较小,但不能充分利用所有数据的信息。一组数据中某些数据多次重复出现时,众数往往是人们特别关心的一个量,但各个数据的重复次数大致相等时,众数往往没有特别意义。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。

四、几点思考

1.学生自我表述概念时必须准确

语言是思维的物质载体,数学概念是用科学、精练的数学语言概括表达出来的,它所揭示事物的本质属性必须确定,无矛盾,有根有据并合情合理。所以概念形成之后,应及时让学生用语言表述出来以加深对概念的印象,促进学生内化。同时培养学生正确的表述概念,能促进学生思维的深刻性。

2.教师必须做好引导工作

教师在学生的探究活动中应该扮演一个什么样的角色,应对学生提供多大力度的干预,其分寸较难把握。探究活动与巩固操练的时间如何安排,如何将“接受式”与“活动式”有机结合彰显各自的优点,教师必须做好引导员,引导学生去感受概念引入的必要性与合理性;引导学生合理地进行概念的抽象;引导学生进行概念的“数学化”来培养语义转化能力;引导学生学会在概念的定义中进行科学的归纳;引导学生在概念的应用中深化对概念的认识和理解、体会概念的价值,从而让课堂有机、有序、高效地达成目标。

学好概念是学好数学最重要的一环,对概念的理解透彻了,就能认识到数学的价值,获得运用知识的能力。根据新课标对概念教学的具体要求,优化教学设计,真正使学生在参与的过程中产生内心的体验和创造,达到认识数学思想和本质的目的,培养学生运用数学知识解决实际问题的能力,以及培养学生逻辑思维和空间想象的能力。

范文二

初中教学是一门纯基础的自然科学,学生从正负数的引入,数域的拓展开始,接触的是比小学数学更为抽象的内容。由于它的纯基础性逐步凸现,学生感受到的是比小学数学更枯燥无味的内容,如何提高学生学习数学的兴趣,充分发挥45分钟的课堂效益,将枯燥的内容生动化,变乏味为有趣,提高数学课堂教学效果,长期以来,一直是初中数学老师孜孜以求而探索的问题。本文从我教学中的实践,谈及数学教学的艺术与技巧及如何调动学生学习数学的积极性,启动学生的求知欲望,发挥学生的主体作用,搞好数学教学的几点思考与实践。

一 、运用实验方法,利用学生求新心理,上好入门课

对于初中学生,虽然在小学学过数学,但初中数学则从一个全新的角度入手,出现在他们面前的,是过去从来没有接触过的极其抽象的内容,因此,上好入门课,是学生学好初中数学的基础。学生走进校门,教师就要牢牢抓住学生的求新心理,使他们对学习数学产生浓厚的兴趣,通过一些活动、有趣的自然现象有效地激发学生的学习兴趣和求知欲望。例如正负数的引入,除了教材上的温度计、海拔高度之外,我还让学生自己设计了一些相反意义的量,如从岳阳到武汉和株州都是200公里,但一个往北一个向南,数学上怎样记叙?等等,这些仅靠在小学数学学过的记数方法已不能正确地反映,很自然的就引入了负数概念,这些学生生活中司空见惯的问题能得到合适的解决,立即吸引了学生的注意力,把学生带进了一个崭新的数学世界,从而激发他们在抽象的数学世界探索奥秘的兴趣。这样,同学们带着浓厚的学习兴趣和明确的求知目的进入到了数学课的学习中。

二、运用电教手段,利用学生的求趣心理,培养发展学生的学习兴趣。

抽象的数学概念学生感到枯燥而导致厌学,如何将抽象的数学概念融入到新奇有趣的情境中,是课堂教学的一个难题,如果在教学中能结合教材内容,介绍一些能用数学知识解释的自然景观,数学史方面的奇闻轶事,设计一些有趣的演示或学生探索性的小实验就能引发学生的好奇心,激发学生探知奥秘,获取知识的欲望。在教学中,我利用电教手段,创设情景,形象生动,新颖独特地将学生引入到学习中。例如在讲“圆”这一节时,既对学生进行了爱国主义教育,又引发了学生的求知欲望;在讲“求平均数”这一节时,我首先给同学们放了一段我国女排与古巴女排的比赛录象,其中有宋世雄的解说:“平均身高1.86m”,“这个平均身高是怎样计算出来的?有没有很简单的计算方法呢?”随着这个问题的提出,我把每个队员的身高都写出来,同学们身临其境,进入了积极的思维状态,但同时也出现思维受阻表情,对出现的问题产生了“迷惑”,于是我抓住时机,导入新课,这就是我们今天要解答的“迷”。这样同学们带着具体问题在积极思维的状态下进入了新知识学习。用这样的方式上课,把学生的学习情绪从一开始就引入最佳状态,大大激发了学生的求知欲和创造欲,寓知识于趣味之中,令学生信心大增,收到了事半功倍的效果。

三、从生活实例引入,结合实验、活动,辅以电教手段,增强学生感性认识。

学生学习数学兴趣的高低,学习成绩的好坏,取决于学生对所学知识的感知、理解和记忆程度。如果学生对所学知识兴趣强,他们的理解和记忆就强,反之则弱。因此,要获得好的教学效果,首先必须让学生有活跃的思维,所授知识通过学生大脑的思考和筛选,达到理解记忆的目的。这就要求教师在讲授新的知识时,注重教学方法的艺术化,充分调动学生的主观能动性,让学生的思想活动围绕着所授新知识而展开。著名教育家杜威说过,“教材对学生永远不是从外面灌进去的,学习是主动的,它包含着心理的积极开展,决定学习质量的是学生而不是教材”。对于这些童心极重的初中学生来说,一个小球在讲台上滚动一下也会觉得有趣。强烈的好奇心使他们对于发生在生活中的自然现象,往往会产生直接的兴趣。因此,从生活实例出发,提出问题引导学生思考,根据教学内容安排一些有趣的实践活动,辅之以电教手段,既能提高其学习兴趣,又能巩固已学知识,培养其观察能力和思维能力。如在讲“圆”这一节时,我从生活实例出发提出问题引导学生思考,“为什么车轮要设计为圆形?设计为多边形是什么结果?”这一问题的提出,引发了同学们的思考,同时唤起了他们探知究竟的欲望,我抓住这一时机,导入新课,给出圆的定义。同时指出,正是因为轮周上每一点到轮轴的距离相等,车轮在运动中才没有震动的感觉,于是同学们带着问题积极主动的进入到新课的学习中。

四、巧妙开导,巧讲、精练,给学生以主动权。

教学活动要通过学生主动的参与,积极的活动,自动的学习才能达到目的。学生主体作用是否充分发挥,关系着教学的成败。在传授新知识的过程中,教师的主导作用就体现在能否充分调动学生的学习积极性,使之最大限度地发挥其主观能动性上。只有教师的主导作用发挥得恰到好处,学生的主体作用才能充分体现出来。如在讲“勾股定理”这一节时,课前我准备了一批教学卡片,引入新课后,我介绍了在一千多年前,我国数学家就证明了这条定理,引发了同学们的自豪感和好奇心,接着利用教学卡片与学生一起拼出各种能证明结论的图形,在不知不觉中就引导学生对定理进行了证明。让学生参与到教学活动中来,他们通过自己动手动脑,对知识的领悟会更透彻,对问题的体会会更深刻而体会到主动学习的乐趣。因此,教师应该精心策划每一堂课,创设一定的条件,使学生的思维经常处于兴奋状态。

总之,提高教育质量是一项复杂的系统工程,受多方面因素的制约,但教学过程中,以学生为主体,充分发挥教师的主导作用,则是一条基本教学原则,教师的教和学生的学都必须抓住让学生形成良好的学习方法,培养学生的学习能力这一中心环节。苏霍姆林斯基指出:“教给学生能借助已有的知识去获取知识,这是最高的教学技巧之所在。”伟大的教育家陶行知也认为:“先生的责任不在教,而在教学生学”。教师的责任不是帮助学生把锁打开,而是交给他开锁的钥匙,这就要求我们在教学过程中注重发挥学生的主体作用,使其能力在教与学的过程中得到完美的发展。

心理学家认为:学习动机中最现实、最活跃的成分是兴趣。如果能让学生对数学科产生比较稳定的兴趣和爱好,那么只要在学习和生活中出现能用所学有关数学知识解决的问题,他们的大脑就立刻处于兴奋状态,进入接收知识,发展思维,锻炼意志的最佳时机。因此,初中数学教学,一开始就要注意培养和发展学生对数学的兴趣,让他们心灵得到科学的熏陶,艺术的振撼,从而不断发展提高他们学习数学的兴趣,变“被动”为“主动”、变“苦学”为“乐学”,就必然能提高数学教学质量,获得最佳的教学效果。

251 评论

小黑君kk

孔子曰:教学相长。一语道破教与学的真正内涵:互相协调,共同促进。因此,教师除了注重自己的教以外,更应注重学生的学。把学生当作教育的主体。现代教学论认为,教学的过程归根结底是如何教会学生学习,而要教会学生学习,教师必须先对学生进行充分了解,对症下药。本文针对初中学生数学学习现状,探讨数学学法,以提高学生数学效率。 一、初中生数学学习现状 在多年的数学教学中,使我深切地体会到当前初中生,特别是初一学生在数学学习的基本方法“读、听、思、记、写”方面都存在着一定的缺陷,严重影响学生数学学习效率,主要表现在: 1.阅读能力差 往往沿用小学学法,死记硬背,囫囵吞枣,像浮萍溅水,一摇即落。根本谈不上领会理解,当然更谈不上应变和应用了。这严重制约了自学能力的发展。 2.听课方法差 抓不住要点,听不入门,顾此失彼,精力分散,越听越玄,如听天书。如此恶性循环,厌学情绪自然而生,听课效率更为低下。 3.思维品质差 常常固守小学算术中的思维定势,不善于分析、转化和作进一步的深入思考,以致思路狭窄、呆滞,不利于后继学习。 4. 识记方式单调 机械识记成份多,理解记忆成份少。对数学概念、公式、法则、定理,往往满足于记住结论,而不去理解它们的真正含义,不去弄清结论的来龙去脉,更不会数形结合,纵横联系,致使知识无法形成完整的知识网络。 5.表达能力差 格式混乱,表达不清。尤其是几何解证,对三种语言(图形语言、符号语言、文字语言)不能融会贯通、相互转换、作图失准、条理不清,缺乏数学应有的严谨、逻辑性、条理性。 6.畏难情绪严重 一遇难题(综合性强、灵活性大的题)便不问津,或互相抄袭,应付了事。 针对学生存在的上述缺陷,教师应继续保持多数学生对数学的兴趣,转化少数数学差生,数学差生分为智力型数学差生和情节感型数学差生,对智力数学差生的转化对策是帮助他们树立信心,诱发并强化学习动机;进行强化记忆训练,让其熟练各种记忆方法,筛选适合自己性格和个性的学习方法;反复进行思维方法的训练,让其掌握基本的数学方法,培养思维品质。对情感型数学差生要抓住兴趣缺乏这一环节,调动情感状态,优化外部环境,充分挖掘数学中的趣味和奥妙及应用,介绍有趣的数学故事,培养数学学习兴趣,帮助其在战胜困难的实践中感受成功的喜悦。 二、初中生数学学法指导 根据多年来的教学经验,就如何提高数学教学质量,使学生变“被动”为“主动”,提高学生学习效率,笔者认为应从以下几个方面入手: 1.教导“读” 现代教育理论认为:教师在教学中起主导作用,学生在教学中居主体地位。让学生学会自主读书,必须通过教师的正确指导,学生才能由“读会”转为“会读”。数学教学中,教师不仅要教会学生对数学语言的翻译,更重要的是教导学生怎样读数学,这是读法的核心,教师可以从以下几个方面教会学生读书: ①粗读。即先浏览整篇内容的枝干,传到既见树木又见森林。然后边读边勾、边划、边圈,粗略懂得教材内容,弄清重难点,将不理解的内容打上记号(以便求教老师、同学)。 ②细读。即根据章节的学习要求细嚼教材内容,理解数学概念、公式、法则、思想方法的实质及因果关系,把握重点,突破难点。 ③研读。即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书本读“薄”,以形成知识网络,完善知识结构。这样,当学生掌握了读法“三部曲”,形成稳固习惯,就能从本质上改变其读书方式,提高学习效率。 2. 开导“听” 课堂教学是师生的双边活动,教师的讲是信息的输出,学生的听是信息的接收,只有调谐学生的“频道”,使接收与输出同频,才能获得最佳收效。 数学教学中,对学生听法的开导,教师首先应从培养学习数学兴趣入手来集中学生注意力,使其激活原有认知结构,打开“听门’,专心听讲。这样,才能把接收的“频道”调谐到教师输出的“频道”,达到同频共振,获得最佳教学效果。其次,要开导学生注意去听教师对每节课所提出的学习要求;对定理、公式、法则的引入与推导过程;对概念要点的剖析和概念体系的串联;对例题关键部分的提示和处理方法;对疑难问题的解释及课末的小结。这样,让学生会抓住要点,延着知识的“生展线”来听课,就能大大提高听课效率。 3. 引导“思” “数学是思维的体操”,数学学习离不开思维。要使学生学会科学的思维方法,形成一定的数学思想,需要教师科学的指路引导。 数学教学中,对学生思法的引导,教师应着力于以下四点:①从学生思维的“最近发展区”入手来开展启发式教学,引导学生去积极主动思考,使学生学会联想。②从挖掘“问题链”来开展变式训练,引导学生去观察、比较、分析、推理、综合,使学生学会转化。③从创设问题情境来开展探索式教学,引导学生追根究源去思索,使学生学会深思。④从回顾解题分歧过程来开展评价,引导学生去分析错因,便学生学会反思。此外,教师在教学过程中,还应善于暴露思维过程,留下一定的思维时间和空间,让学生学会“思在知识的转折点,思在问题的疑难处,思在矛盾的解决上,思在真理的探求中”。这样,就能使学生学会并掌握基本数学思想方法,达到思悟思,融会贯通。 4. 传导“记” 学生学业成绩的好坏,是与其有无掌握良好的记忆方法正相关,而学生对良好记忆方法的领悟,尚需教师的传授指导。 数学教学中,对学生记法的传导,教师首先要重视改革教学方法,摒弃“满堂灌”,以避免学生死呆背。其次要善于结合教学之际,来传授记忆方法。如通过对知识编成顺口溜,使学生学会去联想记忆;通过绘制直观图,使学生在以形助数中,学会数形结合记忆;通过对发掘知识的本质属性,使学生在形成概念的同时,学会凭特征记忆;通过归纳概括所学知识,使学生学会按知识结构来系统记忆;通过揭示获取知识的思维过程,使学生学会循线索记忆。此外,教师还应让学生明确各种记忆的价值、效果、适用范围,以使他们牢固掌握和灵活运用。 5. 指导“写” 作业书写最能反映学生对知识的掌握程度,因此,必须充分重视。 深究学生书写条理混乱的原因可知,教师教学起始时不重视写法指导是一主要导致因素。因此,精心指导学生怎样写,才有助于其驾驭知识,正确解决问题。为此,应切实加强对学生数学语言的教学。 ① 在教学中,既要注重对教学语言的解释,又要注重必要的句法分析 ,这是理解、掌握数学语言的基础。由于数学语言不像日常用语那样能在生活中得到直接印证,换句话说,如果不是在特定的教学研究环境,一般难以使用其语言,因此,其特定的语义、句法规则,使学生理解起来困难。为此,其一,必须明确数学语言的语义,使学生正确理解其含义。如通过比较、区分和弄清一些易混淆的词语,如“大于”与“小于”,“都不”与“不都”,“有一个”与“至少”等等;其二,要明确符号的指代,提示符号的特征。如对符号 ,不仅要指明 所代表的对象,指明 的几何意义,提示它的非负性,还应与其它相关的表示方法相联系,加深学生的认识,如 等等,其三,加强句法分析,由于数学语言有一定的逻辑结构,其概念符号需要按一定的逻辑关系组合。了解这些句法规则是学生会用数学语言的必要条件,因此,在教学中要进行必要的“咬文嚼字”和对比分析,如“ 、 两数的和的平方”与“ 、 两数的平方的和”等,要作仔细的分辨,帮助学生体会、区分、理解 ,进而会灵活运用,对一些长句。还要作必要的分解。 ② 要注意语言规范,这是正确运用数学语言的保证。其一,说法要规范。以利思考和表达的规范,如“在直线 上顺次截取 ”,不能说成“在直线 上截取 ”;其二,书写、作图要规范,如(x+5)千克,不能写成x+5千克。画图也要规范,直线要直,垂线要垂,锐角要锐,不能乱来。 ③ 加强文字语言、符号语言、图形语言的互译和转换,这是促进学生理解数学语言,学会灵活运用的有效手段,为此,首先在概念和定理教学中应多采取转换成符号语言和图形语言来表述的练习。如:“ 是负数”可转换成“ ”,还可以用数学上原点左侧的点来表示。其次,应采用多种形式的互译训练促进三种形态语言的灵活转换能力。如:读图填空训练、读句画图训练等;再其次,要逐步强化语言的训练。 总之,教师在教学中要充分认识学生的认知障碍和情绪障碍,克服学生在“读、听、思、记、写”等方面的缺陷,创设正迁移条件,矫正学生学习障碍;同时加强与学生的沟通,强化学生主体意识参与意识,提高师生互动的正面效益,从而取得良好的教学效果和学习效益。笔者通过几年的教学实践经验总结,逐惭形成了自己的教学特色,学生平时及升学考试中均正常发挥,取得较好的成绩。

145 评论

韵味八足

浅谈数学的文化价值一、数学:打开科学大门的钥匙 科学史表明,一些划时代的科学理论成就的出现,无一不借助于数学的力量。早在古代,希腊的毕达哥拉斯(Pythagoras)学派就把数看作万物之本源。享有“近代自然科学之父”尊称的伽利略(G. Galileo)认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。物理学家伦琴(W.K.R @①ntgen)因发现了X射线而成为1910 年开始的诺贝尔物理奖的第一位获得者。当有人问这位卓越的实验物理学家科学家需要什么样的修养时,他的回答是:第一是数学,第二是数学,第三还是数学。对计算机的发展做出过重大贡献的冯·诺依曼(J.V.Neumman )认为“数学处于人类智能的中心领域”。他还指出:“数学方法渗透进支配着一切自然科学的理论分支,……它已愈来愈成为衡量成就的主要标志。” 科学家们如此重视教学,他们述说的这些切身经验和坚定的信念,如果从哲学的层次来理解,其实就是说,任何事物都是量和质的统一体,都有自身的量的方面的规律,不掌握量的规律,就不可能对各种事物的质获得明确清晰的认识。而数学正是一门研究“量”的科学,它不断地在总结和积累各种量的规律性,因而必然会成为人们认识世界的有力工具。 马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”这是对数学作用的深刻理解,也是对科学化趋势的深刻预见。事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。 二、数学:科学的语言 有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔(N.H.D.Bohr)就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克(P.A.M.Dirac )也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦(A.Einstein)则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。) 一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。 数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J. C. Maxwell )的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann )几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W. K. Heisenberg)和狄拉克引起的物理学革命奠定了基础。 随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。 三、数学:思维的工具 数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。 其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。 第三,数学也是辩证的辅助工具和表现方式。这是恩格斯(F.Engels)对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿(I. Newton )—莱布尼兹(G. W. Leibniz )公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。 最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力

106 评论

相关问答

  • 小学数学概念教学论文知网

    一年级学生由于特殊的年龄特征,在小学数学一年级的具体教学中要注意教学形式的多样化与直观性。本文是我为大家整理的关于一年级小学数学教学的相关论文,欢迎阅读!

    兜里五块糖 3人参与回答 2023-12-10
  • 小学数学概念教学毕业论文

    小学数学教学论文(2)小学数学教学论文--在小学数学教学中培养学生的思维能力培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的

    QQ荔枝蜜 2人参与回答 2023-12-12
  • 学前儿童数概念研究论文

    在幼儿园 教育 中,数学教育工作一直是我国幼教界非常关注的方面。下面是我为大家整理的幼儿园数学活动论文,供大家参考。 摘 要:数学是研究现实世界中的空间形式

    november1985 2人参与回答 2023-12-08
  • 小学数学概念教学论文参考文献

    数学教学论文参考文献 教学论文就是“讨论”和“研究”有关教学问题的文章,属于议论文,具有议论文的一般特点。下面是我收集整理的数学教学论文参考文献范文,希望对您有

    ybxiong168 2人参与回答 2023-12-07
  • 文学论文概念

    论文如何选题 一、选题不宜太偏,太前沿,太过时; 太偏的话,资料不好找,仅管有时会觉得论题偏比较 新颖,而且论文不会重复,但实在难度太大,对于没 有论文经验

    *指尖的淚 4人参与回答 2023-12-06