沉默的苏克
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
懒癌末期
一类特殊对称矩阵的特征值与特征向量陆全 徐仲 【摘要】:【作者单位】:西北工业大学西北工业大学【关键词】:矩阵的特征值正交特征向量特征值与特征向量对称矩阵实对称阵特征问题矩阵A正交变换《线性代数》正交阵【分类号】:O151【DOI】:CNKI:SUN:XUSJ.0.1997-04-013【正文快照】:同济大学《线性代数》第130页例10要求一个正交变换.把二次型化为标准形,其中需要求矩阵的特征值与单位正交特征向量。事实上,这个矩阵R是一种具有特殊对称性的矩阵。这类矩阵的特征问题有如下的一般结论。考虑如下的特殊对称矩阵其中A、B均为m阶实对称阵,u是m维列向量,
相抵;相似;合同;等价类 1 预备知识 2 矩阵的等价关系 2.1 矩阵的相抵关系 定义2.1:如果矩阵A经过有限次的初等变换后得到矩阵B,那么称A与B是相抵的
不知!!!!!!!!!!!!!!!!!!
设A是秩为1的n阶方阵, 则1. A可表示为αβ^T, 其中α,β为n维列向量2. A^k = (α^Tβ)^(k-1)A3. tr(A)=α^Tβ4. A的特
化矩阵为阶梯型(中间用到列对换操作能减少计算),构造一行为0,得a=3另楼上说第四行可以用前三行表示,鄙人觉得未必:如前三个行向量线性相关而第四个行向量前三者向
写论文中矩阵外边的括号通常为中括号和小括号,具体使用哪种括号取决于论文写作的规范和要求。中括号在一些科技论文中,矩阵外边的括号通常为中括号,例如:matrix