魔女在彼岸
缪子反常磁矩研究
缪子 是粒子物理标准模型的 第二代带电轻子 ,在标准模型的发展中扮演着举足轻重的角色。
缪子的磁矩与自旋具有一个比例系数 gμ ,根据狄拉克方程的预测, gμ 为2,然而由于量子涨落的存在, gμ 因子还需要进行 量子辐射修正 。
目前关于缪子磁矩的讨论都围绕此修正的大小进行,一般被称为 反常磁矩 aμ 。
在标准模型的框架内,反常磁矩的计算一般被分成: 量子电动力学 、 电弱相互作用 、 强子真空极化 以及 强子光-光散射 。
反常磁矩的 首个量子电动力学修正计算 是由斯温格在1948年针对电子完成,a=0.00116 0.1%。
>>>
缪子反常磁矩首次被测量是在1957年。
李政道和杨振宁在1956年提出了“ 在弱相互作用下宇称不守恒 ”,后莱德曼团队在验证宇称不守恒的同时也间接获得了 与零相符的一个实验结果 , aμ =0.0 0.1。
之后通过欧洲核子研究中心(CERN)的一系列实验以及美国布鲁克海文国家实验室(BNL)的Muon g-2实验的多年测量,其精度达到了 低于百万分之一级别 的0.54 10^-6。
此时,基于标准模型的理论计算也已经达到了相当的精确度,但比测量值还要小2.7个标准偏差,暗示可能存在着 超越标准模型的新物理 。粒子物理的理论家和实验家开展了一系列工作,希望可以进一步提高理论计算和实验测量的精度。
>>>
缪子反常磁矩的 大理论团队 自2017年开始分别在美国、德国和日本等国家召开工作会议,在2020年中旬,发布了大家达成共识的理论值,此值和实验值两者之差已经达到了 3.7个标准偏差 。
实验方面,从2009年起,便有2个团队规划利用2种不同的实验方案提高测量精度,分别是 费米国家加速器实验室 (简称费米实验室)的 Muon g-2实验 和 强流质子加速器研究联合装置 (简称J-PARC)的 Muon g-2/EDM实验 。
费米实验室研发了 性能更好 的电磁量能器和磁场测量核磁共振探针以及其他仪器的改良,而J-PARC采用的是不同的缪子动量、缪子束流的 储存方法 以及衰变电子的 测量方法 。
>>>
费米实验室的Muon g-2合作组于2009年成立,2017年中旬完成实验搭建之后,开始实验试运行,最终 在2018年采集到第一批物理数据 (Run-1)。
反常磁矩的物理分析主要分成: 缪子自旋的反常进动频率 ,通过测量正电子数量随时间的振荡获得; 储存环的磁场分布 ,通过安装在储存环上下的核磁共振探针和在储存缪子束流区域扫描的核磁共振探针台车获得; 缪子束流在储存环的时间和空间分布 ,通过径迹探测器的测量和束流动力学模拟的对比获得。
Run-1数据于2021年4月7日发表在《物理评论》系列期刊上, 精确度为迄今最好 ,结合BNL的测量值后,实验理论差异则达到了 4.2个标准偏差 。
在费米实验室发表结果的同时, 基于格点QCD计算强子真空极化(HVP)对反常磁矩贡献 的BMWc团队也在 Nature 发表了最新计算结果,表明理论实验只有 1.6个标准偏差 的差异,且计算值与其他基于色散关系的理论值有 3.7个标准偏差 的差异。
目前其他格点QCD团队正在验证这一新结果的计算和系统误差的估算,希望在近期可以解决理论值之间的矛盾。
费米实验室的Muon g-2实验目前正在采集 第5批数据 (Run-5),计划至少还会运行1年,并且从Run-6开始转向测量负缪子的反常磁矩。
此外,Muon g-2实验的数据也可以用于寻找 缪子的电偶极矩 以及与缪子有耦合的 超轻暗物质 。
>>>
与此同时,J-PARC的Muon g-2/EDM实验也逐渐步入正轨,通过 产生缪子偶素 和 激光离子化 的方法产生冷缪子,然后对其进行反常磁矩精确测量。
在2018年实现了利用RF谐振腔加速缪子后,在 缪子偶素的生产额 、 缪子加速束流线 、 径迹探测器模块 等方面已经获得重大进展。
该实验计划于2027年开始取数,以不同的测量方式互相验证费米实验室的测量结果。
>>>
2021年是缪子物理非常重要的一个节点,预计2022年,美国和日本的反常磁矩实验将取得更进一步的突破,为揭开缪子反常磁矩之谜做出贡献。
重味与强子物理研究
在粒子物理标准模型中,三代轻子与规范玻色子具有相同的耦合强度,这被称为“ 轻子普适性 ”。
检验重味强子衰变中的“轻子普适性” ,是搜寻超出标准模型新物理的重要途径之一。
B工厂 (Babar实验与Belle实验)此前检验了底介子 B +衰变中的轻子普适性,测量了所谓的“ RK ”, 未发现与标准模型预言偏离的迹象 。
LHCb实验国际合作组 2014年发布的测量结果与标准模型预言有2.6倍标准差的偏离,2019年利用更多的数据提高测量精度后,仍有 2.5倍标准差的偏离 。
2021年,LHCb实验国际合作组进一步提高了 RK 的测量精度,结果与标准模型预言有3.1倍标准差的偏离, 可能是新物理影响的迹象 。
>>>
粒子物理标准模型中仅有4种可以 在正反物质粒子之间“振荡” 的粒子,而正反粒子“振荡”是 量子力学重要性质 的体现。
中性粲介子 D 0振荡频率更小, 在实验上难以测量 ,LHCb实验国际合作组于2013年才在实验上确立其振荡属性。
2021年,LHCb实验国际合作组测量了决定中性底介子振荡频率的物理量——2个质量本征态的质量差,这是实验上 首次确立中性粲介子2个质量本征态的质量差 。
>>>
强子谱研究 可以帮助深入理解夸克模型和强相互作用,是粒子物理的前沿热点课题。
继2003年Belle实验国际合作组发现 X (3872)粒子以来,实验上发现了一系列的 奇特强子态 ,其中一些粒子带电,不可能是传统的电中性的重夸克偶素。
2021年,实验上又发现了新型的奇特强子态,奇异隐粲四夸克态 Zcs (3985), Zcs (4000), Zcs (4220)和双粲四夸克态
>>>
北京谱仪III实验国际合作组在
反应过程中,在
和
的质量阈值附近发现一个
增强结构 ,需要引入新的四夸克态候选者 Zcs (3985)来解释。
>>>
LHCb实验国际合作组通过对底介子的衰变道进行振幅分析,在粲夸克偶素 J / ψ 和带电 K 介子组合的不变质量谱中发现 明显的增强结构 。进一步分析表明,该系统存在2个共振态结构 Zcs (4000)和 Zcs (4220)。
Zcs (4000)的质量与北京谱仪III实验国际合作组发现的 Zcs (3985) 在误差范围内一致 ,而宽度大1个数量级,它们是否是同一个粒子,有待理论与实验的进一步研究。
LHCb实验国际合作组于2017年发现了双粲重子
这一发现使得 对于含2个相同重味夸克的奇特态的研究 成为新一轮理论热点。
在实验方面,LHCb实验国际合作组于2020年发现了由2对正反粲夸克组成的 X (6900);2021年,在 D 0 D 0 π +的不变质量谱中发现一个 新的共振态 ,这是由 D *+介子与 D 0介子组成的分子态,还是紧致型四夸克态,有待理论与实验的进一步研究。
>>>
在 理解核子结构 方面,北京谱仪III实验国际合作组对类时空间中子的电磁结构进行了精确测量,发现光子与质子耦合比光子与中子耦合更强,从而解决了长期存在的 光子-核子耦合反常问题 。
同时,北京谱仪III实验国际合作组观测到中子电磁形状因子随质心能量变化的 周期性振荡结构 ,其振荡频率与质子相同,相位接近正交。暗示核子内部存在尚未理解的 动力学机制 ,有待理论与实验进一步研究。
高能量前沿希格斯物理、
电弱物理与新物理寻找
希格斯玻色子是标准模型预言的 质量起源粒子 ,是电弱对称性破坏机制的 理论基础 ,同时也是标准模型中 最后一个被发现的粒子 。它的发现补全了标准模型的理论框架、提升了人类对于粒子物理微观世界的认知。
在后希格斯发现时代, 精确测定希格斯粒子的性质 、研究希格斯粒子与其他标准模型粒子的 作用机制 以及通过希格斯作为探针来寻找 超越标准模型的新物理现象 成为高能量前沿对撞机实验研究的核心之一。
>>>
希格斯粒子的寿命很短,它的存在只能通过具体的 衰变末态 进行测量。
ATLAS与CMS国际实验合作组基于LHC Run-2实验数据,联合希格斯的主要衰变道测量希格斯玻色子的主要产生模式的反应截面和衰变分支比,以及耦合参数等。
以ATLAS结果为例,最终全局拟合获得希格斯粒子总体信号强度为1.06 0.06,测量误差相比以前实验结果有显著的改善, 在误差范围内与标准模型预言吻合 ,是2021年度标准模型希格斯测量的重要代表性进展。
>>>
双希格斯过程 是LHC上希格斯产生的稀有过程,对于 探索 希格斯自耦和机制、研究希格斯势的形状、 探索 反常自耦和及双希格斯超标准模型共振态新物理有着重要意义。
ATLAS与CMS合作组在该研究方向上深耕Run-2 13 TeV对撞数据,获得了重要研究进展。
ATLAS标准模型双希格斯联合测量(a)与CMS双希格斯共振态新物理最新实验限制(b)
>>>
此外, 希格斯衰变宽度与寿命测量及离壳衰变研究 至关重要。
CMS合作组基于希格斯双Z玻色子衰变道,给出了离壳希格斯的实验证据和希格斯宽度测量的最新结果, 与标准模型预言高度吻合 。
作为希格斯复杂衰变道的未来挑战之一, 二代费米子汤川耦合研究 至关重要,继希格斯缪子衰变道测量取得突破后,ATLAS于2021年完成了粲夸克衰变道的完整测量研究。
>>>
ATLAS与CMS实验中三玻色子产生过程与矢量玻色子散射过程探测器示意(a)三规范玻色子的强子衰变;(b)轻子衰变过程;(c)ZZ散射示意图;(d)VV散射强子衰变示意图
(1)CMS合作组在 W-玻色子衰变分支比精确测量 中取得重要突破,所获结果首次超过LEP正负电子对撞机的高精度 历史 结果。在电弱精确测量全局拟合中PDG2020指出了2倍标准偏差,有待实验和理论的进一步论证。
(2)在 电弱稀有过程三规范玻色子产生 研究中,ATLAS和CMS合作组先后获得研究突破,首次在实验中观测到三规范玻色子协同产生过程。
(3)在 矢量玻色子散射 (VBS)的研究中,ATLAS和CMS实验进一步发现了 W +光子、 Z +光子末态和异号 WW 散射过程,并获得具有很大挑战性的 Z +光子散射过程中微子衰变道散射的首次发现。
(4)此外,ATLAS在 四顶夸克产生稀有过程测量 、CMS在 3 J / ψ 产生测量 等方向均有重要进展发表。
>>>
在新物理现象的实验寻找过程中,ATLAS与CMS实验开展了广泛的研究,目前 尚未发现足够显著的偏离标准模型的实验迹象 ,相关工作为新物理理论的进一步研究提供了大量的实验数据参考和检验,并为未来理论与实验的发展发挥重要的指引与借鉴作用。
ATLAS与CMS实验关于新物理寻找统计限制的部分结果展示
结论
2021年粒子物理研究领域热点不断,在多个研究方向取得了一系列令人瞩目的研究成果。
目前中国与国际同行一起在粒子物理学科前沿开展全面而深入的理论与实验研究,并进一步全面布局如江门中微子实验、未来环形正负电子对撞机、超级陶粲工厂、中国电子离子对撞机等一系列紧跟学科前沿发展的基于加速器与非加速器装置的 未来大科学设施 ,为解锁宇宙物质构成之谜、联系并探秘宏观无穷大与微观无穷小尺度的物理现象而不懈努力。
书画人生
希格斯粒子不仅仅和物质质量的起源有关系,也与比如早期宇宙演化的过程、暗物质与暗能量等等其它领域息息相关。因此,对希格斯粒子的更精确研究是粒子物理学界一个明确的未来需要完成的目标。
十年前,希格斯粒子被发现的同时也确定了它质量大约是125个GeV。这一条信息决定了如果想要建造专门用来生产希格斯粒子的粒子工厂式对撞机,它所需要的能量是多少。
科学家们发现,想要以最高的效率的产生希格斯粒子,所需要的对撞机的能量是240个GeV。在这个能量之下,大量的正负电子对撞之后能够产生一个希格斯粒子和一个传递弱核力的Z粒子。
因此,2012年9月,仅仅在希格斯粒子被发现之后的两个月后,中国的科学家就提出了在中国建造下一代正负电子对撞机的宏大计划,而这个新的正负电子对撞机的主要运行能量就锁定在了240个GeV。2018年,中国希格斯工厂对撞机CEPC的概念设计报告完成,一个宏伟工程的蓝图浮出了水面。
2020年6月,欧洲核子研究中心的公布了他们最新的发展战略,欧洲版希格斯工厂FCC被列为了最高优先级。FCC与中国的CEPC在周长、对撞能量等许多关键参数上都十分相似,这证实了CEPC的方案也被国际同行们认为是最好的方案。而日本的直线对撞机希格斯工厂也在长期的预研中早已形成方案,在等待政府的建设许可。可见,全球的粒子物理学家目前努力的方向是一致的。
欧洲规划中的未来环形对撞机FCC所在位
FCC将整个日内瓦市包围在的其中
中国规划中的希格斯工厂对撞机CEPC的示意图
除了通过对撞机的途径,粒子物理学家还会通过其它充满科幻感的粒子物理探测器来研究粒子物理的方方面面。比如,在广东江门开平市地下700米的地下实验室里,中国的科学家正在建造一个超过10层楼高的巨大中微子探测器,这个巨大的探测器将于明年建成投入运行,届时将有望为能为三种中微子质量的顺序进行排序,测量中微子的许多参数,为中微子方向的多方面研究开辟新的道路。
正在安装中的江门中微子探测器。
在钢架上能看到正在施工的安装工人
在国际空间站上,华裔科学家丁肇中领导的实验团队建设的AMS-02探测器已几乎连续收集了十年的宇宙射线的数据,正在探索宇宙中的暗物质与反物质的证据。AMS-02探测器计划在2024年进行升级,以提升探测器的接受角度和测量精度,以期为研究暗物质与反物质提供更丰富的数据。
国际空间站及安装在其上的AMS探测器
为了探究微观粒子的各方面的性质,在南极冰盖之中,在地中海的深海海底,在千米深的矿井之下,在世界各地的极限环境中,科学家们还建造或规划了各种各样的粒子物理学探测器。这些探测器将同未来的对撞机一起,继续延伸人类对微观世界的认知极限
2022年7月5日,欧洲核子研究中心经过升级后的LHC对撞机将正式开启它的第三阶段的取数运行。经过升级后的LHC,对撞能量更高了,束流亮度更大了,相比于十年前那个发现希格斯粒子的LHC,它的数据收集与处理能力又有了巨大的提升。
我国是自然灾害严重多发国家,农作物病虫灾害是我国的主要自然灾害之一,它具有种类多、影响大、并时常暴发成灾的特点。我国的重要农作物病虫草鼠害达1400多种,其中重
想必很多人都听说过,过减速带时不减速,百万豪车也有可能秒变拖拉机。 有研究表明,在马路合适的位置安放微微凸起的减速带,可以有效地降低交通事故的发生次数,减
我们都知道乙肝是一种慢性疾病,通过治疗,我们可以很好的控制乙肝,但治愈乙肝,尚无很好的特效药。目前针对乙肝治疗的药物主要为核苷(酸)类似物和干扰素,而临床上又以
纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000
缪子反常磁矩研究 缪子 是粒子物理标准模型的 第二代带电轻子 ,在标准模型的发展中扮演着举足轻重的角色。 缪子的磁矩与自旋具有一个比例系数 gμ