大璐璐131483
智能制造(Intelligent Manufacturing,IM)是由人工智能参与的机器设备,能够根据现场环境进行智能化预判和对数据的分析推理,提供决策分析支持的人机对话系统。简单来说,就是借助信息系统,参与到生产经营过程中,通过网络连接计算机和生产设备,参考可供分析和再利用的数据,帮助管理人员和操作人员决策的一个智能化体系,其实单纯来讲暂能制造是毫无意义的,这里有几个关键词需要说明 (1)必须有网络,这个网络并不是我们所说的计算机网络或互联网,而是能够有效将计算机网络和设备网络连接在一起的智能化网络,计算机网络可将信息化系统的指令发送给终编设备,终端设备可根据指令操作生产设备,计算机网络可控制设备网络的运行,简单来讲就是实现计算机网络和设备网络的“双网合" (2)必须有数据。智能制造体系需要通过收集、整理、分析整个制造过程的数器,而数据来源于设备,能否实时、准确采集到设备在制造过程中的数据成为先决条件,如果不能解决数据的唯一性,数据来源多样则会造成数据失实,最终影响智能制造系统的预判和结果。 (3)必须有系统,智能制造是一个体系化的运维系统组织,是通过多个领域的信息系统的整合,数据的贯通才能为智能化提供可供分析决策的数据支撑,这中间涉及到系统的整合、枭构的整合、数据的整合、人员的整合等等,整合也成为智能制造要解决的核心问题。 综上所述,智能制造解决的是如何让数据带来价值的问题,大数据应用也成为了必须要攻克的壁垒. 大数据(Big Data)是指运用信息技术,对商量数据进行整理和分析,最终形成有价值的信息,对社会民生、企业经营、金融服务等诸多领域提供数据的一种服务,制造型企业在生产经营过程中,海量数据迅速产生,这些数据或多或少影响着企业的运营过程,借助云计算、分布式等信息技术,对海量数据挖掘分析,帮助利造企业做出正确决策。
藏青妹妹
搞清出工业大数据分析,第一步我们应该如何定义制造业的大数据?这里我和大家通过大数据的三个特性,来经一步了解大数据的特性。
1
关注#1 -工业大数据数据来源
工业大数据的主要来源有两个,第一类数据来源与智能设备。普适计算有很大的空间,现代工人可以带一个普适感应器等设备来参加生产和管理。所以工业数据源是280亿左右大量设备之间的关联,这个是我们未来需要去采纳的数据源之一。
第二个数据来源于人类轨迹产生的数据,包括在现代工业制造链中,从采购,生产,物流与销售市场的内部流程以及外部互联网讯息等,都是此类大数据的战场。通过行为轨迹数据与设备数据的结合,大数据可以帮助我们实现客户的分析和挖掘,它的应用场景包括了实时核心,交易,服务,后台服务等。
2
关注#2 -数据的关系
数据必须要放到相应的环境中一起分析,这样才能了解数据之间的关系,可以分析出问题的根本原因(root cause)。譬如,每一款新机型在交付给航空公司之前都会接受一系列残酷的飞行测试。极端天气测试就是多项严酷的测试之一。该测试的目的是为了确保飞机的发动机、材料和控制系统能在极端天气条件下正常运行。
问题的处理关键在于找到产生问题的根源,而以知错误的消除,关键在于解决方案的可靠有效。一旦找到并确定了根本原因,同时产生了可接受的应急措施,就可把问题当成一个已知错误来处理。问题调查的过程一定需要收集所有可用,与事件相关的信息来确定并消除引起事件和问题的根本原因。数据采集与分析必须要事件/问题发生的环境数据结合。
3
关注#3 -数据的收益
对于数字化转型的其他方面而言,大数据不仅要关注实际数据量的多少,而最重要的是关注在大数据的处理方法在特定的场合的应用,让数据产生巨大的创新价值。如果离开了收益考虑或投资回报的设计,一味寻求大数据既无法落地也无法为企业创造价值。
工业大数据分析的定义
生产执行系统(MES)与飞机发动机 健康 管理系统如出一辙。我们可以从工厂的生产中,实时采集到海量的流程,变量,测量结果等数据。这些数据来源的原因都是因为在制造环境中,设备或资产连接后所产生的现象。然而基于大量数据集而生成的报表,或是基础统计的分析并不足以称之为制造业的大数据分析。
所以如果制造业大数据分析不仅仅意味着数据的量,作为一个行业,我们应该如何定义制造业的大数据分析?“大数据不仅仅是大量的数据”这句话里面包含了多重涵义。
当代大数据处理技术的价值在于技术进步,同时也是因为技术进步,使大数据成为商业中有价值的核心驱动因素。作为智能制造的三驾马车之一,工业大数据分析已经被多数的制造企业所认知并接受。许多制造业企业认为自己在生产运营方面也累积了大量的数据,是时候可以用到大数据了。
数据类型的多样性
大数据不仅仅是大量的数据的堆积。大数据的重要属性之一,便是,人们设法收集,并弄清楚,不断变化的数据类型。如果只是大量采集同一类型的数据的话,再大的数据量都不能称之为大数据。
数据必须包括高度可变性和种类多样性。制造工厂中存在无数的大数据应用,但并不包括简单地分类和展示一连串的流程测量结果,这些工作基本的统计展现就可以完成。一些大数据数据库或数据湖的构成部分数据类型也是文本信息、图像数据、地理或地质信息和非结构信息,例如,通过社交媒体或其他协作平台获得的数据类型。
制造业信息结构概括起来分为两层,一个是管理层,一个是自动化层。从经营管理,生产执行与控制三个纬度来实现决策支持、管理、生产执行、过程控制以及设备的连接与传感。制造业中大数据分析是指利用通用的数据模型,将管理层与自动化层的结构性系统数据与非结构性数据结合,进而通过先进的分析工具发现新的洞见。
大数据分析对生产的意义
制造业的创新的核心就是要依托大量的前沿 科技 。先进的技术是创新的手段。在新技术的支持下,可以通过一体化的制造运作管理系统MOM将企业管理应用系统,例如ERP,MES等系统与工业自动化的相关系统整合为一体。
从两化融合的角度来看,信息系统供应商要从企业的主信息系统提供商定位来做好规划、标准、功能设计、实施策略的统一性工作。协助企业做好风险控制,降低投资,降低操作维护成本,实现企业信息系统全集成。
随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,以下是我精心整理的大数据和人工智能论文的相关资料,希望
事实上,所谓“大数据时代”的说法并不新鲜,早在2010年,“大数据”的概念就已由美国数据科学家维克托·迈尔·舍恩伯格系统地提出。 他在 大数据时代一书中说,以前
应用论文这样写,1、 分布式网络化IMS探讨与研究1) CIMS的基本原理从IMS的本质特征出发,在分布式制造网络环境中,根据分布式集成的基本思想,应用分布式人
智能制造(Intelligent Manufacturing,IM)是由人工智能参与的机器设备,能够根据现场环境进行智能化预判和对数据的分析推理,提供决策分析支
浅谈自动化机械制造\x0d\x0a摘 要:自动化制造系统(FMS)系指具有自动化程度高的制造系统。目前所谈及的FMS通常是指在批量切削加工中以先进的自动化和高水