最好射线的钨靶到你的薄板之间只有很少很少的衰减。也就是说,你用的射线源应该是单端高压的射线源,X射线管应该用在玻璃上直接焊了铍窗的那种。这样在射线的焦点和你的待测薄板之间只有铍窗的衰减和一点点空气。在这种情况下,灵敏度会很高。用低KV,大mA来检测。
用低KV,大mA来检测。还有就是射线源很重要,最好射线的钨靶到你的薄板之间只有很少很少的衰减。也就是说,你用的射线源应该是单端高压的射线源,X射线管应该用在玻璃上直接焊了铍窗的那种。这样在射线的焦点和你的待测薄板之间只有铍窗的衰减和一点点空气。在这种情况下,灵敏度会很高。假如采用别的方案,射线出来要经过玻壳、变压器油、辐射窗再到达待测物,由于前面那些物质的等效衰减,会大大降低薄板检测的灵敏度。
X射线检测技术是无损检测技术的一种。 X射线检测则是利用射线穿过物质,并被其衰减来实现检测的,此技术的演化经过了低劣的微光图像获取,有噪声的电离放射线荧光屏成像和高分辨率清晰的数字图像设备等几个阶段。X射线透射检查法可提供铸件检测部位有无缺陷及缺陷尺寸的照片。X射线透照法主要应用在铸件和机器部件中出现的诸如裂纹、孔洞和夹杂等缺陷的辨识和评价。在X-Ray检测的过程中, X-Ray穿过待检样品,然后在胶片或图像探测器上形成一个放大的X光图。该图像的质量主要由分辨率及对比度决定。成像系统的分辨率(清晰度) 决定于X射线源焦斑的大小、X光路的几何放大率和探测器像素大小。微焦点X光管的焦斑可小到几个微米。X光路的几何放大率可达到10~2500倍,探测器像素可小到几十微米。成像系统的对比度决定于图像探测器的探测效率、电子学系统的信噪比和合适的X射线能量。目前一般的X射线成像技术可以获得好于1%的对比度。
作为五大常规无损检测方法之一的射线检测(Radiology),在工业上有着非常广泛的应用。ΔI/I=-((μ-μ’)ΔT)/(1+n)这个公式就是射线检测基本原理的关系式,ΔI/I称为物体对比度,(I是射线强度,ΔI是射线强度增量,μ是物质线衰减系数,μ’是缺陷线衰减系数,ΔT是射线照射方向上的厚度差,n是散射比)从它我们可以得知,只要缺陷在透射方向上具有一定的尺寸、其衰减系数与物体的线衰减系数具有一定差别,并且散射比控制在一定范围,我们就能够获得由于缺陷存在而产生的对比度差异,从而发现缺陷。
1,科技学院在上海路,昌航本部在前湖新校区;2,老校区的各种仪器设备在这个暑假全部要搬到新校区的实验大楼;3,银三角校区没有了,银三角校区要搬到老校区;4,当然是新校区学风好,新校区的学风在整个江西高校都是最好的,大一早上跑操,除了上课之外,还要早晚自习;5,老校区很有历史文化感;6,请问你是几本?如果是新校区的话,这个专业属于飞行器学院,学校王牌专业之一;7,新校区的老师会过去上课的,但是教学任务和新校区的学生肯定不一样;8,大学不是高中,基本上像个学生样都可以进大学的,老校区最好的宿舍还赶不上新校区最差的宿舍;9,大一新生不让带电脑,被查到了可能会受处分;10,哥给你回答了,请悬金给我吧;11,我的答案就是权威答案!!!
医学影像技术是高新技术与医学的结合,自20世纪70年代起,以CT问世为标志,伴随计算机技术的进步,现代医学影像学取得了突飞猛进的发展,由传统单一普通X线加血管造影检查形成包括超声、放射性核素显像、X线CT、数字减影血管造影(DSA)、MRI、普通X线检查的数字化成像(CR和DR)以及图像存储和传输系统(PACS)多种技术组成的医学影像学体系。医学影像学已经由传统的形态学检查发展成为组织、器官代谢和功能诊断手段,医学影像学技术已经由既往"辅助检查手段"转变为现代医学最重要的临床诊断和鉴别诊断方法,使多种疾病的诊断更准确、及时。由于介入医学的兴起,医学影像学已经集诊断和治疗为一体,成为与外科手术、内科化学药物治疗并列的现代医学第3大治疗手段。目前,医学影像学科是现代化医院的支柱之一,影像学设备的价值占医院固定资产50%以上,医学影像学为临床医学的主要研究手段和推动现代医学不断发展的动力。
医学影像学是高新技术与医学的结合点,21世纪医学影像学发展首先依赖于以计算机为主导的高新技术的进步。由于计算机的性能以几何级数升级,必将带动多种医学影像学设备向小型化、专门化、高分辨率和超快速化方向发展,医学影像学检查亦将由大体水平逐渐深入至细胞、受体、分子和基因水平。近年来,美、欧、日等发达国家和地区在医疗影像诊断产业加强战略布局,旨在带动多种医学影像设备向小型化、专门化、高分辨率和快速化方向发展。目前,数字医疗影像技术的发展主要有如下几大趋势:
现代医学影像设备的发展将由最开始的形态学分析发展到携带有人体生理机能的综合分析。通过发展新的工具、试剂及方法,探查疾病发展过程中细胞和分子水平的异常。这将会为探索疾病的发生、发展和转归,评价药物的疗效以及分子水平治疗开启崭新的天地。同时,由于造影剂是影像诊断检查和介入治疗时所必需的药品,未来针对特定基因表达、特定代谢过程、特殊生理功能的多种新型造影剂也将逐步问世。
医学影像技术相关论文
导语:明确职称评定时间这一点非常重要,写作论文,发表论文前,一定要了解明确职称评定时间,早做准备,以下是我为大家整理分享的医学影像技术相关论文,欢迎阅读参考。
“纸上得来终觉浅,绝知此事要躬行”,在学校学习了两年的理论知识,经过10个月的医院实习,知道了学校与社会的距离,同时也明白了理论与实践的差距,只有通过实践才能检验所学知识,也只有通过实践才能真正学得有用的知识... ...
在这10个月的医院实习工作中,我从泌尿科、骨科、普放、CT室、MRI室、B超检查室 ... 一路走过,看到了许许多多,也学到了许许多多... ...
在医院实习中,我虽只是一个“大专”毕业生,但不甘于平庸,我乐观、自信、上进心强,能够很好地处理人际关系,并且有较强的责任心与使命感。曲靖医专两年的砺炼为我实现梦想打下了坚实的基础。在校两年大学的医学理论知识的学习使我形成了严谨的学习态度、严密的思维方式,培养了良好的学习习惯,10个月的临床实习工作经历更提高了我分析问题解、决问题的能力。尤其是在实习过程中实习医院给我提供了许多动手实践机会,使我对外科的无菌操作及换药及影像科室的CT、DR、CR、C臂及床旁X线机等影像设备有了更深的认识及培养了我坚实的独立操作能力,对于常见部位的拍照已不是问题,并能对常见的影像表现作出正确的诊断。同时也对B超、MRI检查技术有了深入的认识并能对相关影像表现作出正确的诊断意见。强烈的责任感、浓厚的学习兴趣,动手能力强、接受能力快,并且能够出色的完成各项工作任务,使我赢得了带教老师的一致好评。
从一名在校医学生到一名医院“实习医生”,在踏入医院实习之前,我认为我们应该解决以下问题:
一、 明白实习学什么,也就是实习的目的
关于实习学什么?我的观点则认为:实习学的主要是“方法”,而不是疾病。理由很简单,熟悉和掌握了一个疾病,终究只是一个疾病,而掌握了认识疾病的方法,就可以发现更多的疾病,从而认识和掌握更多的疾病。
二、理解实习医生的双重身份
“实习医生”,顾名思意,实习医生即实习生加医生,因此,作为一名实习医生本身就具备了双重身份,在带教老师的眼里,实习医生是一名学生,在病人的眼里实习医生又是一名医生,正确处理好这种双重身份,是实习医生首先应解决好的问题之一。
在实习的过程中,“学习”自然应放在主要的地位,而这种“学习”又与学校的“学习”有很大的不同。首先,在内容上有其不同,在学校“学习”,重点在学习理论知识方面,而实习的“学习”不仅要学习有关的理论知识,而且还要学习作为一名医生应具备的基本素质,临床工作的基本方法,治疗方法,思维方法,甚至包括社会适应能力的的学习,因此说实习中的学习内容要比学校的学习内容要广泛得多。其次,在学习方式上也有不同,在学校主要是老师的讲解为主,而实习则是从理论到实践的应验过程,因而实习的学习方式则应以独立思考为主,有的甚至是一种潜移默化的感染,如带教老师的工作方式,医疗作风等等。
在临床实习的三个多月的时间里,可以说临床实习所涉及的内容几乎是在校学习的所有内容,而实习的时间却相对较短,我每到一个临床科室我都会应用联系的方法学习影像专业知识。因为影像检查技术是每一个临床科室所不能缺少的辅助检查方法,每在一个临床科室我都能找到X线、CT、MRI的片子及B超检查报告单等影像学资料,在实习临床疾病的同时我也在学习我的专业知识,可谓一举两得,这样最的好处就是可以系统的了解疾病的全部资料,包括临床症状、个人史、病理及影像学表现。下面我将我所实习过的临床科室的感悟做一些总结:
一、内一(心血管)内科实习:
内一科是我的第一个实习科室。心血管内科同时也与影像密切联系,因为其最为重要的一个辅助检查就是影像技术的检查,如超声心动图、胸部X线检查等等。
影像诊断对于心、大血管疾病的诊治,具有非常重要的价值。在实际临床中,心、大血管的超声成像和传统X线检查是最常用和首选的影像检查方法,能明确许多心、大血管疾病的诊断。透视的优点是可以从不同角度观察心、大血管的形状、搏动及其与周围结构的关系,还便于选择最适当的角度进行斜位摄影。但其影像清晰度较差,时间也短促,需与摄影结合进行诊断。我们在曲靖市第二人民医院实习期间最常见到的是心脏二位片的摄影检查,即吞钡摄取胸部后前位和右前斜位。
近代一些新成像技术的进展和临床应用如超声心动图、CT、MRI等极大地弥补了传统X线检查的不足,使心血管疾病的临床诊断加准确可靠。
二、在外三科(骨科)的实习:
骨科是实习的重点科室之一,也是与我们专业密切联系的一个科室。
在骨科所有的辅助检查中,与骨科关系最密切的莫过于X —线检查了,特别是对
外伤病人,它不仅为临床医生提供准确有效的临床诊断依据,而且为医生选择治疗方法提供重要的参考资料。
在骨科实习得出过程中,我利用上班及休息时间总结了有关骨折的基本知识,如骨折的临床表现、影像学检查方法如骨折的X线检查、骨折的治疗原则(骨折的治疗有三大原则,即复位、固定和康复治疗)及骨折的复位标准,这些知识同时也是每个实习生在进入骨科实习应该具备的基本知识。
在骨科实习过程中,掌握了这些基本基本知识就能实习得很轻松,并能学到更多的`有关骨科的知识,此外还学习到了骨科的基本手术及换药知识。
三、内二科(呼吸内科)实习
在呼吸科实习,是学习和掌握呼吸系统疾病体征的极好机会。利用实习时间很好的弄清楚清音、过清音、浊音、实音的区分,干罗音、湿罗音、粗湿罗音、细湿罗音、哮鸣音、痰鸣音的区分等等,弄清楚这些疾病体征将有助于呼吸内科基本疾病的诊治。
在呼吸科,与我们影像专业密切联系的也是其相关辅助检查。在辅助检查方面,我都会结合实际病人,了解肺炎、肺结核、肺癌病人X线的特点及临床表现,同时这些疾病的知识同时也是我们影像专业的基础知识,系统的理解影像学表现及其治疗方法,有助于自己全面的发展和提升自己的医学知识能力,这种结合实际病人学习的效果,要比看书的效果好得多。
四、外四科(泌尿外科)实习: 泌尿外科与我们影像检查学业联系也十分密切。
在实习过程中我通过学习提前掌握了腹部平片的摄取范围和条件、检查前准备、检查时体位及结石的X线表现(包括肾结石x线表现、输尿管结石x线表现 、膀胱结石x线表现、盆腔静脉石x线表现)及其静脉尿路造影(KUB+IVP)检查方法及其临床意义。 同时应用临床资料了解到了有关B超检查对于泌尿系结石的目的。
要明确泌尿外科常见的临床症状的定义、临床意义以及有关的鉴别诊断及辅助检查,对泌尿系常见疾病进行诊断及鉴别诊断十分有用。
经过前面几个临床科室的认真实习,严格遵守医院的各项规章制度,所有操作都严格遵循无菌原则,在所实习的各个科室里,都是认真细心的做好各项工作,我对临床基本医疗文书的书写有了深刻的认识,同时也对基本操作如心电图的打印、血糖值的测定及外科的手术及换药、无菌观念有了深层次的理解和应用,在实习过程中我也充分应用
临床病例学习专业影像知识,为以后的实习打下了坚实的基础。
五、结束了临床科室的实习,我开始了影像专业科室的实习。
影像科室的实习相对临床科室来说简单多了,因为在学校已经了解了一些,加上我在临床科室的学习,更加深刻的理解了影像对于临床的意义及作用。通过在影像科室(普放、CT检查技术、MRI检查技术及B超检查技术)七个多月的实习,初步掌握了专业基本知识及影像学表现,能对独立操作影像检查设备如DR、CT等并能对基本病变做出准确的诊断意见。通过实习,我明白X线摄片、CT、磁共振成像及B超检查技术可称为四驾马车,四者有机地结合,使当前影像学检查既扩大了检查范围,又提高了诊断水平。
实习的最大及最终目的是培养良好的各项操作技能及提高各种诊疗技能。所以在带教老师“放手不放眼,放眼不放心”的带教原则下,我们积极努力的争取每一次的锻炼机会,同时还不断丰富临床理论知识,积极主动地思考各类问题,对于不懂的问题虚心的向带教老师或其它老师请教,做好知识笔记;加上每个周影像科上都有一次讲座,还有梁主任、龚主任耐心、细致的给我们讲解、分析病例,比如在遇到成骨不全症时,龚老师带领我们收集临床资料,分析片子,教会了我们如何系统的收集及分析一个病例,从中获益匪浅。
“工欲善其事,必先利其器”。在无涯的学海里,我不断地挑战自我、充实自我。要成为一名合格的影像师,我觉得我们应该做的还很多。影像专业不同于临床医学专业,在掌握了基本的理论知识、入门以后需要多看,看图片、看病例,只要肯下功夫,病例资源有很多,这一点决定影像这个专业业务水平提升的速度可以很快;学好影像必须学好解剖学、病理学、影像诊断专业课程及临床;初级水平的工作者,在掌握好基础学科的基础上,要提升很高的水平还要提升自己的临床知识。
通过在曲靖市第二人民医院10个月的的实习,我受益匪浅,我对自己的专业有了更为详尽而深刻的了解,认识到了许多在学校学不到的东西,不再局限于书本,而是有了一个比较全面的了解。总结过去,只为更好的收获将来,相信只要用心,我的未来不是梦!
医学影像技术是高新技术与医学的结合,自20世纪70年代起,以CT问世为标志,伴随计算机技术的进步,现代医学影像学取得了突飞猛进的发展,由传统单一普通X线加血管造影检查形成包括超声、放射性核素显像、X线CT、数字减影血管造影(DSA)、MRI、普通X线检查的数字化成像(CR和DR)以及图像存储和传输系统(PACS)多种技术组成的医学影像学体系。医学影像学已经由传统的形态学检查发展成为组织、器官代谢和功能诊断手段,医学影像学技术已经由既往"辅助检查手段"转变为现代医学最重要的临床诊断和鉴别诊断方法,使多种疾病的诊断更准确、及时。由于介入医学的兴起,医学影像学已经集诊断和治疗为一体,成为与外科手术、内科化学药物治疗并列的现代医学第3大治疗手段。目前,医学影像学科是现代化医院的支柱之一,影像学设备的价值占医院固定资产50%以上,医学影像学为临床医学的主要研究手段和推动现代医学不断发展的动力。
医学影像学是高新技术与医学的结合点,21世纪医学影像学发展首先依赖于以计算机为主导的高新技术的进步。由于计算机的性能以几何级数升级,必将带动多种医学影像学设备向小型化、专门化、高分辨率和超快速化方向发展,医学影像学检查亦将由大体水平逐渐深入至细胞、受体、分子和基因水平。近年来,美、欧、日等发达国家和地区在医疗影像诊断产业加强战略布局,旨在带动多种医学影像设备向小型化、专门化、高分辨率和快速化方向发展。目前,数字医疗影像技术的发展主要有如下几大趋势:
现代医学影像设备的发展将由最开始的形态学分析发展到携带有人体生理机能的综合分析。通过发展新的工具、试剂及方法,探查疾病发展过程中细胞和分子水平的异常。这将会为探索疾病的发生、发展和转归,评价药物的疗效以及分子水平治疗开启崭新的天地。同时,由于造影剂是影像诊断检查和介入治疗时所必需的药品,未来针对特定基因表达、特定代谢过程、特殊生理功能的多种新型造影剂也将逐步问世。
物理学给人类提供了大量的物质财富,同时也提供了精神财富。物理学的高技术和强渗透性也使之成为社会发展的重要推动力。下面是我为大家整理的物理学论文,供大家参考。
摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.
关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理
1引言
物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照教育部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程报告论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.
2物理学是科技创新的源泉
且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=9.11×10-31kg,电子荷电e=-1.602×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.
1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现笔记本电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为21.4千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.
20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.
1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在0.1-0.2mm;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.
2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(DavidJ.win-land),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].
2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.
3结语
论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.
参考文献:
〔1〕祝之光.物理学[M].北京:高等教育出版社,2012.1-10.
〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,2006.I-V1.
〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.
〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)
〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.
〔6〕姚启钧,光学教程[M].北京;高等教育出版社,2002.138-139.
〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,1979.182-183.
〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,2001.10-11.
一、全息教学在初中物理教学中运用的策略
1.运用全息理论,对初中物理教学课型进行合理选择与搭配
新课改以后,物理课堂教学由传统的讲授内容方面转变到物理的过程方面,其核心是给学生提供机会、创造机会。因此,在物理教学中,教师要善于运用全息教学理论,并根据学生的生活经验和已有的知识背景,对课型合理地选择与搭配,带领学生运用多种方法对物理知识进行重演在现,激励学生发现并提出问题,进而激发学生学习物理的兴趣,培养学生创新和探究能力。例如:在讲静电屏蔽时,首先带领学生对静电屏蔽进行了实验,并得到了正确的结果。突然有一个学生提出问题“:用电吹风吹头时,电吹风其对电视信号有影响,那么是不是静电屏蔽不完全成立?”于是带领学生们又做了如下实验:将一个手机放在一个密闭的纸盒内,用另一部手机呼叫,学生们听到了响声。再让同学思考,如果将手机放在前面做过实验的金属笼内,是否能听到铃声?多数学生根据静电屏蔽原理猜测肯定不能。然而将手机放进铁笼后,仍能听到铃声。学生们都感到疑惑,难道静电平衡理论有误?针对这种现象让大家思考了“静电”二字,然后向学生们解释手机信号是一种电磁波而不是静电,其属一种交变的电磁场,遇到金属网时,金属网会感应出同频率的电磁波,只是强度变小,因此在仍能听到笼中手机铃声,也解释了,也就解释了为什么吹风机对电视信号有影响。这样通过对物理知识重演再现与对比的方式,加深了学生对物理知识的理解,从而提高了教学质量。
2.运用全息理论,根据物理教材和学情选择合适的教学方法
在进行物理教学时,物理教材中的安排的知识点难易程度不同,如果各个知识点都按照相同的教学方法去讲解,容易理解的知识点学生会掌握的相对熟练,而对于相对较难的知识点,就可能会导致学生对其似懂非懂,这样就会不利于学生的学习。这样物理教师在运用全息理论时,不要一味的按照一个教学方法进行讲解要注意对教学方法的改变,使学生能够熟练地掌握知识点。另外,每个学生对于知识点的掌握情况不同,有些学生可能掌握的好一些,有些学生掌握的差一些,因此物理教师要根据学情来选择教学方式,既要照顾那些掌握知识差的同学,也要让掌握较好的同学能够学到更多的知识。例如,在向同学讲解“测量”的知识点时,对与学生来说这个相对知识点相对容易,在日常生活中很容易接触到,因此教师在运用全息教学论时,可以先向学生对所要内容的主旨,主要思路进行讲解,然后对主要知识点进行仔细讲解,经过这样的讲解,学生会很容易对测量知识进行掌握。而在向学生讲解“光学规律”时,学生对其中的规律和容易混淆,如果物理教师还按照讲解“测量”方法向学生进行讲解,学生就很难掌握。因此,教师要改变教学方法,既要向学生进行理论讲解,也要带领学生对个规律进行实验,通过实验加深学生对光学规律的理解,使学生对知识点能够更好地掌握。3.运用全息理论,根据知识内容和特点选择合适的评价方式在物理教学中,物理教师对学生的评价方式非常重要,有的评价方式会激发学生学习物理的知识的兴趣,而有的评价方式可能使学生受到打击,从而失去学习物理的兴趣。因此教师要合理的运用全息理论,并且根据知识内容和特点选择合适的评价方式,激发学生学习物理的兴趣。例如,在课堂上让学生回答问题时,学生回答对了要给与肯定的评价,而如果学生回答错了,要用积极的评价方式去评价,用全息理论去告诉他,其在探讨知识的过程中,没有选择正确的方式方法,让其用正确的方式再去进行探讨,这样既让学生知道了自己了不足,也对学生进行了鼓励学生,这样学生就会乐意去学习,从而大大地提高物理教学质量。
二、结束语
布拉格条件:
2d sin θ = nλ,
式中,λ为X射线的波长,λ=1.54056 Å,
衍射的级数n为任何正整数;
d和θ是对应的一组数据;当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到晶体或部分晶体样品的某一具有点阵平面间距d的原子面上时,就能满足布拉格方程或者布拉格条件,从而产生三维衍射,衍射强度用感光照片或者闪烁接收器等进行接收、从而获得一组X射线粉末衍射图或资料。
这是一个十分复杂的问题,但是布拉格、劳厄等简化了这个问题。在对衍射原理进行讨论或者对衍射谱图进行解析的过程中,引入了晶面间距d和衍射指数n的概念,于是使问题得到了简化。当把衍射指数指标化后,在布拉格方程中,一般可只取n=1,即都把衍射峰看作某晶面的一级衍射峰。 如440衍射斑点或衍射峰可以解析为110晶面的4级衍射贡献、或者220晶面的2级衍射贡献、或者440晶面的1级衍射贡献;待到指标化后,它只被看作440晶面的一级衍射。如此类推。
X射线衍射分析法进行物相分析时,常用照相法和衍射仪法获得样品衍射花样。它们都要遵循衍射原理,衍射原理中最重要的就是布拉格公式或布拉格方程。
厄瓦尔德反射球,可以用图解的方式解释衍射原理:
倒易点阵最重要的应用就是用厄瓦尔德反射球图解并阐述了衍射原理。调整一级布拉格公式2d sin θ = λ 为:
sin θ =λ/(2d) = (1/d)/(2/λ),
这个式子表明,一级布拉格公式的所有元素都可以集中到一个直角三角形,θ角的正弦可以表示为晶面间距d的倒数(1/d作θ角相对的直角边)与2倍波长λ倒数(2/λ作斜边)的商。
[图1 厄瓦尔德反射球]
图1是著名的Ewald反射球。以样品位置C为中心,1/λ为半径作圆球,入射X射线ACO(直径)的A、O两点均在球赤道圆上,设想晶体内与X射线AC成θ角的晶面(hkl)形成衍射线CG交赤道圆于G,则AG⊥OG。∠OAG=θ,OG=1/d。G点是符合布拉格方程的(hkl)晶面的衍射斑点,G点必在这个球面上。此球称为厄瓦尔德反射球。CG是衍射线方向,∠OCG=2θ是衍射角。G点还可以看作是以O点为原点的衍射面(hkl)的法线方向上的一点,该法线长度等于衍射面系列的晶面间距dhkl的倒数,不同于真实晶体的虚幻的点O、G及衍射面等组成了以晶体为正点阵的倒易点阵诸元素。O点是倒易点阵原点,OG是倒易矢量Hhkl。
单晶体的倒易阵是在三维空间有规律排列的阵点,根据厄瓦尔德图解可以领悟到单晶体的衍射斑点组成。粉末多晶体由无数个任意取向的晶粒组成,所以其某一确定值晶面(hkl)的倒易点如(110)在三维空间是均匀分布的,所有晶粒这些倒易点的集合构成了一个以O为球心、半径为1/dhkl(=Hhkl)的倒易球壳,显然这个倒易球壳来源于那个{hkl}晶面族的衍射。不同晶面间距d晶面的衍射对应不同半径的同心倒易球壳,它们与反射球相交,得到一个个圆。以该圆为底面、以反射球心为顶点的旋转圆锥称为衍射圆锥或衍射锥,它的顶角夹角等于4θ。因为,当样品单晶旋转时或样品是多晶体时,满足布拉格方程的倒易点阵点不仅是一个已标出的G点,而是以C为顶点、以CO为对称轴、以CG为母线的旋转圆锥面都是样品中一个(hkl)晶面系列的衍射方向,该旋转圆锥面的顶角为4θ,其与反射球交点轨迹就是G点所在的垂直于直径ACO的圆。
[图2 旋转晶体的倒易点阵]
这是(hkl)晶面等于某一组特定值时的情况。当(hkl)值换为另一组值,衍射面自然也变为另一组值,布拉格角θhkl随hkl值变换而不同于前一个θ角,衍射角2θhkl也随之改变,衍射斑点的位置也相应改变。晶面指数不是连续变化,衍射圆锥面也相应地断续发生。旋转晶体在其转轴[001]方向获得如图2的倒易点阵结构:以转轴为轴的以晶体处即反射球心为顶点的以2θ为半顶角的一系列不连续的圆锥面再与反射球的交线圆。这些圆平面垂直于纸面,故在纸面上投影画为直线。从中心向两侧分别标以l=0、±1、±2、……。用感光胶片在垂直于l轴或C*轴方向(*表示属于倒易点阵空间)接收,会得到一系列同心圆环(或称为德拜圆环)。放感光胶片到平行于l轴方向,接收到的由衍射锥留下的交线图案就是一系列类双曲线极限球。
图3是平板照相法(平面底片法)获得X射线衍射图原理的图解;感光胶片垂直于X射线摆放。图3中的样品就是无规取向聚甲醛POM。
这种照相法的优点是一次实验可获得较多的衍射记录。解析衍射图案可以获得样品的许多结构信息,如取向情况,结晶情况等。
园筒底片法(又叫回转照相法或旋晶法):
研究晶体结构时,特别是研究对称性较低晶体结构时,几乎总是使和易于处理和解析的单晶法。
回转照相法
单晶固定在测试头上射线束照射的中心位置,使某晶轴平行于旋转轴。感光胶片装在园筒形相盒内,相盒园筒的中心轴线与转轴重合。使用单色X射线,垂直地入射位于转轴上的单晶某轴。设该晶轴为C轴,单色光波长入是常数,则单晶衍射的反射球具有固定的半径1/λ。当单晶在其平衡位置附近不断地来回转动(回转或回摆)或单向转动时,倒易点阵也随之摆动或转动。一切能使感光胶片感光的衍射线必然满足
c(cosγ—cosγo)=lλ,
固晶轴与λ射线垂直,转动的衍射线集合组成了一套套同轴的L是层线数。圆锥面(特称劳厄锥),见图4。图4是回转照相、衍射劳厄锥、衍射底片层线晶胞参数求解图示图。λ射线所在的平面是一个大圆,在圆筒底片引发感光形成赤道线,指数为hko;在展开的相平面中是位于中央的水平真线,称为O级层线(l=0)。向上(或向下)依次是第1,2,…层线(指数分别为hk1,hk2等),它们与0层线都是互相平行的水平直线。
图5是多晶粉末德拜-谢乐照相法示意图。胶片贴内壁安装。粉晶圆锥衍射面被德拜-谢乐园筒形感光胶片所截,每个劳厄锥的截线都是一对关于X射线入射点为对称的弧线。
多晶粉末衍射仪法
衍射仪的接收器把获得的光的闪烁信号转化为强度输出,如果用X-Y型记录仪画出谱图,就是多晶粉末衍射谱。横坐标是衍射角(2θ);纵坐标是衍射强度
去 看看!找找!
good lucky!
可以到学校的图书馆的电子阅览室下载维普资讯网 特别多的