导数的具体应用
导数与物理几何代数关系密切.在几何中可求切线在代数中可求瞬时变化率在物理中可求速度加速度。导数亦名纪数、微商微分中的概念是由速度变化问题和曲线的切线问题矢量速度的方向而抽象出来的数学概念.又称变化率。
如一辆汽车在10小时内走了 600千米它的平均速度是60千米/小时.但在实际行驶过程中是有快慢变化的不都是60千米/小时.为了较好地反映汽车在行驶过程中的快慢变化情况可以缩短时间间隔设汽车所在位置s与时间t的关系为: s=f(t)
那么汽车在由时刻t0变到t1这段时间内的平均速度是:
[f(t1)-f(t0)]/[t1-t0]
当 t1与t0无限趋近于零时汽车行驶的快慢变化就不会很大瞬时速度就近似等于平均速度 。自然就把当t1→t0时的极限lim[f(t1)-f(t0)]/[t1-t0] 作为汽车在时刻t0的瞬时速度这就是通常所说的速度.这实际上是由平均速度类比到瞬时速度的过程 如我们驾驶时的限“速” 指瞬时速度。
1、导数的应用,300年前,就已经很成熟了,现在已经深入到各个领域, 已经是基本常识了,即使是工程设计上,只要涉及近似估计,都会用到。2、涉及的领域,涉及的课题,几千页的书,写上1000本,也是挂一漏万。稍微举例来说: 求速度、求速率、求加速度求动量、求功率、求电流强度、求温度梯度、求化学反应速度、求人口增长率、死亡率、求经济增长率、求电容、 求电感、求利润率、求通货膨胀率、求宇宙膨胀速度、求膨胀系数、算考古年代、算死尸的死亡时间、计算工件误差、计算精确范围、计算指标准确度、、、、、、、、、、、、三天三夜也说不完一个零头。3、专门研究导数的应用,如果要以导数研究作为课题,是称不上课题的, 因为在各行各业,导数能运用自如、出神入化者多如牛毛。即使有人研究,也必然是徒劳无功、遗笑天下。因为隔行如隔山,没有人精通百行,对业内人士来说是小儿科,可是对 业外人士来说,难如登天。一个学者费了九牛二虎之力可能以为有了天大发现,可是对于业内人士,可能早就是稀疏平常之事,甚至早就胜过百倍、千倍。
导数的应用如下:
导数是微分学的重要组成部分,是研究函数性质、曲线性态的重要工具,也是解决实际生活中某些优化问题的重要方法。探讨了运用导数求解实际生活中有关用料、成本、利润及选址方面问题的方法。
导数(Derivative)也叫微商,是一种特殊的极限,它反映了函数中因变量随自变量的变化而变化的快慢程度,是微积分中重要的基础概念是联系初等数学与高等数学的桥梁。
在研究几何、证明不等式等方面起着重要的作用,在探究函数性质、寻求函数极值与最值以及描绘函数图形等方面也起着重要的作用,同时,也为解决某些实际应用问题提供了重要的方法。
在实际生活中经常出现的一些谋求利润最大、耗材最少、或效率最高、位置最佳等与经济或科学研究有关的问题,这些问题称之为优化问题,如何找到解决该类问题的最佳方案是求解该类问题的关键,而利用导数就可以简捷地解决这些问题,从而真正解决我们的实际生活问题。
运用导数求解优化问题的方法与注意事项:实际生活中的优化问题,如选址最佳、用料最省、利润最大等问题,本质上就是最值问题,这些问题与求函数的最值问题有着密切的联系,而这些问题可以转化为函数问题,利用导数知识得以简捷的解决。
解决优化问题的方法:首先对现实问题进行分析,找出各个变量之间的关系,建立相对应的函数关系式,将实际问题转化为用函数表示的数学问题。
再结合实际情况确定自变量的定义域,创造函数在闭区间上求最值的情景,通过对函数求导、确定驻点和不可导点。
比较函数在区间端点、极值点和不可导点处的函数值,获得所求函数的最大(小)值,最后将数学问题回归到现实问题,根据数学问题的答案回答优化问题最佳方案或策略。
1、任何涉及到时间的瞬时变化率、空间的逐点变化率,都是导数的应用;2、具体而言,只要涉及到比值的物理量,都存在导数的运用。 例如: 速度、角速度、加速度、角加速度、功率、压强、电流强度、电动势、 比热、压缩系数、膨胀系数、、、、、、、、3、在任何自然学科、工程学科、经济学科、人文学科、、、、处处都是运用, 写上一千万本书,也是冰山一角。4、微积分在几百年前就已经非常成熟了,我们对微积分的理论建立,没有一丝 半毫的贡献。庞大的现代数学、科学、工程、经济理论的建立,与我们毫不 相干。一切的一切,我们只是学习别人的理论,迄今依然到处充满歪解。5、导数的学习、运用,在英美是从初中开始的。比我们的高三学生学的内容要 深、广很多;他们的高中课程是我们大一大二的内容。6、楼主的问题,是被教师忽悠了。这完全谈不上是论文,至多只是初中生的读书 心得。夸张成论文,显示出的是出题教师的低劣,是对学生的智力的毁灭。这 种教师,百分之一百万是滥竽充数、害人子弟的货色!为有这样的教师,感到悲哀,感到愤怒!为可怜的学生,感到绝望!
导数在生活中的应用如下:
导数是微分学的重要组成部分,是研究函数性质、曲线性态的重要工具,也是解决实际生活中某些优化问题的重要方法。探讨了运用导数求解实际生活中有关用料、成本、利润及选址方面问题的方法。
导数(Derivative)也叫微商,是一种特殊的极限,它反映了函数中因变量随自变量的变化而变化的快慢程度,是微积分中重要的基础概念是联系初等数学与高等数学的桥梁。
在研究几何、证明不等式等方面起着重要的作用,在探究函数性质、寻求函数极值与最值以及描绘函数图形等方面也起着重要的作用,同时,也为解决某些实际应用问题提供了重要的方法。
在实际生活中经常出现的一些谋求利润最大、耗材最少、或效率最高、位置最佳等与经济或科学研究有关的问题,这些问题称之为优化问题,如何找到解决该类问题的最佳方案是求解该类问题的关键,而利用导数就可以简捷地解决这些问题,从而真正解决我们的实际生活问题。
运用导数求解优化问题的方法与注意事项:实际生活中的优化问题,如选址最佳、用料最省、利润最大等问题,本质上就是最值问题,这些问题与求函数的最值问题有着密切的联系,而这些问题可以转化为函数问题,利用导数知识得以简捷的解决。
解决优化问题的方法:首先对现实问题进行分析,找出各个变量之间的关系,建立相对应的函数关系式,将实际问题转化为用函数表示的数学问题。
再结合实际情况确定自变量的定义域,创造函数在闭区间上求最值的情景,通过对函数求导、确定驻点和不可导点、比较函数在区间端点、极值点和不可导点处的函数值,获得所求函数的最大(小)值,最后将数学问题回归到现实问题,根据数学问题的答案回答优化问题最佳方案或策略。
函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到 ( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。
1、任何涉及到时间的瞬时变化率、空间的逐点变化率,都是导数的应用;2、具体而言,只要涉及到比值的物理量,都存在导数的运用。 例如: 速度、角速度、加速度、角加速度、功率、压强、电流强度、电动势、 比热、压缩系数、膨胀系数、、、、、、、、3、在任何自然学科、工程学科、经济学科、人文学科、、、、处处都是运用, 写上一千万本书,也是冰山一角。4、微积分在几百年前就已经非常成熟了,我们对微积分的理论建立,没有一丝 半毫的贡献。庞大的现代数学、科学、工程、经济理论的建立,与我们毫不 相干。一切的一切,我们只是学习别人的理论,迄今依然到处充满歪解。5、导数的学习、运用,在英美是从初中开始的。比我们的高三学生学的内容要 深、广很多;他们的高中课程是我们大一大二的内容。6、楼主的问题,是被教师忽悠了。这完全谈不上是论文,至多只是初中生的读书 心得。夸张成论文,显示出的是出题教师的低劣,是对学生的智力的毁灭。这 种教师,百分之一百万是滥竽充数、害人子弟的货色!为有这样的教师,感到悲哀,感到愤怒!为可怜的学生,感到绝望!
润色费用是按照字数来的,不同润色平台价位有一定差异。北京译顶科技价格比较合理,我就是在那边做的,没花多少钱你可以加速去知道了解下
最新官方消息:经济师分初、中、高、正高四个级别。2020年起初、中、高级全国统一考试,初、中、高级考试均设工商管理、农业经济、财政税收、金融、保险、运输经济、人力资源管理、旅游经济、建筑与房地产经济、知识产权等10个专业类别。考生在报名时可根据工作需要选择其一。正高级是由全国各省组织的,江西等省考试,一些省不考试。查阅详情可搜“高级职称论文郑密路航海路全国办、高级经济师学院郑密路航海路全国办、中国职称大学郑密路航海路全国办”,必搜最关键的“郑密路航海路”。一、初级经济师。每年全国统考一次。初级经济师报名条件:须具备国家教育部门认可的高中毕业(含高中、中专、职高、技校)以上学历。二、中级经济师。每年全国统考一次。中级经济师报名条件:具备下列条件之一者,可以报名参加中级经济专业技术资格考试:(一)高中(含高中、中专、职高、技校)毕业并取得初级经济专业技术资格,从事相关专业工作满10年;(二)具备大学专科学历,从事相关专业工作满6年;(三)具备大学本科学历或学士学位,从事相关专业工作满4年;(四)具备第二学士学位或研究生班毕业,从事相关专业工作满2年;(五)具备硕士学位,从事相关专业工作满1年;(六)具备博士学位。上述报名条件中有关学历或学位的要求是指经国家教育行政主管部门承认的正规学历或学位。报考人员参加工作年限和担任专业技术职务年限的计算截止到报考当年12月31日。三、高级经济师。是副高,级别相当于行政副县处级。正高级经济师是正高(有的省称为教授级高级经济师、研究员级高级经济师),级别相当于行政县处级。高级经济师(副高)考评程序:取得高级经济师(副高)要经过报考、考试、评审三个程序。(一)报考:高级经济师2021年报名工作计划时间各省各地有所不同,预计3月-5月将陆续完成高级经济师2021年报名工作。高级经济师的报考条件:具备下列条件之一者,可以报名参加高级经济专业技术资格考试:1.具备大学专科学历,取得中级经济专业技术资格后,从事与经济师职责相关工作满10年;2.具备硕士学位,或第二学士学位或研究生班毕业,或大学本科学历或学士学位,取得中级经济专业技术资格后,从事与经济师职责相关工作满5年;3.具备博士学位,取得中级经济专业技术资格后,从事与经济师职责相关工作满2年。取得中级经济师、中级会计师、中级统计师、中级审计师、其中之一的,符合以上学历、年限条件的,可以报名参加高级经济专业技术资格考试。注:取得房地产估价师、咨询工程师(投资)、土地登记代理人、房地产经纪人、银行业专业人员中级职业资格,可对应中级经济专业技术资格。 取得税务师、资产评估师,符合中级经济师规定的学历、年限条件的,也可对应中级经济专业技术资格。(二)考试。高级经济师资格评审实行考评结合的方式进行,考试科目为《高级经济实务》,考试题型是主、客观题结合,包括单选题、案例分析题、论述题三种题型。单选题20题*1分=20分,案例分析题55分,各科目题量不同,论述题1题25分。考试合格率60%-80%,考试加评审合格率40-60%,2021考试时间则定为6月19日,2021年高级经济师实行全国统一组织、统一大纲、统一命题的考试制度。高级经济师考试安排:高级考试在1天内分上、下午2个批次实施,各专业类别具体考试时间和批次划分视报名情况另行确定。2021年高级经济师考试时间表如下:批次 考试时间 考试科目1 9:00-12:00(3个小时) 《高级经济实务》(试题因专业而异)2 14:30-17:30(3个小时) 《高级经济实务》(试题因专业而异)。(三)评审。考试由全国统一组织,评审由各地执行,每个地区的政策略有不同。各省都发布了《评审条件》,本质是论文和业绩两项。1.论文。多省文件规定:中级以后在公开发行的省级以上学术刊物发表本专业论文三篇以上。论文查重率10-30%,中级以后发表的在高级经济师(副高)评审合格之前永远有效。未指定刊物名称。2.业绩。各省不同。四、正高级经济师。目前正高级经济师是各省独立组织考评的。正高级经济师一般采取评审方式,一般应具备大学本科及以上学历或学士以上学位,取得高级经济师职称后,从事与高级经济师职责相关工作满5年,方可参与正高级经济师资格评审。 领导说详情搜:中国职称大学郑密路航海路全国办(必搜最关键的“郑密路航海路”)、高级职称论文郑密路航海路全国办、高级经济师学院郑密路航海路全国办、高级农经师学院郑密路航海路全国办、高级会计师学院郑密路航海路全国办、高级审计师学院郑密路航海路全国办、高级统计师学院郑密路航海路全国办、高级政工师学院郑密路航海路全国办、高级工程师学院郑密路航海路全国办、高级教师学院郑密路航海路全国办、高级人力资源管理师学院郑密路航海路全国办等。
写毕业论文是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节。所以掌握毕业论文写作技巧变得尤为重要。
一、搞清楚论文的研究方法论文一定要先搞清楚研究方法,研究方法就是研究问题的角度。由于对于同一个研究方向,往往有很多种研究方法,刚开始研究时往往有些摸不着头脑,脑袋里面是浆糊,人云亦云,天天换方法。我有段时间就是不知道用什么方法好,总是换方法,到头来自己都头晕而且研究工作没有太大的进展。
二、掌握论文创作的深度论文一定要有必要的深度,没有必要深度也就泛泛而谈,空乏无物。论文的深度决定于你研究的深度,只有先通读尽可能多的相关研究方向的文章,搞懂这些论文所用的方法,记得摘录这些文章中提到了研究方法、研究的结论与不足之处。
三、论文要有创新点论文一定要有些创新点,其实创新点,我觉得倒是可 是换位思考,不求理论突破可以求算法改进,比如你可以修改一些算法让新的算法比已有算法更贴近工作的实际需求。
四、实验数据的重要性实验数据的整理是不能忽视的一环,因为在论文中必须用实验数据说话,必须证明新的思路比已有思路要好,新的软件算法比已有软件算法在时间、空间上有更多的优势。
写大学论文是每个大学生都需要经历的过程,只有通过了论文答辩才能真正毕业,那么如何写好大学论文,大学论文有哪些写作技巧呢,一起来学习一下吧。
一、选好题目
选题是毕业论文写作的第一步,同样也是最重要的一步,选题时最好选择比较热门的论题进行写作,一些特别难理解,比较冷门的题目不建议选,因为后期找资料论证很麻烦,最好的方法就是问导师,导师会根据每位学生推荐适合大家的选题,这样通过率也会更高。
二、论文写作
建议在写作时可以多采用副标题的形式,一般学校会要求按照统一的论文格式进行书写的,写的时候标题尽量要涉及论文的研究对象,内容和目的,这样写起来使论文看起来更加简洁明了,而且一些论证类的题目需要自己去收集数据进行论证才可以,只有简单的论述没有数据的话是很难通过的。
三、参考文献收集
在撰写论文的时候要以参考文献为基础,建议大家尽量多收集与本专业相关的资料,反复精读并提炼其中的论点,这样就可以保障自己在毕业论文写作时候有充足的写作资料,不至于无从下手,另外引用参考文献的时候一定要注意内容是否与自己的论文对得上,不要引用无意义的内容放在论文中。
四、研究方法选择
论文研究方法包括调查法、观察法、实验法、文献研究法、实证研究法、定量分析法、定性分析法、跨学科研究法、功能分析法、模拟法等等,不同专业和学科的论文研究方法不同,要结合自生专业、学科找到合适自己的研究方法。
五、论文查重
好的论文都是经得起重复率查重的,一旦重复率不达标,就要进行降重返修,而且一篇论文的完成往往都需要几次查重、修改才算过关。所以建议大家还是以自己撰写为主,可以适当借鉴,特别是论证类的论文,结论可以参考别人的,数据一定要自己收集的,这样才可以降低查重率。
大学高数论我知道怎么做
【摘 要】高等数学是高职院校的基础课程之一,本文以案例教学为载体,通过若干具体应用实例阐述了如何培养学生的数学应用能力和实践能力,从而更好地适应当前高等职业教育的发展,同时也指出了案例实施过程中一些需要注意的问题。 【关键词】案例教学法 高等数学 高等职业教育 应用能力 【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2014)30-0038-02 中国的高等职业教育于20世纪80年代正式纳入国民教育体系,成为中国高等教育事业的重要组成部分。经过若干年不断探索和总结,高职教育确立了培养生产、建设、管理、服务第一线的高素质、高级技能型专门人才的培养目标,确立了工学结合为其重要人才培养模式,并对课程体系进行了一系列各具特色的改革,取得了一些有价值的成果。 高等数学是一门重要基础课程,在信息时代大背景下,其数学思想和数学思维方法越来越受到各行各业的重视。在高职教育中,数学课程首先是为专业课程提供必要的数学基础,并在此基础上培养学生应用高等数学解决实际问题的能力和素养,概括来讲,就是“理解概念,联系实际,深化应用,提高能力”。然而,在高职教育从无到有,到遍地开花、蓬勃发展的这些年,高等数学的课程改革却是举步维艰,特别是在“如何培养学生应用数学、实践数学的能力和素养”这一点上,探索显得尤为艰难。有相当一部分学生觉得数学“学了不知道有什么用”“学完就忘”等,因此,如果要切实提高学生学数学的兴趣和用数学的能力,就必须想办法让学生“动”起来,而案例教学就是动态学习过程的一个良好载体。 案例教学法起源于20世纪初美国哈佛大学,即围绕一定的培训目的把实际中真实的情境加以典型化处理,形成供学生思考分析和决断的案例,通过独立研究和相互讨论的方式,来提高学生分析问题和解决问题的能力的一种方法,在当今世界的教育和培训中受到重视和广泛的应用。本文主要讨论若干应用实例在高等数学教学中的运用实践,旨在对如何提高学生的数学应用能力做一些探索。 实例一:割圆术 案例介绍:公元263年,中国古代数学家刘徽在《九章算术注》中给出了一种求圆面积的方法――“割圆术”,先作圆的内接正三角形,记其面积为S1,再作圆的内接正四边形,记其面积为S2…,一直下去,记圆的内接正n边形的面积为Sn,于是得到一个数列S1,S2…Sn…。当n无限增大时,Sn无限接近于圆的面积S。 案例实施:解决这个案例,学生大概需要分三步实现,流程如下: 案例应用:极限是微积分的基石,该案例的实施过程是极限应用的典型范例,后续无论是切线斜率问题(导数)还是曲边梯形面积问题(定积分),其推导过程都遵循了上述“建立函数表达式”――“将所求量表示为函数(数列)的极限”――“计算极限”这样的分析过程。 实例二:蜂巢结构 案例介绍:观察蜂巢的一个储藏室,它是中空的正六角形柱,而底部是由三个菱形面组成,交会于底部中心顶点G。著名天文学家马拉尔第观察到了作为蜂房底的3个菱形的钝角等于109°28′,锐角等于70°32′。 马拉尔第的结果引起法国著名的博物 学家雷奥姆的兴趣,他猜测蜜蜂选择 这两个角度一定是有原因的,可能就 是要在固定容积下,使表面积为最小, 即以最少的蜂蜡做出最大容积的储藏 室。这个猜测被瑞士数学家柯尼格从 理论上做了证明(他的计算结果与实测值仅差两分)。 案例实施:设正六边形的边长为2a,G到平面B1D1F1的距离为x,GC1=2y,实施流程如下: 案例应用:该案例是一个高等数学与数学建模相结合的最优化问题,主要通过“提炼模型”――“模型分析”――“模型求解”这样三个步骤实现,学生通过该案例的学习,可以体验将实际问题抽象为数学模型进而求解的一般过程,高等数学应用中很多实际问题,如“最优广告策略”“最省用料方案”等,都有类似的分析求解过程。 实例三:溶液混合问题 案例介绍:容器内盛有50升的盐水溶液,其中含有10克盐。现将每升含盐2克溶液以每分钟5升的速度注入容器,并不断搅拌,使混合液迅速达到均匀,同时混合液以每分钟3升的速度流出容器,请问任一时刻t容器中溶液的含盐量是多少? 案例实施:在案例中,盐水流入的同时也在流出,这是个动态问题,用初等数学的知识无法解决,可以通过建立微分方程来实现。 案例应用:这类溶液混合问题与著名的牛吃草问题(也称消长问题或牛顿牧场问题)具有同一动态属性,其某个特定量的动态变化速度是“消”“长”因素共同作用的结果。其他一些工程问题,如“抽水机抽水问题”等,也可以采用这样的思路求解。 英国数学家牛顿曾说:“在学习科学的时候,题目比规则还有用些。”案例教学通过为学生提供合理的数学教学情境,经过学生主观自觉的对比、归纳、思考、领悟、分析与决策,让学生在动手操作过程中综合运用课程知识,从而提高分析、解决问题的能力,是常规教学的一种有效补充。当然,案例教学也有局限性,如适合教学的案例较少、花费的时间较多、对教师的要求较高、效率有时较低等。特别是在案例的选取上,教师一定要注意把握尺度,案例太复杂,超出学生的能力范围,会打击学生的积极性;案例太简单,不能调动学生的兴趣,其理解、思维和分析能力也得不到很好的锻炼。此外,还要注意案例的生动性与数学知识点相结合。单调呆板的案例对学生来说与纯粹的数学知识无异,只有生动的、贴近生活的案例才可能调动学生的兴趣,但如果一味地追求案例的生动性而忽视了与数学内容的结合,那么通过案例教学提高学生应用数学的能力也就成了一句空话。 参考文献 [1]张家军、靳玉乐.论案例教学的本质与特点[J].中国教育学刊,2004(1):62~65 [2]郭德红.案例教学:历史、本质和发展趋势[J].高等理科教育,2008(1):22~24 [3]孙军业.案例教学[M].天津:天津教育出版社,2004 [4]陈卫忠、杨晓华主编.高等数学[M].苏州:苏州大学出版社,2012 [5]李心灿主编.高等数学应用205例[M].北京:高等教育出版社,1997
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。
一、高等数学在地方高等职业教育中遇到的问题及解决办法
(一)数学师资力量短缺,教师学历偏低
地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。
(二)学生对数学课重要性认识不够,学习热情不高
目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。
(三)高等数学课程设置不合理,教学与实际应用脱节
由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。
二、总结
高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。
一、网络教育高等数学的现状分析
1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。
2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。
二、网络教育高等数学的教学初探
教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:
1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。
2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。
1、任何涉及到时间的瞬时变化率、空间的逐点变化率,都是导数的应用;2、具体而言,只要涉及到比值的物理量,都存在导数的运用。 例如: 速度、角速度、加速度、角加速度、功率、压强、电流强度、电动势、 比热、压缩系数、膨胀系数、、、、、、、、3、在任何自然学科、工程学科、经济学科、人文学科、、、、处处都是运用, 写上一千万本书,也是冰山一角。4、微积分在几百年前就已经非常成熟了,我们对微积分的理论建立,没有一丝 半毫的贡献。庞大的现代数学、科学、工程、经济理论的建立,与我们毫不 相干。一切的一切,我们只是学习别人的理论,迄今依然到处充满歪解。5、导数的学习、运用,在英美是从初中开始的。比我们的高三学生学的内容要 深、广很多;他们的高中课程是我们大一大二的内容。6、楼主的问题,是被教师忽悠了。这完全谈不上是论文,至多只是初中生的读书 心得。夸张成论文,显示出的是出题教师的低劣,是对学生的智力的毁灭。这 种教师,百分之一百万是滥竽充数、害人子弟的货色!为有这样的教师,感到悲哀,感到愤怒!为可怜的学生,感到绝望!
大学高数论我知道怎么做
在物理中,比如说感应电动势的公式,有一个平均电动势的公式,就可以用导数求出它的瞬时电动势。其他还有很多应用的。貌似有那么一本书就是专门说导数应用的。。。
我还在上高中,目前我们用导数一般都是求函数的值域,以及其单调性、极大值、极小值,还可以求函数上某一点的切线的斜率,从而还能求过这个点的切线的方程!...
导数在实际生活中的应用
(一)导数在经济中的应用
导数在经济发展中具有重要的作用。随着经济的飞速发展,经济学家们面对共享经济下的各种复杂竞争,对其进行了深入研究。导数对于经济学的研究具有重要的意义,例如经济学中的边际问题、弹性问题等等都可以利用导数来解决。利用导数解决经济学中的一些复杂问题,能够将复杂问题简单化。导数是推动经济学发展的重要助推器,导数在经济学中的应用十分广泛。在经济管理中,我们可以利用需求函数来表示需求量和影响需求量的关系;如在研究商品供应量和商品价格的关系时,我们可以利用供给函数来表示。
(二)导数在物理中的应用
高中的物理学现象有时用导数来解决会更加简便化。从导数的定义看,用导数来表达物理规律更准确,更能使学生理解。导数的运用为物理学的研究提供了有力的方法,它也为我们学习物理提供了有利的途径,便于提高学生用数学思维来思考问题的能力。对于一些物理现象例如求最小拉力,最大速度等问题,我们都可以用导数来解决。例如物体重为G,停在滑动摩擦系数为U的水平面上,一人想用最小拉力F使木块沿水平面匀速运动,求最小拉力F。
这时我们可以用导数来分析解决。我们可以找出已知量和未知量,然后建立一定的函数式,再求导数,代入数据求出物理量。当导数为0时解方程,将自变量代入,求最大值和最小值,最后得出最小的拉力F。由此我们可以看出导数在解决物理等现象时非常有用,而且简化了复杂的物理问题。