佼佼猪猪
1、乳化设备 制备乳状液的机械设备主要是乳化机,它是一种使油、水两相混合均匀的乳化设备,目前乳化机的类型主要有三种:乳化搅拌机、胶体磨和均质器。乳化机的类型及结构、性能等与乳状液微粒的大小(分散性)及乳状液的质量(稳定性)有很大的关系。一般如现在还在化妆品厂广泛使用的搅拌式乳化机,所制得的乳状液其分散性差。微粒大且粗糙,稳定性也较差,也较易产生污染。但其制造简单,价格便宜,只要注意选择机器的合理结构,使用得当,也是能生产出一般复合质量要求的大众化的化妆品的。胶体磨和均质器是比较好的乳化设备。近年来乳化机械有很大进步,如真空乳化机其制备出的乳状液的分散性和稳定性极佳。格里芬(Griffin)曾对不同类型乳化机与乳状液粒径大小分布关系进行过试验研究,其结果如下表。乳化设备与微粒粒径分布关系乳化机类型 微粒大小范围(微米) 1%乳化剂 5%乳化剂 10%乳化剂推进式搅拌涡轮式搅拌器胶体磨均质器 不乳化2-96-91-3 3-82-44-71-3 2-52-43-51-32、温度 乳化温度对乳化好坏有很大的影响,但对温度并无严格的限制,如若油、水皆为液体时,就可在室温下依借搅拌达到乳化。一般乳化温度取决于二相中所含有高熔点物质的熔点,还要考虑乳化剂种类及油相与水相的溶解度等因素。此外,二相之温度需保持近相同,尤其是对含有较高熔点(70℃以上)的蜡、脂油相成分,进行乳化时,不能将低温之水相加入,以防止在乳化前将蜡、脂结晶析出,造成块状或粗糙不均匀乳状液。一般来说在进行乳化时,油、水两相的温度皆可控制在75℃-85℃之间,如油相有高熔点的蜡等成分,则此时乳化温度就要高一些。另外在乳化过程中如粘度增加很大,所谓太稠而影响搅拌,则可适当提高一些乳化温度。若使用的乳化剂具有一定的转相温度,则乳化温度也最好选在转相温度左右。乳化温度对乳状液微粒大小有时亦有影响。如一般用脂肪酸皂阴离子乳化剂,用初生皂法进行乳化时,乳化温度控制在80℃时,乳状液微粒大小约-μm,如若在60℃进行乳化,这时微粒大小约为6μm。而用非离子乳化剂进行乳化时,乳化温度对微粒大小影响较弱。3、乳化时间乳化时间显然对乳状液的质量有影响,而乳化时间的确定,是要根据油相水相的容积比,两相的粘度及生成乳状液的粘度,乳化剂的类型及用量,还有乳化温度,但乳化时间的多少,是为使体系进行充分的乳化,是与乳化设备的效率紧密相连的,可根据经验和实验来确定乳化时间。如用均质器(3000转/分钟)进行乳化,仅需用3-10分钟。4、搅拌速度 乳化设备对乳化有很大影响,其中之一是搅拌速度对乳化的影响。搅拌速度适中是为使油相与水相充分的混合,搅拌速度过低,显然达不到充分混合的目的,但搅拌速度过高,会将气泡带入体系,使之成为三相体系,而使乳状液不稳定。因此搅拌中必须避免空气的进入,真空乳化机具有很优越的性能。
狐狸不会飞
、乳化设备的影响 衡量乳化沥青质量的一项重要指标是沥青微粒的均细化程度。均细化程度越高,乳化沥青的使用性能及贮存稳定性越好。均细化程度的高低与生产乳化沥青所用的核心设备一乳化机有直接关系,它是乳化设备的心脏。用乳化机破碎、分散沥青液相的过程是一个很复杂的力学作用过程,一般都是利用剪切、挤压、摩擦、冲击和膨胀扩散等作用完成沥青液相的粉碎分散,其性能的优劣对乳液的质量和稳定性有重要影响。目前,应用于沥青乳化的设备主要有三类。按照生产乳化沥青均细化程度由高到低的顺序依次为:胶体磨类乳化机、均化器类乳化机、搅拌式乳化机。因而,在购置乳化设备时应选择均细化程度高的乳化机,保证乳化沥青的生产质量和稳定性。2、乳化剂对稳定性的影响 乳化剂的种类、乳化剂的浓度以及影响乳化剂乳化作用的各种因素都会影响乳化沥青的稳定性。乳化剂本身就有快裂、中裂、慢裂三种类型。制备的乳化沥青也相应的分为快裂、中裂、慢裂三种。它们的稳定性逐次增强。用相同的乳化剂制备乳化沥青,由于所用乳化剂用量的不同,在一定程度上也影响乳化沥青的稳定性。随着乳化剂用量的增加,沥青微粒变小,沉降速度减慢,沥青微粒间的电位值增加,乳液的粘度升高,贮存的沉降值降低,进而乳液的质量和稳定性提高。但是,当乳化剂增加到一定量后,其稳定性不再发生明显的变化。因而,正确选择乳化剂适宜的用量范围,既保证了乳化液的质量和稳定性,又不造成经济上的浪费。3、基质沥青影响 基质沥青是乳化沥青最基本的成分之一,占总量的50%-70%。路用乳化沥青大多选用针入度为100-250()基质沥青。基质沥青的针入度,组成和化学结构对其乳化的难易有较大的影响。通常饱和分子含量高和酸值低的基质沥青较难乳化,要求乳化剂具有较长的烷基链。基质沥青的含量可以改变乳化沥青的粘度和其他性能,其含量越高,乳液的粘度越大,储存稳定性越好。4、PH值影响 乳液的PH值与其乳化稳定性和储存稳定性关系密切,不同类型乳化剂适应PH值范围不同,阴离子型乳化沥青需加入碱性化合物,如NaOH、KOH等,将乳液的PH值调节到10-12。对于胺型乳化剂水溶液,必须添加无机酸或有机酸才能溶于水。这是因为胺类化合物作为沥青乳化剂时必须先转化成胺盐,用不同的酸调整PH值,就能得到不同的HLB值(亲水亲油平衡值)的胺盐类沥青乳化剂,其最佳PH值在3-5之间。使用季胺盐类乳化剂时,添加无机酸或有机酸,可以增强乳化剂的活性,在提高乳化沥青的乳化稳定性和储存稳定性的同时,可以降低乳化剂的用量;用季胺盐类乳化剂制备乳化沥青时,其乳液的最佳PH值为5-6。5、温度的影响 沥青和水的温度是比较重要的工艺参数,温度过高或过低都将影响沥青的乳化效果。温度低了,流动性不好,过高,不仅消耗能源,增加成本,而且还会使水汽化,导致乳液的浓度变化,即沥青同水的比例发生变化,同时产生大量的气泡,降低产品质量,乳化沥青的稳定性下降。此外,对于非离子型乳化剂,随着温度升高,氢链逐渐被破坏,其亲水性下降,尤其是接近乳化剂的“浊点”时,乳液的稳定性明显下降。一般来说,沥青和水混合后的平均温度(即乳液温度)控制在80℃-70℃以下为好。6、储存温度 乳化沥青随着储存温度的升高,其稳定性越来越差,甚至会结团(块),这是由于乳液的水分不断蒸发,温度越高,蒸发的越快。尤以表层水分散失严重,明显改变油水比,使得表层破乳结皮,从而分层结团,内部乳液在较高温度下,沥青微粒布朗运动加快,微粒与微粒之间的碰撞机会增多,少部分乳液破乳,致使油水分离,从而影响产品质量。因此,产品生产出来后,要尽快将将乳液温度降下来,避免影响产品的储存稳定性。7、机械作用 在乳液存放,运转过程中的泵送、转移,以及在应用过程中的混合、处理等都会使乳液受到各种形式的机械剪切作用。这会给予沥青微粒相当大的能量,当这个能量超过了聚结活化能时,沥青微粒就会越过势能屏障,使乳液失去稳定性而发生凝聚。它会给乳液的生产、各种处理及应用带来困难,尤其是在需要直接利用乳液的场合,凝聚的结果就使其失去了使用价值。8、冻结及溶化 当乳液遇到低温条件时就会发生冻结,冻结和消融会影响乳液的稳定性。冻结的乳液消融之后,轻则造成乳液表面粘度升高,重则造成乳液的凝聚。故在运输或存放过程中应注意防冻。冻结之所以会影响乳液的稳定性,是因为水结冰后要发生膨胀,对聚集在冰晶之间的沥青微粒产生巨大的压力迫使其相互接近,最终聚结在一起。最常用的防冻措施是向乳液中加入防冻剂。最常用的防冻剂有甲醇、乙二醇及甘油等,这些物质可降低乳液的冻结温度。9、长期放置的影响 乳液在长期放置过程中由于布朗运动会发生沥青微粒之间的碰撞而导致凝聚。同时,由于重力的作用也会导致沥青微粒的沉降或升浮,而形成凝聚层。无论乳液具有多么高的稳定性,在长期放置过程中终将不可避免的形成不可逆的凝聚体而遭破乳。所以,对于乳液应规定存放期限。实践证明,乳液放置稳定性与沥青微粒的大小,体系粘度及环境条件等因素有关。 综上所述,乳化沥青是一种热力学不稳定体系,稳定性只是相对而言的,沥青乳液的破坏终究会发生,通过分析影响乳液稳定性的因素,意在乳液生产、储存、运转、使用过程中,尽量避开这些不利因素,保持乳液的相对稳定性。参考文献1、交通部阴离子乳化沥青课题协作组《阳离子乳化沥青路面》人民交通出版社北京1998.12、姜云焕《乳化沥青及稀浆封层施工技术汇编》交通部科技信息研究所培训中心北京3、曹同玉、刘庆普、胡金生《聚合物乳液合成原理性能及应用》化学工业出版社北京、任满年、柴志杰《沥青生产与应用技术问答》中国石化出版社北京
小虫超人HC
可能存在原因分析 变压器在故障下产生的气体在其内部会有一个传质过程。故障点产生的气泡会因浮力而上升,上升的过程中与附近油中已溶解的气体发生交换。气体溶解在油中,由于油的对流、扩散将气体分子传递给变压器油的各部分,热解气体溶解在油中的多少决定于气泡的大小,运动的快慢。气泡的运动与交换可以帮助我们了解故障的性质和发展趋势;当热解气体达到饱和时,不向外逸散,在压力、温度的条件下饱和油内析出的气体形成了气泡。在变压器运行时,受到油的运动、机械杂质振荡,电场的影响使气体在油中溶解度减小而析出气泡。如果把这一点考虑进去比较符合实际情况;变压器油中的气体是根据气相色谱仪进行检测的一种分析方法,能及早地发现充油电气设备内部存在潜伏性故障;变压器设备产气的故障分为过热和放电。过热包括低温过热、中温过热、高温过热。放电包含高能量放电:又称电弧放电。特征气体是乙炔和氢。低能量放电:又称火花放电,是一种间歇性放电故障。特征气体是乙炔和氢,总烃一般不高。局部放电:指液体和固体绝缘材料内部形成的一种放电现象。简称气泡放电。特征气体是氢组分最多;检测变压器油中溶解气体能检测出哪些气体超标,诊断变压器内部隐藏的故障。故障下产生的气体有一定的累计性。充油电气设备潜伏性故障所产生的可燃性气体溶解于油中,随着故障的持续,气体不断的产生、积累,最后析出气泡。所以油中故障点积累到一定程度是诊断变压器故障存在和发展趋势的一个依据;当变压器内部产生故障有气体析出时产生气体的速度要引起注意。正常情况下充油的电气设备在热和电场的作用下也会产生一些气体,但产气速率缓慢,设备运行时间不长,脱气后,油中含气量很低时不需要用产气速率来判断,以免产生误差。当设备内部存在故障时,运行中的变压器产生气体的速度加快; 对于充油的电气设备中溶解气体主要来源于空气的溶解,正常运行下产生的气体。故障运行下产生的气体。凡是变压器油枕用金属膨胀器(内部为不锈钢)容易与油反应,产生氢气超标的现象较高。绝缘材料在不同温度、能量的作用下也会产生气体。故障判断据表分析,只有氢含量超标,其它组分稳定,不具备过热和放电的条件。设备内部进水受潮或者固体绝缘中含有水分在电场的作用下都可产生大量的氢气。表1中可以看出随时间的增长氢含量下降,说明变压器内部无水分产生。表2中的常规试验各项指标合格表明:绝缘油中水分合格。也无杂质。而且相应的电气试验均合格,表明此绝缘油的物理性质和化学性质没有变,油质本身是合格的;结合以上实验的分析情况,用户积极与特变电工联系,基本判断变压器内部无故障,产氢原因不是变压器内部故障导致,而是因为变压器内部绝缘纸材质原因及气泡放电所致,随气泡量的减少,产氢量会趋于稳定。
网站首页校园新闻学校概况队伍建设教育科研德育在线招生专栏校园文化学生天地桃李芬芳百年春秋党团园地特色教育后勤保障友好往来民主法制教育资源 办学理念:以人为本 以
西藏,这个耸立于地球之巅、平均海拔4000余米的雪域高原,以其恢宏的气势傲然于世。千百年来,生活于这块高天厚土神奇大地上的藏门珞各族人民,创造了辉煌灿烂的西藏文
地形地貌:稳定 开阔 平坦气象条件:晴天多 灾害性天气少 社会经济发展水平高 航空需求量大经济开放水平高政局稳定国家政策支持环境优美人口稠密 运输量大 劳动力丰
镍冶金渣资源化利用现状分析论文 摘要:镍冶金渣作为重要的二次资源,含有铁、镍、铜等有价金属。随着镍需求量的增大,排放的镍渣也越来越多,若不能得到合理利用,既造成
温室气体而造成的,各种全球变暖背景下的极端气候影响在世界各地频频上演,暴雪、飓风、洪水、干旱……全球气候变暖还引起冰川崩塌消融、海平面上升、粮食减产、物种灭绝…