大胃王与王囡囡
参考文献是论文写作中可参考或引证的主要文献资料,不仅为论文写作提供了方便,同时也丰富了我们论文的内容。下文是我为大家搜集整理的关于化学论文参考文献范例的内容,欢迎大家阅读参考! 化学论文参考文献范例(一) [1]管用时.导线内交变电流趋肤效应近似分析[J].邵阳高专学报.1994(03) [2]李海元,栗保明,____,宁广炯,王争论,杨春霞.等离子体点火密闭爆发器中火药燃速特性的研究[J].爆炸与冲击.2004(02) [3]谢玉树,袁亚雄,张小兵.等离子体增强发射药燃烧的实验研究[J].火炸药学报.2001(03) [4]张洪海,张明安,龚海刚,杨国信.结构参数变化对等离子体发生器性能的影响[J].火炮发射与控制学报.2004(03) [5]孟绍良.电热化学炮用脉冲电源及等离子体发生器电特性的研究[D].南京理工大学2006 [6]戴荣,栗保明,张建奇.固体含能工质等离子体单药粒点火特性分析[J].火炸药学报.2001(01) [7]赵科义,李治源,吕庆敖,段晓军,朱建方.电爆炸金属导体在Marx发生器中的应用[J].高电压技术.2003(10) [8]弯港.基于格子Boltzmann 方法 的流动控制机理数值研究[D].南京理工大学2013 [9]李海元.固体发射药燃速的等离子体增强机理及多维多相流数值模拟研究[D].南京理工大学2006 [10]王争论.中心电弧等离子体发生器及其在电热化学炮中的应用研究[D].南京理工大学2006 [11]成剑,栗保明.电爆炸过程导体放电电阻的一种计算模型[J].南京理工大学学报(自然科学版).2003(04) [12]李海元,栗保明,____.膛内等离子体点火及燃烧增强过程数值模拟[J].爆炸与冲击.2002(03) [13]龚兴根.电爆炸断路开关[J].强激光与粒子束.2002(04) [14]戴荣,栗保明,宁广炯,董健年.SPETC炮等离子体发生器自由喷射放电特性研究[J].兵工学报.2001(04) [15]刘锡三.高功率脉冲技术的发展及应用研究[J].核物理动态.1995(04) 化学论文参考文献范例(二) [1] 林庆华,栗保明. 等离子体辐射对固体火药燃烧速度影响的研究[J]. 弹道学报. 2005(03) [2] 李倩,徐送宁,宁日波. 用发射光谱法测量电弧等离子体的激发温度[J]. 沈阳理工大学学报. 2011(01) [3] 狄加伟,杨敏涛,张明安,赵斌. 电热化学发射技术在大口径火炮上的应用前景[J]. 火炮发射与控制学报. 2010(02) [4] 杨家志,刘钟阳,牛秦洲,范兴明. 电爆炸过程中金属丝电阻变化规律的仿真分析[J]. 桂林理工大学学报. 2010(02) [5] 郭军,邱爱慈. 熔丝电爆炸过程电气特性的数字仿真[J]. 系统仿真学报. 2006(01) [6] 苏茂根,陈冠英,张树东,薛思敏,李澜. 空气中激光烧蚀Cu产生等离子体发射光谱的研究[J]. 原子与分子物理学报. 2005(03) [7] 李兵,张明安,狄加伟,魏建国,李媛. 电热化学炮内弹道参数敏感性研究[J]. 电气技术. 2010(S1) [8] 赵晓梅,余斌,张玉成,严文荣. ETPE发射药等离子体点火的燃烧特性[J]. 火炸药学报. 2009(05) [9] 杨宇,谢卫平,王敏华,郝世荣,韩文辉,张南川,伍友成. 含电爆炸元件电路的PSpice模拟和实验研究[J]. 高压电器. 2007(06) [10] 郝世荣,谢卫平,丁伯南,王敏华,杨宇,伍友成,张南川,韩文辉. 一种基于电爆炸丝断路开关的多脉冲产生技术[J]. 强激光与粒子束. 2006(08) [11] 伍友成,邓建军,郝世荣,王敏华,韩文辉,杨宇. 电爆炸丝方法产生纳米二氧化钛粉末[J]. 高电压技术. 2006(06) [12] 林庆华,栗保明. 高装填密度钝感发射装药的内弹道遗传算法优化[J]. 弹道学报. 2008(03) [13] 王桂吉,蒋吉昊,邓向阳,谭福利,赵剑衡. 电爆炸驱动小尺寸冲击片实验与数值计算研究[J]. 兵工学报. 2008(06) [14] 林庆华,栗保明. 电热化学炮内弹道过程的势平衡分析[J]. 兵工学报. 2008(04) [15] 蒋吉昊,王桂吉,杨宇. 一种测量金属电爆炸过程中电导率的新方法[J]. 物理学报. 2008(02) 化学论文参考文献范例(三) [1.] 詹晓北, 王卫平, 朱莉. 食用胶的生产、性能与应用[M]. 北京: 中国轻工业出版社, 2003. 20-36. [2.] O'Neill M A, Selvendran R R, Morris V J. Structure of the acidic extracellular gelling polysaccharideproduced by Pseudomonas elodea[J]. Carbohydrate Research, 1983, 124(1): 123-133. [3.] Jansson P. E., Lindberg B, Sandford P A. Structural studies of gellan gum, an extracellularpolysaccharide elaborated by Pseudomonas elodea[J]. Carbohydrate Research, 1983, 124(1): 135-139. [4.] Morris E R., Nishinari K, Rinaudo M. Gelation of gellan–A review[J]. Food Hydrocolloids, 2012,28(2): 373-411. [5.] Kuo M S, Mort A J, Dell A. Identification and location of L-glycerate, an unusual acyl substituent ingellan gum[J]. Carbohydrate Research, 1986. 156: 173-187. [6.] 张晨, 谈俊, 朱莉, 等. 糖醇对结冷胶凝胶质构的影响[J]. 食品科学, 2014. 35(9): 48-52. [7.] Kang K S, Veeder G T, Mirrasoul P J, et al. Agar-like polysaccharide produced by a Pseudomonasspecies: production and basic properties[J]. Applied and Environmental Microbiology, 1982. 43(5):1086-1091. [8.] Grasdalen H, Smidsr d O. Gelation of gellan gum[J]. Carbohydrate Polymers, 1987, 7(5): 371-393. [9.] 詹晓北. 结冷胶[J]. 中国食品添加剂, 1999, 2: 66-69. [10. ]孟岳成, 邱蓉. 高酰基结冷胶 (HA) 特性的研究进展[J]. 中国食品添加剂, 2008(5): 45-49. [11. ]Chandrasekaran R, Puigjaner L C, Joyce K L, et al. Cation interactions in gellan: an X-ray study of thepotassium salt[J]. Carbohydrate Research, 1988, 181: 23-40. [12.] Arnott S, Scott W E, Rees D A, et al. I-Carrageenan: molecular structure and packing ofpolysaccharide double helices in oriented fibres of divalent cation salts[J]. Journal of MolecularBiology, 1974, 90(2): 253-267. [13. ]Chandrasekaran, R., Radha A, and Thailambal V G. Roles of potassium ions, acetyl and L-glycerylgroups in native gellan double helix: an X-ray study[J]. Carbohydrate Research, 1992, 224: 1-17. [14.] Morris E R, Gothard M G E, Hember M W N, et al. Conformational and rheological transitions ofwelan, rhamsan and acylated gellan[J]. Carbohydrate Polymers, 1996, 30(2): 165-175. [15.] 李海军, 颜震, 朱希强, 等. 结冷胶的研究进展[J]. 食品与药品, 2006, 7(12A): 3-8.猜你喜欢: 1. 化学论文参考范文 2. 化学论文范文 3. 化学毕业论文范例 4. 化学毕业论文范文精选 5. 有关化学论文报告范文
三万英尺001
黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则°——°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 这里有一篇关于数学建模的论文,你也可以下载看一下:
正在参赛中,嘿嘿
摘要采用等体积浸渍-沉淀法制备了ZrO2/Al2O3、K2O-ZrO2/Al2O3、MgO-ZrO2/Al2O3、V2O5-ZrO2/Al2O3负载型复合载体,
随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。 《 化学工
随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视, 数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,
改革开放以来,我国化工行业发展迅速,为国民经济发展做出了重要贡献。同时,我国化工行业经营环境也日趋复杂,面临的风险和安全隐患也越来越大。下面是我为大家推荐的化工