• 回答数

    7

  • 浏览数

    160

李晓锦Baby
首页 > 期刊论文 > 数学研究对现实的意义论文

7个回答 默认排序
  • 默认排序
  • 按时间排序

樱桃香香

已采纳

研究性学习其本质是学生的教师的引导下进行有效的体验活动,从而利用推理、类比、分析等方法得出教学目标所要求的学习内容。本文根据研究性学习的含义,分别阐述了研究性学习在课堂开展的四个基本过程:准备阶段——体验阶段——探究阶段——分享总结阶段。能过多个教学中常见案例,把研究性学习方式与传统教学方式作对比,从而体现研究性学习的优势。关键词:研究性学习、体验、探究、分享、过程 新课程标准的提出到落实已有经过一段较长时间的实施期。在我市使用新教材进行教学已有四年之久了,而新课标的理念在教学中也真正的落到实处。这就为传统教学模式带来重大的冲击。从心理学的角度来看,不同的教学模式会导致不同的课堂气氛、师生关系、师生在课堂中的地位、学习模式等。在这个新时期,一种新的教学--学习方式产生了——研究性学习。研究性学习其本质是学生的教师的引导下进行有效的体验活动,从而利用推理、类比、分析等方法得出教学目标所要求的学习内容。以下是本人在教学过程中总结出来的一点经验,我认为开展研究性学习的课堂应该有以下几个步骤: 一、研究性学习以丰富的现实材料为基础(准备阶段) 数学是来源于生活,也用于生活的一种技能。在小学阶段,数学的生活性、实用性尤为突出。新课程标准明确提出,让学生学有用的数学。我们都知道任何的学习都要以生活经验、知识经验为基础,因此,教学的过程中,作为老师应该有意识地提出大量的现实材料,以为学生的学习打下基础。在教学时学生很多时候不能马上联想到与学习内容相关的内容,即使能列举出来,也未必是完整的,这时就要求老师要有这样的教学预设,并做好材料的准备。 如在教学一年级《找规律》一课中,课一开始的时候,我出示了大量的有规律的图片:如衣服或窗帘上的图案、路边花草的摆放、地砖的排列、节日的布置……,让学生感受到规律的美,在内心产生出想学规律、想创造规律的情感。如果没有这些准备,学生单纯根据课本的一张主题图来学习规律,相信后来的学习中学生是不会有研究规律的发生、发展的愿望了。 为教学提供丰富的现实材料不单单是为了引起研究的兴趣,它再是为了给研究性学习提供研究的材料。数学与物理有一个重大的区别,那就是物理只要证明某一现象存在就可以了成立了,而数学则需证明这一现在在任何情况、任何条件下都必须正确才成立,所以数学知识的研究是需要非常大的严紧性。在教学中,我让学生了解,别人说的不一定是正确的,即使是老师说的、书本说的需要经过自己的验证才能确定,这使学生有了研究的知识的精神。 如在教学一年级《0的认识》时,有一个知识点是任何数加0都是不变的。在传统的教学中,一般只会出示1到2条关于几加0的算式就可以告诉学生这一定律了。在研究性学习的指导下,我让学生看多幅关于几加0的图片,列出多条几加0的算式,学生在经历了这么多的算式对比后,再进行小组讨论,从而让任何数加0都是不变的规律由学生的口中说出。 知识由老师硬塞给学生,那么这些知识永远都还是老师的;而如果知识是自己研究出来的,好么这些知识永远都是自己的。 二、研究性学习以游戏、活动、实验等为主要形式(体验阶段) 研究性学习区别于传统教学的另一主要内容就是课堂的组织形式。研究性学习以游戏、活动、实验等方式为主,让学生在动手操作、体验活动中过程中把数学“做”出来。游戏、活动、实验都是一个体验的过程,有体验才能使思考更深入、更有根有据。体验的过程其实就是研究学习的过程,因此在教学中要有意识地开展有意义的体验活动。 如二年级的《角的认识》,其中有一个知识点的让学生理解角的大小与边的长短无关。我让学生用三角尺画出一个角(45度角),由于三角尺有大有小,学生画出来的角边的长短也不一样。然后学生可以去找,有没有与自己的角不一样大小的。在这样的实验下,学生发现,角的大小与边的长短无关。 又如在一年级《平面图形的认识》教学中,我以学生已有的对立体图形认识的经验为基础,让学生找出立体图形上的面,并把面“搬”出来得出平面图形。学生通过观察、讨论、交流、汇报……在立体图形上找到了各种平面图形,也找到了把面“搬”出来的方法。学生通过撕、画、剪等活动,做出了平面图形。在这个“做”的过程中,学生了解到了面从体中来,了解到几种平面图形的特征。利用活动使学生掌握了本节课所要求达到的教学目标。这其实就是一个研究的过程,根据困难、问题,积极地思考解决的方法,经过尝试——再尝试——到成功,学生感受到学习的乐趣,体验到知识获取的过程。 三、研究性学习以推理、类比、分析为手段(探究阶段) 每一个数学知识都不会是独立存在的,而是相互联系、互相转化的。有了研究材料,有了体验过程,不代表知识就能被“创造”出来的,这些都只是条件,必须要经过推理、类比、分析等方法去伪存真,得出知识的精粹。分析,把研究材料有条理地进行整理,思考其含义。推理,可以使研究材料知识化。类比,根据知识相同、相似的部分进行分类,后比较其差异,从而更好地掌握知识。 在二年级《找规律》教学中,我出示一组有规律的图案,然后推测这组图案未出示部分。学生根据已有条件找出图案的规律,然后进行推理,有根有据地说出原因,思考的方法。又如学习《三角形的边的规律》时,根据两点间直线距离最短,可以推理出两边之和大于第三边的规律。…… 如果学生能保持这种分析问题的策略、研究的精神,那尽管以后可能会把某些定律忘记,但还是可以再推算出来。 四、研究性学习以分享为课堂总结(分享总结阶段) 学习的后期,我们需要把知道进行总结整理。在研究性学习中以分享为主要形式。传统教学中,我们往往只关注到对知识技能的总结,而忽略了对过程方法、情感态度价值观的总结。而这些恰恰是新课程标准中对教学目标的三个惟度的要求。一节成功的课,不单是在知识技能方面对学生有提升,而应该是在各个方面上都对学生有一定的作用。以分享的方式或以对三个惟度的教学目标都能体现。以下是我在教学《解决问题》后的分享活动,我以几个问题逐层深入地学生总结整节课的收获,并简单分析学习了这节课后的作用: “闭上眼睛回忆这节课的过程。你认为自己最成功是什么?”(关于情感态度价值观的分享,让学生体验到成功,提升自己的价值,感受到数学学习的乐趣。) “如果以后现学到类似的问题,你会怎样解决?”(这是学法、知识、技能的总结,让学生思考这节课是怎样学的,学到什么,以后遇到这类问题也将可以用同样的方法解决。) “你认为在生活中,这些知识会用得上吗?哪能里会用到?”(突出数学的有用性、有效性。并把数学回归到生活之中,使学生跳出书本的框框,了解数学的用处。) 有效的分享对于一节课来说虽然只是一小部分,但它是作用十分重要,它能给课堂画龙点睛,把学生原来不够清晰的思路理顺,突显学生的成功,体现知识的现实意义。 研究性学习是一个过程,重视过程是它的一大原则。学生的学习是一个过程,它包括学习的准备、体验、思维、总结。每一部分都重要,每一个环节都是密不可分的,没有前一个阶段作铺垫,后一个阶段将无法实施。在这个过程中,学生学到的是学习的方法、数学地思考。这正好比“授人以鱼,不如授人以渔”,让学生掌握学习方法才是学习最核心的内容。只有自己研究出来的结果才是永难忘记的知识。

92 评论

aprileatapple

我也不会写......

342 评论

中国作家林建

在写论文的研究意义的时候作者要根据自己的选题来写,如下:

1、是前人没有研究过的,也就是说研究领域中一个新颖有意义的课题,被前人所忽略的。

2、前人有研究过,或者阐述过但阐述论证的不全面和有不足的地方,作者加以丰满,或者驳斥前人的观点。

总之就是,所写论文研究的意义一定要叙述的清晰并且是有一定的新意。次也要注意自己所使用的理论,是用什么理论证明此观点的,也要叙述清楚,否则难以有说服力。

而且在做文献综述和国内外研究水平的评价等也要有详实的根据,这样才能衬托出作者的选题的意义所在。

当然,研究的意义也就是为什么要研究、研究它有什么价值。所以要从现实的方面去进行论述,要写的具体点。这里,作者可以了解一下数学教学论文研究有什么意义。

其主要内容包括:

1、研究的有关背景课题的提出:即根据什么、受什么启发而搞这项研究。

2、通过分析本地的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。

论文作用

所谓撰写教育科研论文,就是在调查研究或实验的基础上,经过分析论证的深化认识过程,把研究成果文字化,形成论文或报告。

撰写教育科研论文是中小学教育科研活动的一个重要环节,其作用在于:

⑴、显示研究的水平与价值

⑵、提高研究者的研究水平

撰写科研论文,不仅是反映科研成果的问题,而且也是个深化科研成果和发展科研成果的问题,在撰写科研论文过程中,对实验研究过程所取得的大量材料进行去粗取精,实现由感性认识向理性认识的飞跃和升华,使研究活动得到深化,使人们的认识得到深化。

⑶、推广经验,交流认识

教育科研过程,是人们获得直接经验的过程。这种经过精心设计、精心探索而获得的直接经验不仅对直接参加者来说是十分宝贵的,而且对于所有教育工作者,对于人类整体认识的提高和发展都是十分宝贵的。

正如恩格斯所指出:“现代自然科学已经把全部思维内容起源于经验这一命题加以扩展,以至把它的旧的形而上学的限制和公式完全推翻了。

由于它承认了获得性的遗传,它便把经验的主体从个体扩大到类,每一个体都必须亲自去经验,这不再是必要的了;它的个体经验,在某种程度上可以由它的历代祖先的经验的结果来代替。”(《马克思恩格斯选集》3卷564页)可见,为了不同空间、不同时间人们交流认识,承接认识成果,必须搞好论文撰写。

⑷、推动教育科研活动自身不断完善

教育科研活动是个探索未知领域的活动,并无既定模式和途径可循,在一定意义上可以讲,教育科研活动均属创造性活动。为了保证教育科研活动越发卓有成效,为了给进一步开展教育科研活动提供可靠依据,在每一科研活动终端都撰写报告或论文是十分必要的。

117 评论

悠闲小猫

数学在人类文明的发展中起着非常重要的作用,数学推动了重大的科学技术进步。但在历史上, 限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现。数学为人类生产和生活 带来的效益容易被忽视。进入二十世纪,尤其是到了二十世纪中叶以后,科学技术发展到这一步:数 学理论研究与实际应用之间的时间差已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化 和信息通道的大规模联网,依据数学所作的创造设想已经达到可即时试验、即时实施的地步。数学技 术将是一种应用最广泛、最直接、最及时、最富创造力和重要的实用技术, 一、数学与科学技术进步 二十世纪科学技术进步给人类生产和生活带来的巨大变化确实令人赞叹不已。从远古时代 起一直是人们幻想的“顺风耳”,“千里眼”,“空中飞行”和“飞向太空”都在这一世纪成为现实。回 顾二十世纪的重大科学技术进步,以下几个项目元疑是影响最大的,而数学的预见和推动作用是 非常关键。 (1)先有了麦克斯韦方程人们从数学上论证了电磁波,其后赫兹才有可能做发射电磁波的实 验,接着才会有电磁波声光信息传递技术的发展。 (2)爱因斯但相对论的质能公式首先从数学上论证了原子反应将释放出的巨大能量,预示了 原子能时代的来临.随后人们才在技术上实现了这一预见,到了今天,原子能已成为发达国家电 力能源的主要组成部分。 (3)牛顿当年已经通过数学计算预见了发射人造天体的可能性,差不多过了将近三个世纪, 人们才实现了这一预见。 (4)电子数字计算机的诞生和发展完全是在数学理论的指导下进行的。数学家图灵和冯诺依 曼的研究对这一重大科学技术进步起了关键性的推动作用。 (5)遗传与变异现象虽然早就为人们所注意。生产和生活中也曾培养过动植物新品种。遗传 的机制却很长时间得不到合理解释,十九世纪60年代,孟德尔以组合数学模型来解释他通过长 达8年的实验观察得到的遗传统计资料,从而预见了遗传基因的存在性。多年以后,人们才发现 了遗传基因的实际承载体,到了本世纪50年代沃森和克里发现了DNA分子的双螺旋结构。这以 后,数学更深刻地进入遗传密码的破译研究。 数学是人类理性思维的重要方式,数学模型,数学研究和数学推断往往能作出先于具体经验 的预见。这种预见并非出于幻想而是出于对以数学方式表现出来的自然规律和必然性的认识,随 着科学技术的发展,数学、预见的精确性和可检验性日益显示其重意义。 二、时代大潮的潮头 我们面临一个科学技术迅猛发展的时代。信息的数字化和信息的数学处理已经成为几乎所 有高科技项目共同的核心技术。从事先设计、制定方案,到试验探索、不断改进,到指挥控制、具体 操作,处处倚重于数学技术。众多新闻报道反映出这一时代大潮汹涌澎湃的势头。下面列举的仅 仅是其中一小部分。 (1)数学技术已经成为工业新产品研制设计的重要关键技术。1994年4月9日,被称为“百 分之百数字化确定”的波音777型飞机举行盛大隆重的出厂典礼.在过去,进行新机型设计,必须 对模型构件和样机反复作强度试验和空气动力学性。:试验。稍有不妥,就必须改变设计再来一轮 试验。新机种的研制周期长达十余年,消耗大量原材料和能源,采用了数学技术以后,所有的试验 可以通过精确设定的数学模型在计算机中进行,探索和修改都可以通过数学指令去实现。新机种 的研制周期从十多年缩短到三年半,大幅度节约了原材料和能源。 (2)许多国家认识到,发展高清晰度电视是未来经济技术竞争的主战场之一。日本和美国都 投入大量资金和人力进行有关研究,日本起步最早,但所研究的是模拟式的;美国虽然起步稍晚, 但所研究的是数字式的。经过多年的较量,数字式研究以其高度优越性取得关键性胜利。1994年 2月24日《人民日报》报道:日本政府正式宣布,转向研究数字式高清晰度电视,承认数字式因其 优越性而得到世界多数国家赞同,很可能成为未来的国际标准。 应该指出,电视屏幕不仅是现代人们日常生活所不可缺少的,而且可能通过联网成为信息传 递处理的工作面。几乎所有重要的工作岗位都将与之有关。数学技术在如此重要项目的激烈较量 中起了决定作用。 (3)199=年的海湾战争是一场现代高科技战争,其核心技术竟然也是数学技术。这一事实引 起人们不小的惊讶。美国总结海湾战争经验得出结论是:“未来的战场是数字化的战争”。干扰和失真是电磁波通信的一大难题。早在六十年代太空开发竞争的初期,美国施行。‘阿波罗登登月计划时,就已经意识到:由于太空中过强的干扰,无论依靠怎样精密的电子硬件设备 ,也 无法收到任何有用的信息,更不用说操纵控制了,采用了信息数字化、纠错编码、数字滤波等一整套数学通讯技术和数学控制技术之后,送人登月的计划才得以顺利完成,二十年后,在海湾战争 中,多国部队方面使用这一套技术把对方干扰得既聋又瞎,却能让自己方面的信息畅通无阻。采 用精密酌数学技术,可以在短短数十秒的时间内准确拦截对方发射的导弹,又可以引导对方发射 导弹准确击中对方的目标。也正是这一套信息数字化的数学技术,在开发高清晰度电视的竞争中 取得压倒性的胜利。开发一种数学技术可以在,。此众多方面施展效用,足见数学的广泛适用性。 (4)1995年1月,在贩神大地震之后,美国利用数学模型进行地震预测,预告本世纪末加州南部可能发生大地震。 (5)1995年3月,我国中央人民广播电台宣布启用数字式转播方式,指出以前的模拟式转播 方式效果差,所以改用新的转播方式。 (6)1995年6月,欧州联盟开会研讨未来数字化通信的统一制式。 (7)1996年2月,我国电子工业部宣布“九五计划”开发重点:数字化信息技术。所订的两个重 点研制项目是:数字式高清晰度电视接受机样机和数字式激光盘。 (8)1996年4月,我国国家科委发布招标公告,正式宣布数字式高清晰度电视开发项目。 三、当代与未来的发展倚重数学 仅以几件事为例就能清楚地看到数学对当代人们的生产和生活所起的重要作用。当代的生 产和生活离不开石油,石油勘探和生产需要了解地层结构。多年以来已经发展了一整套数学模型 和数学程序。人们发射地震波,然后将各个层面反射回来的信息收集起来力。以数学处理,就能将 地层各个剖面的图像和地层结构的全貌展现出来。这已是目前石油勘探与生产普遍采用的数学 技术。无独有偶,涉及到人的生命也有类似的情况,医生需要了解病人躯体内部和器官内部的状 况与变异,以前的调光片将骨骼和各种器官全都重叠在一起,往往难以辨认)现在也有了一整套 数学方案。借助了精密设备收集射线穿透人体或核磁共振带出的信息力。以数学处理就能将人体各个削面的状况清晰地层现出来,需要了解哪个层面就可以调出哪个层面的图片来,关系到人们 的生产与生活,这样的例证很多很多。在涉及生存与发展的关键时刻,特别是在涉及人类命运的紧要关头,数学也起着非常重要的 作用。在进入本世纪最后十年的时候,美国国家研究委员会公布了两份重要报告《人人关心数学 教育的未来》和《振兴美国数学—— 90 年代的计划》.两份报告都提到:近半个世纪以来,有三个时 期数学的应用受到特别重视,促进了数学的爆炸性发展,“第二次世界大战促成了许多新的强有 力数学方法的发展……“由于苏联人造卫星发射的刺激,美国政府增加投入促进了数学研究与数 学教育的发展”,“计算机的使用扩大了对数学的需求”.在二次世界大战太平洋战场的关键时刻, 由于采用数学方法破译日军密码,美国海军才能在舰只力量对比绝对劣势的情况下,赢得中途岛 海战的胜利,歼灭日本联合舰队的主力,扭转整个太平洋战局。在关系人类命运的二次世界大战 中,美国几乎是整个反法西斯战线的后勤补给基地。到了反攻阶段,要组织跨越两个大洋的大规 模行动,物资调运和后勤支援成了非常关键的问题,这刺激了有关数学方法的迅速发展。这期间 发展起来并且在战后迅速普及到各个方面的线性规划实用数学技术,为人类带来了数以千亿计 的巨大效益。到了1957年,苏联将第一颗人造卫星迭人太空,震撼了美国朝野。意识到有关数学 应用方面的差距,美国政府加大投入,促进了数学研究与数学教育的迅速发展,随着计算机的发 展,对数学有了空前的需求,刺激数学进入了第三个大发展的时期。 已经有了很多很多极有说服力的例证,说明无论在日常的生产和生活中,还是在涉及生存和 发展的关键时刻,数学都起着非常重要的作用,在新世纪即将到来之前科学技术和生产的发展对 数学提出了空前的需求,我们必须把握时机增大投入,加强数学研究与数学教育,提高全民族的 数学素质,才能更好地迎接未来的挑战。

348 评论

活着的梦想

好难写...不会...

159 评论

Q糖奶爸

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

185 评论

包子baozi2015

一、联系生活实际,引发问题——学现实的数学传统的数学观将数学看成一套已完成的严密的数学结论体系,而教师的任务又大都停留在忠实地教“数学(教科书)”,这就最终导致数学严重脱离实际,脱离学生生活。建构主义数学观认为,数学是一个活的、动态的、开放的数学活动。教师的主要工作是为学生的学习活动提供一个合适的环境,促进学生投入到教学活动中去,促进学生主动地建构知识。以此为出发点,则要求我们在设计课程内容时,要加强数学与学生生活和社会现实的联系,将数学与学生熟悉或感兴趣的问题有机结合起来,让学生真切感受到他们所学的数学是与当代社会生活密切相关的。例如,在数学人教版第十一册数学“求比一个数多(少)百分之几”的应用题时,笔者以备受学生关注的“世界杯”足球赛为题材组织教学:在多媒体播放巴西球星射门时激动人心的录像片断后,我及时抽取了近4届“世界杯赛”每届进球数这组信息制成统计表(见下表)在多媒体中出示供学生观察。在此基础上,启发学生提出用百分数表示表中两者关系的问题,现实的背景加上学生积极、灵活的思维,学生一下子提出了许多百分数问题。比较、分类后,抽取其中的“1998年进球比2002年多百分之几,2002年进球比1998年少百分之几”一组问题,即构成了本课要研究的重点。至此,学生经历了一个从现实背景中引发问题的过程,而真切地体验到数学与日常生活的密切联系,感受到数学的趣味和作用。年份20020进球(个)161 171141115 生活是数学的源泉,紧密联系生活的“源头性”的数学问题既能让学生感受到数学与生活的密切联系,更能激发学生强烈的探究兴趣。而要做到这一点,关键是教师首先自身要关注社会,关注学生生活,这样才能提出、提供生活中的现象和问题,并引导学生去观察、解释、探究。二、利用生活经验,主动建构——学有意义的数学构建智慧的重要基础,是人们已有的生活、学习经验。为此,建构主义教学论把“通过自己的经验主动建构”看成是其“灵魂”。还有学者认为。对小学生来说,小学数学知识并不是“新知识”,在一定程度上是一种“旧知识”,在他们的生活中已经有许多数学知识的体验,学校数学学习是他们生活中有关数学现象经验的总结与升华,每一个学生都从他们的现实数学世界出发与教材内容发生交互作用,构建自己的数学知识。鉴于学生并不是一张“白纸”,教学时,我们应充分利用其已有的学习、生活经验促使其主动建构。例如,教学“一个数加上或减去接近整百、整千数的速算”时,我充分利用学生生活中已有的购物付款时“付整找零”的经验,设计了这样一道生活情境题:“六·一”节,小明的妈妈带了136元钱去新华书店买了99元一套精装本的《上下五千年》,作为送给小明的节日礼物,妈妈可以怎样付钱,还剩多少元?讨论该题时,学生想出了很多办法,而首选的方法便是“先付100元,再用36元加上找回的1元钱”,而这恰恰就是“凑整简算”的思想,原先不易被同学们所理解的“思想”由于其生活经验的支撑得以主动建构。又如,“年、月、日”的教学,教学之前,学生在生活中已积累了年、月、日的许多“经验”,以此为起点,教学时,我让学生以小组为单位,先个人观察自己手中不同年份的年历卡,然后组内交流,自己发现问题,待组际汇报时,一年有12个月,月又分为31天的大月和30天的小月以及二月的天数等知识都已被同学们所理解和掌握,在此基础上我又出示了1990年至2000年来2月份的天数让学生作再次的研究和探索,四年一闰,以及判断平、闰年的方法又被同学们所发现。学习是经验的组织和重新解释的过程,而利用学生先前生活经验的学习则显得更积极、更主动,也更富有意义。三、应用生活现实,体现价值——学有用的数学荷兰数学家弗赖登塔尔在他的《作为教育任务的数学》中阐明:数学来源于现实,也必须扎根于现实,并且应用于现实。数学学习的最终目的还是看学生能否运用所学的知识去解决问题,尤其是一些简单的实际问题。所以,我们应及时提供把课堂上所学知识应用到实践中去的机会,让学生在应用中更深刻地理解和掌握数学知识,在应用中更深刻地感受数学的魅力,并通过应用促使学生更主动地观察生活中的数学,在学习和生活中更主动地运用数学。小学数学中,数学应用于现实的例子很多,如学习了《长方体的表面积》后,学生计算粉刷自己所在教室的总面积;学习《圆》《圆锥》后,引导学生测量、计算大树的直径与横截面的面积、沙堆、稻谷堆的体积和重量;学习《百分数的意义》后,引导学生收集日常生活和社会生活中的百分数材料,并通过数据对比、分析,了解社会的变化和进步;学习《比和比例》后,让学生测量、绘制学校平面图、家庭所在居委的示意图等等。这些活动大多可以在数学实践活动课上进行。需要提及的是,平时的数学课能否体现,又该怎样体现数学的应用价值呢?笔者认为,对课本例(习)题进行“生活化”处理,不失为既“经济”又“实用”的好办法,以人教版第十一册数学“工程问题”为例,在例题的教学并进行了适量的巩固练习后,我设计并出示了这样一道题:李军星期天进城买文具,所带的钱如果全部买笔记本,可以买10本,如果全部买铅笔,可以买15支,现在他先买了4本笔记本,剩下的钱还能买多少支铅笔?通过对该题的解答,既培养了学生灵活运用知识解决问题的能力,又使学生体验到用数学知识解决生活问题带来的愉悦和成功。

288 评论

相关问答

  • 研究高尔夫就业的现实意义论文

    有利于环境的改善美化城市环境。一些发达国家和地区的企业高层管理人员都十分热衷于高尔夫运动。许多跨国公司选择在中国投资、办实业,不仅关注中国的优惠政策和廉价劳动力

    TTTTTTTT醬 5人参与回答 2023-12-05
  • 论文研究目的现实意义怎么写

    问题一:研究目的和意义 目地:就是写你们为什么要研究或探讨、想要得出什么结论!;意义:就憨研究完以后得出的结论以及你们做完研究有什么收获。感想之类!总之最重要

    薄荷kokoro 6人参与回答 2023-12-07
  • 研究美学有何现实意义论文

    美学是研究人与世界审美关系的一门学科,即美学研究的对象是审美活动。审美活动是人的一种以意象世界为对象的人生体验活动,是人类的一种精神文化活动。 美学属哲学二级学

    卷毛咕咕 5人参与回答 2023-12-09
  • 扶贫研究论文选题的现实意义

    近年来我国大力推进精准扶贫,其中也离不开大学生做的贡献。现在不少大学生的暑假实习,都是去到贫困地区做支教,或者是去进行调研,比如说北京很多知名高校,都会要求学生

    左左颜色 5人参与回答 2023-12-09
  • 论文选题意义现实意义

    选题意义和目的一般作为开题报告里面的第一块内容,是阐述你所研究的这个选题有没有研究价值或者说讨论价值的,写开题报告的目的,其实就是要请导师来评判我们这个选题有没

    我是小鱼儿呀 3人参与回答 2023-12-12