Crystallam88
(1)斐波那契数列与排列组合
有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法。
这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……
1、2、3、5、8、13、21……所以,登上10级台阶总共有89种登法。
(2)斐波那契数列与与黄金分割的关系
有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割。
(或者说后一项与前一项的比值小数部分越来越逼近黄金分割、前一项与后一项的比值越来越逼近黄金分割),越到后面,这些比值越接近黄金比.
1÷1=1,1÷2=,2÷3=...,3÷5=,5÷8=,…………,55÷89=…,…………,144÷233=…,46368÷75025=…,...
(3)斐波那契螺旋线
以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线。自然界中存在许多斐波那契螺旋线的图案。
斐波那契数列在自然界的体现:
(1)树木的分叉
树苗在第一年后长出一条新枝,新枝成长一年后变为老枝,老枝每年都长出一个新枝,以后每个树枝都遵循这样的规律,于是第一年只有一个主干,第二年有两个枝,第三年三个,第四年五个,以此类推,每年的分枝数便构成了斐波那契数列。
(2)花瓣的数量
有很多花瓣也都遵循斐波那契数列,比如:兰花,雏菊,延龄草,野玫瑰,大波斯菊,金凤花,百合花,蝴蝶花,紫苑,南美血根草等等。
以上内容参考 百度百科-斐波那契数列
dp73239085
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
美妙琴色
费布拉切数列又称黄金分割数列,指的是这样一个数列:1 1 2 3 5 8 13 21.... 实现费布拉切数列的方法有两种,一种是以数组下标的形式,arr[i]=arr[i-1]+arr[i-2];arr[0]=1;arr[1]=0;代码:#include <>int main(){ int arr[12]; int i; arr[0]=1; arr[1]=1; for(i=2;i<12;i++) { arr[i]=arr[i-1]+arr[i-2]; } for(i=0;i<12;i++) { printf("%d ",arr[i]); } return 0;}第二种方法中使用了交换数的原理,f3=f1+f2;f1=f2,f2=f3代码:#include <>int Fib(int num){ int f1=1,f2=1,f3=2; if (num<3) { return 1; } else { num=num-2; while(num) { f3=f1+f2; f1=f2; f2=f3; num--; //printf("%d ",f3); } } return f3;}int main(){ int num=8; int ret=Fib(num); printf("%d",ret); return 0;}
出格范儿
众所周知,数列是数学知识中的一个重要环节,以具体问题为基础,进行答案的解析是数列学习中的一个重要部分,这就注定了数列是以解决实际问题为目的而存在的。数列在经济生活和资源计算等领域,有着广泛的使用,在解决投资分配、汇率计算、资源利用分配等方面问题中有着无可比拟,让我们亲身体验,培养乐于探究、努力求知的心理倾向,激发对探索和创新的积极欲望。(一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。(二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。(三)数列在艺术中的广泛应用把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是[5^(1/2)-1]/2,取其前三位数字的近似值是。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以来近似,通过简单的计算就可以发现: 1/ ()/ 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
大酸杏儿
斐波那契的生活应用:
斐波那契数列中的斐波那契数会经常出现在生活中,比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣)、蜂巢、蜻蜓翅膀、超越数e(可以推出更多)、黄金矩形、黄金分割、等角螺线、十二平均律等。
斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。
矩形面积的价值体现在很多方面,比如:
斐波那契数列与矩形面积的生成相关,由此可以导出一个斐波那契数列的一个性质。斐波那契数列前几项的平方和可以看做不同大小的正方形,由于斐波那契的递推公式,它们可以拼成一个大的矩形。这样所有小正方形的面积之和等于大矩形的面积。
在科学领域没有被广泛应用。
扩展资料:
斐波那契数列的特性:
从第二项开始,每个偶数项的平方都比前后两项之积少1,每个奇数项的平方都比前后两项之积多1。
如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。
斐波那契数列在自然科学的其他分:
有例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。
这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。
参考资料:百度百科-斐波那契数列
竹林轻舞
斐波那契数列的应用:斐波那契数可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。
叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。
斐波那契弧线
第一,此趋势线以二个端点为准而画出,例如,最低点反向到最高点线上的两个点。
然后通过第二点画出一条“无形的(看不见的)”垂直线。然后,从第一个点画出第三条趋势线:, 50%和的无形垂直线交叉。
斐波那契弧线,是潜在的支持点和阻力点水平价格。斐波那契弧线和斐波那契扇形线常常在图表里同时绘画出。支持点和阻力点就是由这些线的交汇点得出。
要注意的是弧线的交叉点和价格曲线会根据图表数值范围而改变,因为弧线是圆周的一部分,它的形成总是一样的。
大学高数论我知道怎么做
论文答辩发言稿篇一 尊敬的各位老师,亲爱的同学们:大家上午好!我是20XX学前的xx,我的毕业论文题目是《浅谈幼儿数学学习兴趣的培养》。我的指导老师是曾老师,在
点击下载海量动态PPT模板(多种风格模板 已分类,内容丰富) 提取码:2356
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题
无理数无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。 有理数是所有的分数,整数,它们都可以化成有限小数,或无限循