• 回答数

    6

  • 浏览数

    205

ryanhui123
首页 > 期刊论文 > 经典力学的发展历程论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

长亭不再送别

已采纳

。。。。牛顿算是经典力学的开创者吧,经典力学时从他的牛顿三大定律开始完善和被认可的。

201 评论

嘎嘎哈哈笑笑

力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!

浅析物理力学的产生及其发展

摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。

关键词:物理力学;产生;发展

一、物理力学发展需要解决的问题分析

在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。

在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。

针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。

在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。

还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。

二、新技术不断推动物理力学的发展

物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。

人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。

本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。

参考文献:

[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).

[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).

[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。

[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).

浅析力学在机械中的应用

[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。

[关键词]力学 弹性力学 断裂力学 工程力学 机械

力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。

一、力学

力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。

力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。

二、力学在机械中的应用

力学在机械中的应用广泛,其典型应用主要有以下几种:

1.弹性力学在机械设计中的应用

弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。

齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。

2.断裂力学在机械工程中的应用

断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。

首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。

其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。

再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。

最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。

3.工程力学在机械修理中的应用

工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。

三、结语

当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。

参考文献

[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).

[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).

[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).

[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).

247 评论

听风者三

牛顿与经典力学的建立吕增建焦作大学摘要 牛顿一是一位伟大的物理学家、数学家和天文学家。他在自然科学史上占有独特的地位。他的科学巨著《自然哲学的数学原理》的出版,标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了人类征服自然的无穷智慧, 对现代化科学技术发展和社会进步产生了极其深远的影响。关键词 牛顿经典力学贡献牛顿是伟大的物理学家, 在他所处的时代, 哥白尼提出了日心说, 开普勒从第谷的观测资料中总结了经验的行星三定律, 伽利略又给出了力、加速度等概念并发现了惯性定律和自由落体定律。但是, 这些物理概念和物理规律是孤立的, 在逻辑上是各自独立的东西。牛顿正是“ 站在这些巨人的肩上” 对行星及地面上的物体运动作了整体的考察和研究, 用数学方法, 使物理学成为能够表述因果性的一个完整体系。正如牛顿所说“ 自然哲学应称之为“ 物理学,’ 的目的在于发现自然界的结构和作用, 并且尽可能地把它们归结为一些普遍的法则和一般的定律—用观察和实验来建立这些法则, 从而导出事物的原因和结果⋯ ⋯” 牛顿对力学的研究成果集中体现在他的科学巨著《自然哲学的数学原理》以下简称《原理》中, 这本书是科学史上极为重要的伟大著作。牛顿在《原理》书中, 提出了力学的三大定律和万有引力定律, 对宏观物体的运动给出了精确的描述, 总结了他自己的物理发现和哲学观点。可以说在整个科学史上没有一部著作在创新或思维方面可以和该书相媲美, 在取得伟大成就方面也是如此。它不仅标志了十六、十七世纪科学革命的顶点, 也是人类文明进步的划时代标志, 它不仅总结和发展了牛顿之前物理学的几乎全部重要成果, 而且也是后来所有科学著作和科学方法的楷模。该书的出版, 标志着经典力学体系的建立, 立即作为新科学的经典著作而受到崇敬, 在科学发展史上建立了一个不朽的丰碑。划时代的巨著《原理》《原理》一书分为两大部分, 在第一部分中, 牛顿首先明确了当时人们常常混淆的几个重要概念, 如质量、惯性、外力、向心力、时间、空间等, 然后提出了运动的基本定理和定律, 即牛顿力学三定律, 力的合成与分解、动量守恒定律、质心运动定律、相对性原理以及力的等效原理等。这一部分虽然篇幅不大, 但它是全书的基础, 内容极为重要。第二部分是这些定律的应用, 又分为三篇, 前两篇是用演绎推理的方法导出了万有引力定律, 确定了这一定律的具体形式讨论了阻尼运动、流体动力学以及流体静力学等。在第三篇中, 用已发,第期吕增建牛顿与经典力学的建立现的规律解释宇宙体系, 研究天体的观测资料, 其中包括行星围绕太阳的运动, 卫星围绕行星的运动, 地面上物体的降落运动和抛射运动, 慧星轨道的确定, 岁差以及潮汐现象与万有引力的符合程度等, 首次把地上的运动与天体运动用数学方式联系起来。牛顿的时空观是绝对的, 它虽然不能正确揭示作为物质存在形式的空间和时间的统一性, 不能正确揭示物质和运动的统一性, 但它正确反映了当速度远低于光速时的经典理论的基础, 它是在当时实验条件下的科学总结, 是人类认识自然的一个里程碑。著名的牛顿三定律在明确了这些概念, 建立了时空观以后, 牛顿又精辟地阐述了著名的运动三定律。“ 定律工每个物体继续保持其静止或沿一直线作等速运动的状态, 除非有力加于其上迫使它改变这种状态。”“ 定律运动的改变和所加的动力成正比, 并且发生在所加的力的那个直线方向上。”“ 定律每个作用总有一个相等的反作用和它相对抗, 或者说, 两物体彼此之间相互作用永远相等, 并且各指其对方。”牛顿三定律是在观察和实验的基础上发现的, 已被公认为宏观自然规律, 并成为数学演绎的基础。第一定律是在伽利略、笛卡儿关于惯性定律的基础上建立起来的, 对当今的物理学家来说, 它几乎自然地成了力学的基础。第二定律是在明确了质量概念以后, 对伽利略动力学思想的发展, 它是运动三定律的核心。牛顿第一和第二定律是密切相关的。第一定律表明一个不受干扰力的质点保持它的原有的运动状态第二定律则表明, 力只能引起原有运动状态的改变。故这两个定律否定了伽利略—牛顿时代以前关于必须有力才能保持运动的错误观点。第三定律的指出, 可以说是牛顿对力学发展的一个最具创造性的独到的贡献, 这个定律的确立指出了每一个力都有其反作用力, 从而对力的概念作了完整的概括。这三个看起来非常简单的物体运动定律作为一个整体是动力学的基础。这个基础, 从牛顿奠定之后又成为近代动力学和天体力学研究的基本出发点, 因此得到物理学家, 甚至所有科学家和自然哲学家的极大重视。万有引力定律在引力问题上, 牛顿在观念上肯定了地球上的重力与天体间引力的同一性, 这在科学史上有特别重要的意义。他从建立总的力学体系出发, 排除次要因素, 发挥他高超的数学才能处理变量问题, 在前人已知引力平方反比定理的基础上, 把向心力与物体天体的质量联系起来,并利用了他的反作用定律, 从而推广为普适的万有引力定律峡。利用万有引力理论, 人们发现了海王星、冥王星, 解释了今后几百年内极多的地面现象与天体现象, 例如哈雷慧星、地球的扁形等。定律经过了实践的严格检验, 得到了全世纪的公认。直到今天, 万有引力定律仍是最精密可靠的基本定律之一, 也是天体力学和宇宙航行计算的基础。牛顿的功绩及经典力学的创立对现代科学发展的影响和启示恩格斯在谈到牛顿的成就时说, 牛顿“ 借助于万有引力定律而创造了科学的天文学, 借助于对光学的分解而创造了科学的光学, 借助于二项式定理和无穷级数理论而创立了科学的数学, 借助于对力的本性认识而创造了科学的力学” 。对牛顿的科学贡献作了极高的评价。牛顿是一位伟大的物理学家、数学家和天文学家。他一生的重要贡献是集十六、十七世纪科学先驱们成果的大成。以《原理》出版为标志创立了一个完整的经典力学理论体系, 把天地间万物的运动规律概括在一个严密的统一理论中, 正确地反映了宏观物体低速运动的宏观运动规律, 从而完成了人类文明史上第一次自然科学的大综合。以牛顿命名的力学是经典物理学和天文学的基础, 也是现代工程力学以及与之有关的工程技术的理论基础。此外, 为了说明天体现象和物理规律, 牛顿在数学上创建的微积分微积分之发明, 史学家也归功于莱布尼兹, 他们几乎同时创立了微积分学与微分方程, 为后来自然科学的发展提供了最为必要的思想工具和数学手段, 开创了数学发展的新纪元。同样, 牛顿在热学、光学、天文学等方面都做出了自己的卓越贡献。如同历史上一切伟大人物一样, 牛顿虽然对人类作出了巨大的贡献, 但他也不能不受时代的限制。他对那些暂时无法解释的自然现象归结为上帝的安排, 提出所谓“ 第一推动力” , 花费后半生的心血写出巧万字的神学著述。牛顿虽然有这样或那样的缺点或不足, 然而正是经典力学的建立表明了一个新时代和新科学文明的到来。牛顿是近代理论物理学的创始人, 他所建立的力学理论体系不仅能说明已有的理论已经说明的现象, 更重要的是, 经典力学理论能预见到新的物理现象和物理事实, 并能以天文观测或实验证实它们的正确性。诺贝尔物理学奖获得者杨振宁教授在谈到物理学发展时曾指出物理学发展的动力有两个, 一个是实验, 另一个是物理学本身的结构。理论物理学是以实验为基础的, 没有实验, 没有对客观现象的分析和研究就不可能有物理学的发展。和经典力学体系相应的是, 牛顿建立了研究自然科学的新方法。他站在巨人的肩上以培根的实验归纳方法为基础, 又吸收了笛卡儿的数学演绎体系, 形成了他的比较全面的科学方法通过实验和观察即分析现象, 然后加以概括和总结为普遍法则即综合方法, 启开了实验科学的大门, 使作为实验科学的物理学形成了一个光辉的体系。这已成为人类认识事物本质的智能体现和重要的方法论之一, 三百年来为自然科学的繁荣立下了不朽功勋。牛顿的经典力学体系和他的方法论使物理学在十八、十九世纪期间得以迅速发展, 并成为那时理论物理学的纲领或规范, 直到麦克斯韦电磁理论诞生, 人类对客观世界的认识扩展到电磁领域, 提出电磁场概念。这也可以认为是牛顿引力场理论的一次重大飞跃。量子力学和相对论的建立以及人们对自然过程的物理认识都可以看作是牛顿思想的一种系统的发展。牛顿是位伟大的科学家。他在自然科学史上占有独特的地位, 给两个多世纪的自然科学的内容和结构打上了自己的烙印。他的经典力学体系所奠定的物理基础和方法启迪了人们征服自然的无穷智慧, 二百多年来受到人们的高度崇敬。他的科学成就和哲学观点不仅对当时的学术界和思想界起着重大推动作用, 而且还影响了的后来的一些社会变革, 对现代化科学发展和社会进步都产生了极其深刻的影响。参考文献谷世义物理学史简编 天津和科学技术出版社,陈毓芳, 邹延肃物理学史简明教程 北京师范大学出版社,丁士章等简明物理学史 山西人民出版社,周培源在纪念牛顿《原理》三百周年大会上的讲话 物理通报, 钱令希等中国大百科全书物理学 中国大百科全书出版社,梅益等中国大百科全书物理学 中国大百科全书出版社,

107 评论

一个M精彩

牛根据前人研究总结出牛顿运动三定律(只有第三条是他自己的,前两条是伽利略的)万有引力定律(什么苹果掉下来之类的故事)微积分! 其实这个才是牛顿对经典力学的最大贡献。通过微积分牛顿一手从牛顿力学三定律出发构建了整个牛顿力学体系。也就建立了决定论/机械论的宇宙观。只要给定初态,以后宇宙的演化就是决定的。(牛顿本身的理论体系就是完整的,虽然后来拉格朗日和哈密顿各自提出了另一个等价体系,并且计算上更方便) 插曲(和莱布尼茨关于发明权的竞争)。天体力学 从理论上解释了开普勒三定律伽利略相对性原理(就是常用那个v'=v+v0) 绝对时间 绝对空间 上帝的第一推动力 弹力性质的研究 胡克定律(和胡克关于发明权的竞争,著名的站在巨人的肩膀上的真实版本,真相令人极为受打击)划时代的巨著 自然哲学之数学原理(哈雷的工作对于他的出版的推动)。牛顿和莱布尼茨以及胡克的两场著名的口水,个人认为他们的确都是独立同时得到自己的结果,但牛顿为了争发明权过于不择手段。穿插的几个小逸事其实算不上牛顿对经典力学的贡献。

250 评论

Z.L.小姐

年有春花秋实;日有昼夜交替;日月星辰,漫游苍穹;阳光雨露,滋润万物。 古代人类要掌握农事,辨别方向,处处离不开对日月星辰的观察。这些天体相对地球的运动是人类时刻碰到的机械运动。天文学由此诞生。在哥白尼创建日心说后,丹麦著名的天文学家、天文观测大师第谷·布拉赫经过对星体20多年精密观测,积累了有关行星运行的大量的珍贵资料。第谷的观测为开普勒发现行星运动定律作了准备。实践是检验真理的唯一标准,在托密勒的地心说与哥白尼的日心说两大体系之争的历史时期,第谷的精密观测为日心说的胜利打下的坚实的基础。开普勒利用第谷多年积累的观测资料,仔细分析研究火星的运行,发现了行星沿椭圆轨道运行。1609年他在《新天文学》中首先提出了“开普勒第一和第二定律”。第一定律又称椭圆轨道定律,定律指出:“所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上。”第二定律又称等面积定律,定律指出:“在行星运动时,联结行星和太阳的线,在相等的时间内,永远扫过同样大小的面积。”1619年,开普勒又在《宇宙的和谐》一文中,提出了第三定律,即周期定律,这一定律是:行星公转周期的平方与它们轨道半长轴的立方成正比。这几个定律也为牛顿发现万有引力定律,提供了理论基础。经典力学开始于伟大的意大利物理学家和天文学家,近代实验科学的奠基者、科学之父伽利略,他创建了一整套科学研究方法,这种科学方法把实验、物理思维和数学演绎三者巧妙结合起来,开辟了自然科学发展的道理。是他首先把实验引进物理学并赋予重要的地位,革除了以往只靠思辨下结论的恶习。他同时也很注意严格的推理和数学的运用,例如他用消除摩擦极限情况来说明惯性运动,推论大石头和小石块绑在一起下落应具有的速度来使亚里士多德陷于自相矛盾的困境,从而否定重物比轻物下落快的结论。这样的推理就能消除直觉的错误,从而更深入地理解现象的本质。伽利略论证了惯性运动,指出维持运动并不需要外力。关于运动,有一个基本问题,由于它太复杂,曾经长达几千年搞不清楚。很久以来,人们认为:要改变一个静止物体的位置,必须推它、拉它或提它。经验使人相信,要使一个物体运动得更快,必须用更大的力推它。“凡运动的物体必定有推动者推动。”古希腊哲学家亚里士多德如是说。伽利略在实验和观察的基础上,靠科学推理得出了正确的结论。他注意到,当一个球沿斜面向下滚动时会越来越快,向上滚动时会越来越慢,当球沿水平方向滚动时,速度应保持不变。但实际上,球在水平面上滚动一段路程后会停下来,伽利略认为这是由于物体和地面之间有摩擦的缘故。伽利略观察到,表面越光滑,摩擦作用越小,小球在水平面上滚得越远。设想有一个理想的光滑表面,没有摩擦,小球将作如何运动?伽利略的推论是:小球将永远滚下去。伽利略的正确结论,由牛顿总结为动力学的一条基本定律,称为牛顿第一定律:这就否定了亚里士多德的“运动必须推动”的教条。伽利略还论证了所有物体都以同一加速度下落。用实验研究了匀加速运动。提出了相对性原理的思想。伽利略还亲手制造和改进几具望远镜,并用来巡视星空。他发现所见恒星的数目随着望远镜倍率的增大而增加;银河是由无数单个的恒星组成的;月面上有崎岖不平的现象;金星也有圆缺的变化;木星有四个卫星。他还发现太阳黑子,并且认为黑子是日面上的现象,由黑子在日面上的位移,他得出太阳的自转周期为28天(实际上是天)。伽利略在介绍他这些新发现的两本书:《星际使者》(1610年)和《关于太阳黑子的书信》(1613年)中,都宣扬哥白尼的日心说。伽利略的《关于力学和局部运动两门新科学的谈话和数学证明》一书,奠定了经典力学中运动学与动力学的基础。此后,伽利略的科学研究方法广为流传,涌现了一批科学家(牛顿称他们为巨人),他们有:笛卡儿、惠更斯、莱布尼兹、波义耳、费马、帕斯卡、马略特、胡克、哈雷、格里凯等,他们对惯性、动量守恒、向心力、碰撞、钟摆等等的研究为牛顿的综合打下了基础。1661年,18岁的牛顿从中学毕业后考上了剑桥大学“三一学院”。他在大学的头两年里,除了学习算术、代数、三角以外,还认真学习了欧几里得《几何原本》,他又钻研笛卡儿的《几何学》,熟练地掌握了坐标法。这些数学知识,为牛顿后来的科学研究打下了坚实的基础。由于学习踏实认真,3年后被选为优等生,1665年毕业后留校。这年6月剑桥因瘟疫的威胁而停课,他回家乡一连住了20个月,这20个月的清静生活使他对在校所研究的问题有了充分的思考时间,因而成了他一生中创造力最旺盛的时期。他一生中最重要的科学发现,如微积分、万有引力定律、光的色散等在这一时期都已基本上孕育成熟。在以后的岁月里他的工作都是对这一时期研究工作的发展和完善。标志经典力学理论体系建立是牛顿巨著《自然哲学的数学原理》的出版,该书于1687年仲夏出版,受到学术界的赞颂,很快销售一空。在《自然哲学的数学原理》这部著作中,牛顿把伽利略提出的、迪卡尔完善的惯性定律写下来作为第一运动定律;他定义了质量、力和动量,提出了动量改变与外力的关系,并把它作为第二运动定律;他写下了作用和反作用的关系作为第三运动定律。第三运动定律是在研究碰撞规律的基础上建立的;而在他之前华里士、雷恩和惠更斯等人都仔细地研究过碰撞现象,实际上已发现了这一定律。他还写下了力的独立作用原理、伽利略的相对性原理、动量守恒定律。写下了他对空闻和时时间的理解,即所谓绝对空间和绝对时间的概念,等等牛顿三大运动定律总结提炼了当时已发现的地面上所有力学现象的规律。它们形成了经典力学的基础,在以后的二百多年里几乎统治了物理学各个领域。对于热、光、电现象人们都企图用牛顿定律加以解释,而且在有些方面,如热的动力论,居然取得了惊人的成功。牛顿定律至今仍是许多工程技术,例如航空航天、机械、土建等的理论基础。至此,经典力学理论体系的大厦巍然耸立。 理论力学是研究物体机械运动一般规律的科学。 所谓机械运动,是指物体在空间的位置随时间的变化。物质的运动有各种各样,它表现为位置的变动、发热、发光、发生电磁现象、化学过程,以至于人们头脑中的思维活动等不同的运动形式。机械运动是物质运动的最简单、最初级的一种形式,它是人们在生产和生活中经常遇到的。例如,各种交通工具的运动,机器的运转,大气和河水的流动,人造卫星和宇宙飞船的运行,建筑物的振动,等等,都是机械运动。 理论力学所研究的内容是以伽利略和牛顿所建立的基本定律为基础的,属于古典力学的范畴。十九世纪后半期,由于近代物理的发展,发现许多力学现象不能用古典力学的定律来解释,因而产生了研究高速物质运动规律的相对论力学和研究微观粒子运动规律的量子力学。在这些新的研究领域内,古典力学内容已不在适用。但是应该肯定,在研究速度远小于光速(30万千米/秒)的宏观物体的运动,特别是研究一般工程上的力学问题时,古典力学的足够准确性已为实践所证实。同时,在古典力学基础上诞生的各个新的力学分支正在迅速地发展。 远在奴隶社会时代,人们通过生产劳动,创造了一些简单的工具和机械(如斜面、杠杆等),并在不断使用和改进这些工具和机械中,积累了不少经验,从经验里获得知识,形成了力学规律的起点,我国古代在“墨经”、“考工记”、“论衡”和“天工开物”等书籍文献中,对于力的概念、杠杆原理、滚动磨擦、功的概念、材料的强度,以及天文学等方面的知识都有相当多的记载。由此可见,我国古代勤劳勇敢的劳动人民在很早就积累了丰富的力学知识。在欧洲,比“墨经”晚一些时期,相继出现了阿里斯多德的“物理学”和阿基米德的“论比重”等著作,奠定了静力学的基础。 欧洲在漫长的中世纪里,经历了黑暗的封建统治,生产力和科学的发展受到严重的阻碍。及至十五世纪的后半期,由于商业资本的兴起,手工业、航海工业和军事工业等都得到了空前的发展,从而促使力学和其他科学随之迅速发展。 在十六到十七世纪,力学开始形成一门独立的系统的学科。伽里略根据实验,提出了惯性定律的内容和加速度的概念,从而奠定了动力学的基础。在这个基础上,经过笛卡儿、惠更斯等的努力,后来由牛顿总其大成。牛顿于一六八七年在他的名著《自然哲学的数学原理》中,完备地提出了动力学的三个基本定律,并从这些定律出发将动力学作了系统的叙述。牛顿运动定律是整个古典力学的基础。 十八、十九世纪是理论力学发展成熟的时期,相继提出了重要的虚位移原理、达朗伯原理以及著名的拉格朗日方程,这时经动力学普遍方程为基础的分析力学发展起来了。十九世纪上半期,由于大量机器的使用,促使功和能的概念形成,并发现了能量守恒与转化定律。这个定律不仅在工程技术问题中具有重大的意义,而且沟通了机械运动与其他形式的运动之间的联系。另外,在刚体动力学、运动稳定性和变质量质点动力学等方面也有许多重要的成就。

333 评论

姹紫嫣红NEI

经典与时代的批判----------经典力学的成就与局限性摘要:论述经典力学的成就,批判经典力学的绝对时间、绝对空间、引力本质、质量不变等观点,说明其应用范围及其与经典物理学的矛盾。关键词:空间 时间 引力的本质 质量 速度 能量 矛盾一、经典力学的成就经典力学的理论体系是以牛顿运动三定律为基础的。牛顿系统地总结了伽利略、开普勒和惠更斯等人的工作,得到了万有引力定律和牛顿运动三定律,于 1687年出版了《自然哲学数学原理》。这是牛顿的一部代表作,也是力学的一部经典著作。牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力等)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,建立了经典力学的完整而严密的体系,把天体力学和地面上的物体的力学统一起来,这是物理学史上第一次大的综合。所以,牛顿的《自然哲学数学原理》的出版,标志着经典力学体系的建立。这对科学发展的进程以及后代科学家们的思维方式产生了极其深刻的影响。牛顿力学的建立标志着近代理论自然科学的诞生,并成为其他各门自然科学的典范。二、经典力学的局限性创造历史的人们总是不可避免地要受到历史的制约,牛顿当然也不例外。由于受到时代的局限,牛顿创立的经典力学的基本概念和基本原理存在着固有的局限性,主要表现在以下几个方面:第一,引入了绝对时间、绝对空间等基本概念。按照牛顿的说法,绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而均匀地、与任何其他外界事物无关地流逝着。绝对空间就其本性而言,是与任何外界事物无关而永远是相同的和不动的。绝对运动是一个物体从某一绝对的处所向另一绝对的处所的移动。莱布尼兹、贝克莱、马赫等先后都对绝对空间、时间观念提出过有价值的异议,指出过,没有证据能表明牛顿绝对空间的存在。爱因斯坦推广了上述的相对性原理,提出狭义相对论。在狭义相对论中,长度和时间间隔也变成相对量,运动的尺相对于静止的尺变短,运动的钟相对于静止的钟变慢。在广义相对论中,时空的性质不是与物体运动无关的:一方面,物体运动的性质要决定于用怎样的空间时间参照系来描写它另一方面时空的性质也决定于物体及其运动本身。量子论的发展,对时间概念提出了更根本的问题。量子论的结论之一就是:对于一个体系在过去可能存在于什么状态的判断结果,要决定于在现今的测量中做怎样的选择。这种现在与过去之间的相互关系,是与因果顺序概念十分不同的,暗含于时间概念中的因果序列要求过去的存在应是不依赖现在的。因此,用时间来描述事件发生的顺序,可能并不总是合用的。空间与时间是事物之间的一种次序,但并不一定是最基本的次序,它可能是更基本的次序的一种近似。第二,牛顿虽然对引力的本质持审慎态度,但最终还是对它作了抽象的、纯粹数学形式的概括,把它实际看作是一种直接的、即时传递的超距作用力。爱因斯坦的广义相对论对万有引力做出一种解释,就是时空本身是有弹性的,可以弯曲、伸展。当一个有质量的物体置于某一空间时,空间就会弯曲变形,质量越大,空间弯曲变形就越严重。那么,空间为什么会在有质量的物体周围弯曲呢?爱因斯坦也没能给出答案。所以,爱因斯坦的弯曲空间理论也没有说明引力的本质是什么。量子力学关于电荷间的电磁力和强子间的强相互作用力的传递原理的解释也没有说明引力的本质是什么。认为引力是通过引力场或引力子来传递的观点也未得到肯定,因为,至今科学家也没有找到传递万有引力作用的引力子。第三、 在经典力学中物体的质量是恒定不变的,它与物体的速度或能量无关。在相对论中质量这一概念的外延就被大大地扩展了。.爱因斯坦著名的质能方程E=mc2使到原来在经典力学中彼此独立的质量守恒和能量守恒定律结合起来,成了统一的“质能守恒定律”,它充分反映了物质和运动的统一性。质能方程说明,质量和能量是不可分割而联系着的.一方面,任何物质系统既可用质量m来标志它的数量,也可用能量E来标志它的数量;另一方面,一个系统的能量减少时,其质量也相应减少,另一个系统接受而增加了能量时,其质量也相应地增加.爱因斯坦从力学的观点出发,考虑两个球体的弹性碰撞,利用动量守恒定理和相对论速度相加定理能够导出著名的质速度公式该式说明,物体的质量不再是与其运动状态无关的量,它依赖于物体的运动速度。运动物体速度为v时的质量为 ,式中m0为物体的静质量,当物体的速度趋于光速时,物体的质量趋于无穷大。第四,经典力学定律只适用于宏观低速世界,对于可与光速相比的高速情况和微观世界的适用问题,当时没有涉及也不可能涉及。第五,经典物理学与经典力学的潜在矛盾在经典物理学中,最难使人满意之处恐怕莫过于对光的描述了。如果微粒说是正确的,那么人们不禁要问,当光被吸收的时候,组成光的粒子变成了什么呢?而且为了既表示可称量物质又表示光,必须在讨论中引入不同的实体,这无论如何也不能使人心安理得。同样,纳入力学框架中的光的波动论也难以自圆其说。按照波动论,光被解释为充满宇宙空间的以太的振动。由于光是横波,因此以太必须具有承受切应力而不承受压应力的能力,又由于以太对可称量物质并不产生可观察到的阻力,它又必须具有极小的密度。为此,人们绞尽脑汁,臆想出种种以太模型。这种无所不能、无奇不有的以太反倒使人如堕五里雾中。经典力学的基本概念和基本原理在热力学中也遇到了一些麻烦。1865年,克劳修斯确立了热力学第二定律,该定律揭示出与热现象有关的物理过程具有不可逆性。在经典力学中,从来也未发现类似的情况,力学过程的可逆性是由普遍的力学原理做保证的。可是热力学第二定律也是普遍成立的,因此,这个矛盾是无法用力学的基本观念予以解释的。三、总结牛顿用自己毕生的精力,建起了一座科学丰碑,他的研究推动了人类文明的进程,它在宏观物理学的各方面所取得的成就就是极其广泛和辉煌的。然而创造历史的人们总是不可避免地要受到历史的制约,牛顿当然也不例外。由于受到时代的局限,牛顿在否定亚里士多德以来有关错误论述和含糊概念、创立牛顿力学的同时,也在其中隐含了自我否定的潜在因素。诚如恩格斯所说的:“凡在人类历史领域中是现实的,随着时间的推移,都会成为不合理的;因而按其本性来说已经是不合理的,一开始就包含着不合理性”。(《马克思恩格斯选集》第四卷)由于牛顿尽力把他的体系表现为由经验必然性所决定的,特别是由于经典力学在实践上的巨大成就,足以阻碍后人去思考那些基本概念和基本原理的先验特征,以至于在相当长的时期内,无论谁也没有想到,整个物理学的基础可能需要从根本上加以改造。事实上,物理学在每一个历史时期都有它自己的基本概念和基本原理,而继后的时期人们又往往夸大它们的作用,不适当地把它们误用到其所能及的范围之外。为了消除这种误用,每—个历史时期都需要一种新的启蒙,正是这种永不止息的启蒙精神,才使科学不致变为僵化的教条。参考文献:[1]经典场论 张启仁著 北京:科学出版社,2003[2]量子力学 井孝功著 哈尔滨:哈尔滨工业大学出版社,2004[3]空间:从相对论到M理论的历史 关洪著 北京:清华大学出版社,2004[4]时间 保罗•贝内特著;苏福忠译 上海:上海人民美术出版社,2003[5]狭义相对论 G.司蒂文逊;.凯尔密司特 上海:上海科学技术出版社,1963[6]相对论导引 赵展岳著 北京:清华大学出版社,2002[7]热力学 王竹溪著 北京:北京大学出版社,2005[8]物理学史 郭奕玲,沈慧君编著 北京:清华大学出版社,1993[9]大学物理.下 钟江帆主编 北京:高等教育出版社,2004

238 评论

相关问答

  • 机械制造的发展历程论文

    机械制造在一定程度上反映了一个国家的综合实力,我国是发展中国家,发展中科技进步、社会发展等方面都离不开机械制造。下文是我为大家整理的关于3000字机械类论文的

    doubledennis 2人参与回答 2023-12-06
  • 经典可持续发展论文题目

    经济学是研究人类社会在各个发展阶段上的各种经济活动和各种相应的经济关系及其运行、发展的规律的学科。那么经济学专业的论文选题怎么选呢?下面我给大家带来2021经济

    inesthreebears 3人参与回答 2023-12-11
  • 中国发展历程论文

    我的博客一直在讨论这个话题。

    cathy101012 6人参与回答 2023-12-06
  • 数学的发展历程大学毕业论文

    把数学的发展写下来。 数学──自然科学之父,起源于用来计数的自然数的伟大发明。 人类先是产生了“数”的朦胧概念。他们狩猎而归,猎物或有或无,于是有了“有”与“无

    反叛的路鲁修 3人参与回答 2023-12-08
  • 教育学的发展历程论文

    教育 学沉浮于中国近一个世纪多的历史,一路走来,也曾经迎来一批杰出的教育学家如蔡元培、陶行知、晏阳初、陈鹤琴、徐特立、杨秀峰等,他们倡导发动的教育实践改革运动

    温馨玫瑰 3人参与回答 2023-12-11