七彩娃娃豆
不是的。1、对评审非常不友好。某些论文作者中只给伪代码,但是用伪代码去复现论文的结果是很困难的。因为对于深度学习来说,每个细微的参数都很重要,一点差别就可能导致结果无法复现。而开放代码更容易让你的论文通过评审。从2019年开始,ICML增加了论文可重复性作为评审考察的因素。2、对科研人员不公平。一些科研人员无法获得大量的计算资源。如果某个大团队发布了一篇论文,而一个研究生需要用到其中的结果应该怎么办?指望他一个人复现上百人工程团队的的研究成果吗?这显然是不现实的。公开代码能让科研人员紧跟最新研究成果,对保持学术界的竞争力至关重要。
无可奈何需要
如何开启深度学习之旅?这三大类125篇论文为你导航(附资源下载) 如果你现在还是个深度学习的新手,那么你问的第一个问题可能是「我应该从哪篇文章开始读呢?在 G上
很多,没有明确数量。计算机视觉数据集1.MNIST2.ImageNet3.CIFAR4.COCO5.PASCALVOC6.FDDB。自然语言处理数据集1.SQu
小学深度就是奥数了,这个要看学生接受能力
不是的。1、对评审非常不友好。某些论文作者中只给伪代码,但是用伪代码去复现论文的结果是很困难的。因为对于深度学习来说,每个细微的参数都很重要,一点差别就可能导致