• 回答数

    5

  • 浏览数

    288

小皮球佳佳
首页 > 期刊论文 > 原子结构课程论文参考文献

5个回答 默认排序
  • 默认排序
  • 按时间排序

Jacksperoll

已采纳

玻尔原子模型的主要内容 玻尔的原子理论给出这样的原子图像: 1.电子在一些特定的可能轨道上绕核作圆周运动,离核愈远能量愈高; 2.可能的轨道由电子的角动量必须是 h/2π的整数倍决定; 3.当电子在这些可能的轨道上运动时原子不发射也不吸收能量,只有当电子从一个轨道跃迁到另一个轨道时原子才发射或吸收能量,而且发射或吸收的辐射是单频的,辐射的频率和能量之间关系由 E=hν给出。h为普朗克常数。h=×10^(-34)Js 玻尔的理论成功地说明了原子的稳定性和氢原子光谱线规律。 玻尔的理论大大扩展了量子论的影响,加速了量子论的发展。1915年,德国物理学家索末菲(Arnold Sommerfeld,1868-1951)把玻尔的原子理论推广到包括椭圆轨道,并考虑了电子的质量随其速度而变化的狭义相对论效应,导出光谱的精细结构同实验相符。[编辑本段]波尔模型的实验验证 1897年,美国天文学家皮克林在恒星弧矢增二十二的光谱中发现了一组独特的线系,称为皮克林线系。皮克林线系中有一些谱线靠近巴耳末线系,但又不完全重合,另外有一些谱线位于巴耳末线系两临近谱线之间。起初皮克林线系被认为是氢的谱线,然而玻尔提出皮克林线系是类氢离子He+发出的谱线。随后英国物理学家埃万斯在实验室中观察了He+的光谱,证实玻尔的判断完全正确。 和玻尔提出玻尔模型几乎同一时期,英国物理学家亨利·莫斯莱测定了多种元素的X射线标识谱线,发现它们具有确定的规律性,并得到了经验公式——莫塞莱公式。莫塞莱看到玻尔的论文,立刻发现这个经验公式可以由玻尔模型导出,为玻尔模型提供了有力的证据。 1914年,夫兰克和赫兹进行了用电子轰击汞蒸汽的实验,即夫兰克-赫兹实验。实验结果显示,汞原子内确实存在能量为的量子态。1920年代,夫兰克和赫兹又继续改进实验装置,发现了汞原子内部更多的量子态,有力地证实了玻尔模型的正确性。 1932年尤雷()观察到了氢的同位素氘的光谱,测量到了氘的里德伯常数,和玻尔模型的预言符合得很好。[编辑本段]波尔模型的推广 1916年,爱因斯坦(Albert Einstein,1879-1955)从玻尔的原子理论出发用统计的方法分析了物质的吸收和发射辐射的过程,导出了普朗克辐射定律。爱因斯坦的这一工作综合了量子论第一阶段的成就,把普朗克、爱因斯坦、玻尔三人的工作结合成一个整体。

182 评论

爱吃奶糖的鱼

1�人们对原子是否是组成物质的最小微粒这一古老的课题的进一步认识是从汤姆生发现电 子开始的.因为原子中出现了比原子更小的粒子,说明原子本身不是组成物质的最小微粒 .所以说电子的发现对揭示原子结构有其重大的意义,它是近代物理三大发现(X射线、放射 性、电子)之一.另外,电子发现的本身也是一个很好的培养学生分析问题和解决问题的内 容.为了突出电子发现的重大意义,讲清电子发现的过程,同时也为了理清思路,不在某一问题上花费更多的时间,教材将电子的发现作为阅读材料放在后面,希望教师能给予充分的 重视.� 2�由汤姆生发现电子后提出“枣式”原子模型,到卢瑟福提出“核式”结构原子模型,直至玻尔把量子说引入核式结构的原子模型,提出原子的量子态理论,这其中存在着一系列发现问题→提出新的假说的过程,这对培养学生的逻辑推理能力和掌握科学的分析问题和解决 问题的方法都是很有益的.为了引导学生思考、活跃学生的思维,教材在课文中许多地方提 出了供学生思考的问题,希望能引起教师和学生的注意.这些思考题主要是为了引起学生的 思维、阐述自己的观点而设,并不要求问题一定要有一个唯一正确的答案.� 3�α粒子散射实验既是一个很重要的实验,也是一个锻炼学生分析问题、解决问题的很好 的知识点.学生通过对卢瑟福如何分析α散射实验、否定汤姆生的原子模型、提出自己的原子模型的了解,学习科学的方法,提高自己的能力.在分析卢瑟福的原子模型的困难时,要用到电学、力学和光谱发射的知识,其中有些知识学生没有学过.如根据经典电磁理论,绕核做加速运动的电子要向外辐射电磁波,电磁波的频率等于电子绕核旋转的频率等.这些知 识主要是为了说明卢瑟福的原子模型与经典电磁理论的矛盾,因此教学中可直接把这些知识介绍给学生,避免造成不必要的难点.� 4�玻尔的氢原子模型虽然不是最终的正确的模型,但是它在建立正确的原子模型过程中的功绩是不可磨灭的.它最大的功绩就是将量子概念运用在原子模型中,同时它在一定程度上反映了原子的真实情况,也比较适合中学生的理解能力和认识水平.因此,在玻尔理论的知识教学中,我们主要应把重点放在玻尔解决问题的思想上.� 5�原子理论的应用部分——激光,虽然是介绍性的,但是这部分知识却是近代物理中应用 比较广、生命力比较强的内容.讲好这部分知识对于培养学生理论联系实际、提高学生分析问题解决问题的能力以及增强学生学习物理的兴趣,都是很有好处的.�详细的可到百度百科看看

196 评论

品尝滋味real

简单地说就是原子核在中间电子绕核运动,只是电子运动不是像波尔描述的类似天体运动,而是由于电子具有粒子性和波动性(即波粒二象征)不能准确描述其运动轨迹就用电子云来描述(这就是著名的测不准原理),但用薛定谔方程能算出电子某一时刻的位置。电子运动由于具有的能量不同,因而分为KLMN电子层,每个电子层又分为spd等电子亚层电子依据能量最低原理在各自的轨道中运动差不多就是这样了 我知道的就这些了

307 评论

杨梅的果实000

人类对原子结构的认识过程19世纪初英国科学家Dalton J总结各种元素化合时的质量比例关系,提出了原子学说,他认为物质由原子组成,原子不能创造,也不能毁灭且在化学变化中不可再分割,它们在化学反应中保持本性不变。同一种元素的原子质量、形状和性质完全相同,不同元素的原子则不相同。他为原子描绘了一个最初的模型,并且合理地解释了化学反应所遵循的质量关系,从物质结构的微观角度揭示了宏观化学现象的本质。从Dalton J创立原子学说以后,很长时间内人们都认为原子就像一个小得不能再小的玻璃实心球,里面再也没有什么花样了。随着科学技术的发展,许多新的实验现象的出现,尤其是电子、X射线和放射性现象的发现,使人们修正了原子不可再分割的观念,进而探讨原子的组成及其内部结构的奥秘。1897年,汤姆逊在研究阴极射线的时候,发现了原子中电子的存在。这打破了从古希腊人那里流传下来的“原子不可分割”的理念,明确地向人们展示:原子是可以继续分割的,它有着自己的内部结构。原子中除电子外还有什么东西? 电子是怎么待在原子里的? 原子中什么东西带正电荷? 正电荷是如何分布的? 带负电的电子和带正电的东西是怎样相互作用的? 一大堆新问题摆在物理学家面前。根据科学实践和当时的实验观测结果,物理学家发挥了他们丰富的想象力,提出了各种不同的原子模型。行星结构原子模型 1901年法国物理学家佩兰提出的结构模型,认为原子的中心是一些带正电的粒子,外围是一些绕转着的电子,电子绕转的周期对应于原子发射的光谱线频率,最外层的电子抛出就发射阴极射线。 中性原子模型 1902年德国物理学家勒纳德提出了中性微粒动力子模型。勒纳德早期的观察表明,阴极射线能通过真空管内铝窗而至管外。根据这种观察,他在1903年以吸收的实验证明高速的阴极射线能通过数千个原子。按照当时盛行的半唯物主义者的看法,原子的大部分体积是空无所有的空间,而刚性物质大约仅为其全部的10-9(即十万万分之一)。勒纳德设想“刚性物质”是散处于原子内部空间里的若干阳电和阴电的合成体。 实心带电球原子模型 英国著名物理学家、发明家开尔文,原名汤姆孙,开尔文研究范围广泛,在热学、电磁学、流体力学、光学、地球物理、数学、工程应用等方面都做出了贡献。他一生发表论文多达600余篇,取得70种发明专利,他在当时科学界享有极高的名望。开尔文1902年提出了实心带电球原子模型,就是把原子看成是均匀带正电的球体,里面埋藏着带负电的电子,正常状态下处于静电平衡。这个模型后由.汤姆孙加以发展,后来通称汤姆孙原子模型。 葡萄干蛋糕模型 汤姆逊继续进行更有系统的研究,尝试来描绘原子结构。汤姆逊以为原子含有一个均匀的阳电球,若干阴性电子在这个球体内运行。他按照迈耶尔关于浮置磁体平衡的研究证明,如果电子的数目不超过某一限度,则这些运行的电子所成的一个环必能稳定。如果电子的数目超过这一限度,则将列成两环,如此类捱以至多环。这样,电子的增多就造成了结构上呈周期的相似性,而门得列耶夫周期表中物理性质和化学性质的重复再现,或许也可得到解释。 汤姆逊提出的这个模型,电子分布在球体中很有点像葡萄干点缀在一块蛋糕里,很多人把汤姆逊的原子模型称为“葡萄干蛋糕模型”。它不仅能解释原子为什么是电中性的,电子在原子里是怎样分布的,而且还能解释阴极射线现象和金属在紫外线的照射下能发出电子的现象。而且根据这个模型还能估算出原子的大小约10-8厘米,这是件了不起的事情,正由于汤姆逊模型能解释当时很多的实验事实,所以很容易被许多物理学家所接受。 土星模型 日本物理学家长冈半太郎1903年12月5日在东京数学物理学会上口头发表,并于1904年分别在日、英、德的杂志上刊登了《说明线状和带状光谱及放射性现象的原子内的电子运动》的论文。他批评了汤姆生的模型,认为正负电不能相互渗透,提出一种他称之为“土星模型”的结构——即围绕带正电的核心有电子环转动的原子模型。一个大质量的带正电的球,外围有一圈等间隔分布着的电子以同样的角速度做圆周运动。电子的径向振动发射线光谱,垂直于环面的振动则发射带光谱,环上的电子飞出是β射线,中心球的正电粒子飞出是α射线。 这个土星式模型对他后来建立原子有核模型很有影响。1905年他从α粒子的电荷质量比值的测量等实验结果分析,α粒子就是氦离子。 1908年,瑞士科学家里兹提出了磁原子模型。 他们的模型在一定程度上都能解释当时的一些实验事实,但不能解释以后出现的很多新的实验结果,所以都没有得到进一步的发展。数年后,汤姆逊的“葡萄干蛋糕模型”被自己的学生卢瑟福推翻了。 太阳系模型——有核原子模型 英国物理学家欧内斯特·卢瑟福1895年来到英国卡文迪许实验室,跟随汤姆逊学习,成为汤姆逊第一位来自海外的研究生。卢瑟福好学勤奋,在汤姆逊的指导下,卢瑟福在做他的第一个实验——放射性吸收实验时发现了α射线。 卢瑟福设计的巧妙的实验,他把铀、镭等放射性元素放在一个铅制的容器里,在铅容器上只留一个小孔。由于铅能挡住放射线,所以只有一小部分射线从小孔中射出来,成一束很窄的放射线。卢瑟福在放射线束附近放了一块很强的磁铁,结果发现有一种射线不受磁铁的影响,保持直线行进。第二种射线受磁铁的影响,偏向一边,但偏转得不厉害。第三种射线偏转得很厉害。卢瑟福在放射线的前进方向放不同厚度的材料,观察射线被吸收的情况。第一种射线不受磁场的影响,说明它是不带电的,而且有很强的穿透力,一般的材料如纸、木片之类的东西都挡不住射线的前进,只有比较厚的铅板才可以把它完全挡住,称为γ射线。第二种射线会受到磁场的影响而偏向一边,从磁场的方向可判断出这种射线是带正电的,这种射线的穿透力很弱,只要用一张纸就可以完全挡住它。这就是卢瑟福发现的α射线。第三种射线由偏转方向断定是带负电的,性质同快速运动的电子一样,称为β射线。卢瑟福对他自己发现的α射线特别感兴趣。他经过深入细致的研究后指出,α射线是带正电的粒子流,这些粒子是氦原子的离子,即少掉两个电子的氦原子。“计数管”是来自德国的学生汉斯·盖革发明的,可用来测量肉眼看不见的带电微粒。藉助于盖革计数管,卢瑟福所领导的曼彻斯特实验室对α粒子性质的研究得到了迅速的发展。 1910年马斯登来到曼彻斯特大学,卢瑟福让他用α粒子去轰击金箔,做练习实验,利用荧光屏记录那些穿过金箔的α粒子。这类实验,卢瑟福和盖革已经做过多次,他们的观测结果和汤姆逊的葡萄干蛋糕模型符合得很好。马斯登和盖革又重复着这个已经做过多次的实验,奇迹出现了!他们不仅观察到了散射的α粒子,而且观察到了被金箔反射回来的α粒子。在做了大量的实验和理论计算和深思熟虑后,他才大胆地提出了有核原子模型,推翻了他的老师汤姆逊的实心带电球原子模型。卢瑟福通过一系列核反应发现了质子也就是氢离子是一切原子核的组成成分,并预言了中子,中子后来由他的学生查德威克发现,并且最终确立了以质子和中子为基础的原子核结构模型。 汤姆逊原子模型不能解释α粒子散射,卢瑟福经过仔细的计算和比较,发现只有假设正电荷都集中在一个很小的区域内,α粒子穿过单个原子时,才有可能发生大角度的散射。也就是说,原子的正电荷必须集中在原子中心的一个很小的核内。在这个假设的基础上,卢瑟福进一步计算了α散射时的一些规律,并且作了一些推论。这些推论很快就被盖革和马斯登的一系列漂亮的实验所证实。 卢瑟福提出的原子模型像一个太阳系,带正电的原子核像太阳,带负电的电子像绕着太阳转的行星。在这个“太阳系”,支配它们之间的作用力是电磁相互作用力。他解释说,原子中带正电的物质集中在一个很小的核心上,而且原子质量的绝大部分也集中在这个很小的核心上。当α粒子正对着原子核心射来时,就有可能被反弹回去。这就圆满地解释了α粒子的大角度散射。卢瑟福发表了一篇著名的论文《物质对α和β粒子的散射及原理结构》。 卢瑟福的理论开拓了研究原子结构的新途径,为原子科学的发展立下了不朽的功勋。然而,在当时很长的一段时间内,卢瑟福的理论遭到物理学家们的冷遇。卢瑟福原子模型存在的致命弱点是正负电荷之间的电场力无法满足稳定性的要求,即无法解释电子是如何稳定地待在核外。玻尔模型 卢瑟福的理论吸引了一位来自丹麦的年轻人,他的名字叫尼·玻尔,在卢瑟福模型的基础上,他提出了电子在核外的量子化轨道,解决了原子结构的稳定性问题,描绘出了完整而令人信服的原子结构学说。 玻尔出生在哥本哈根的一个教授家庭,1911年获哥本哈根大学博士学位。1912年3-7月曾在卢瑟福的实验室进修,在这期间孕育了他的原子理论。玻尔首先把普朗克的量子假说推广到原子内部的能量,来解决卢瑟福原子模型在稳定性方面的困难,假定原子只能通过分立的能量子来改变它的能量,即原子只能处在分立的定态之中,而且最低的定态就是原子的正常态。接着他在友人汉森的启发下从光谱线的组合定律达到定态跃迁的概念,他在1913年7、9和11月发表了长篇论文《论原子构造和分子构造》的三个部分。 玻尔的原子理论给出这样的原子图像:电子在一些特定的可能轨道上绕核作圆周运动,离核愈远能量愈高;可能的轨道由电子的角动量必须是 h/2π的整数倍决定;当电子在这些可能的轨道上运动时原子不发射也不吸收能量,只有当电子从一个轨道跃迁到另一个轨道时原子才发射或吸收能量,而且发射或吸收的辐射是单频的,辐射的频率和能量之间关系由 E=hν给出。玻尔的理论成功地说明了原子的稳定性和氢原子光谱线规律。 玻尔的理论大大扩展了量子论的影响,加速了量子论的发展。1915年,德国物理学家索末菲把玻尔的原子理论推广到包括椭圆轨道,并考虑了电子的质量随其速度而变化的狭义相对论效应,导出光谱的精细结构同实验相符。 电子云模型20世纪20年代以来现代模型(电子云模型) 电子绕核运动形成一个带负电荷的云团,在一个确定电子的时刻不能精确测定电子的确切位置电子云是一种形象化的比喻,电子在原子核外空间的某区域内出现,好象带负电荷的云笼罩在原子核的周围,人们形象地称它为“电子云”。电子是一种微观粒子,在原子如此小的空间(直径约10-10米)内作高速运动,核外电子的运动与宏观物体运动不同,没有确定的方向和轨迹,只能用电子云描述它在原子核外空间某处出现机会的大小。电子云是近代对电子在核外空间分布方式的形象描绘,它区别于行星轨道式模型。电子有波粒二象性,它不像宏观物体的运动那样有确定的轨道,因此画不出它的运动轨迹。我们不能预言它在某一时刻究竟出现在核外空间的哪个地方,只能知道它在某处出现的机会有多少。科学技术的发展也宣告了一个新时代的到来。如果把量子力学的发展史分为三部分,1900年的普朗克宣告了量子的诞生,那么1913年的玻尔则宣告了它进入了青年时代。一个完整的关于量子的理论体系第一次被建造起来,现在,科学家已能利用电子显微镜和扫描隧道显微镜拍摄表示原子图像的照片。随着现代科学技术的发展,许多新的实验现象的出现,人类对原子的认识过程还会不断深化。同时,对原子结构的深入探索也会促进其它学科的发展,相信,我们将会看到科学发展的新时代。

187 评论

汀臭崽儿

古代希腊的原子理论 公元前 400 年,希腊哲学家德模克利特( Democritus ), 提出万物由原子产生的思想。 道尔顿( J. Dolton )的原子理论 19 世纪初,英国中学教师 J. Dolton 创立了原子学说,基本观点包括: ①一切物质都是由不可见的,不可再分的原子组成,原子不能自生自灭 ②同种类的原子具有相同的性质,不同的原子性质不同; ③每一种物质都由特定的原子组成。 卢瑟福( )的行星式原子模型 1911 年的 α 粒子散射实验,证实了原子中带正电的原子核只是一个体积极小,质量大的核,核外电子受原子核的作用而在核外围空间运动,就像太阳系中的行星绕太阳旋转一样,称为行星式原子模型。 玻尔的原子理论给出这样的原子图像: 1.电子在一些特定的可能轨道上绕核作圆周运动,离核愈远能量愈高; 2.可能的轨道由电子的角动量必须是 h/2π的整数倍决定; 3.当电子在这些可能的轨道上运动时原子不发射也不吸收能量,只有当电子从一个轨道跃迁到另一个轨道时原子才发射或吸收能量,而且发射或吸收的辐射是单频的,辐射的频率和能量之间关系由 E=hν给出。h为普朗克常数。h=×10^(-34)Js

271 评论

相关问答

  • 工程结构检测与鉴定结课论文

    土木工程结构检测技术发展状况探讨-摘要:本文基于工作实践,分析了目前土木工程中的主要结构检测技术,并着重介绍了在土木工程结构检测技术在发展过程中完善损伤判别的指

    放牧死亡 3人参与回答 2023-12-10
  • 国际结算课程论文参考文献

    小企业已成为我国外贸领域一支重要的力量,融资难是制约中小企业外贸业务发展的主要障碍。近年开展的国际贸易融资方式成为促进中小企业发展外贸业务的重要融资渠道。当前我

    Camillemcc 3人参与回答 2023-12-11
  • 地下工程结构论文相关参考文献

    [1]尤明庆.岩石的强度准则及中间主应力的影响.焦作工学院学报,2001,(6):474~478 [2]You Mingqing.True triaxial s

    我是蜜桃桃 3人参与回答 2023-12-09
  • 原子结构课程论文参考文献

    玻尔原子模型的主要内容 玻尔的原子理论给出这样的原子图像: 1.电子在一些特定的可能轨道上绕核作圆周运动,离核愈远能量愈高; 2.可能的轨道由电子的角动量

    小皮球佳佳 5人参与回答 2023-12-07
  • 原子结构毕业论文

    摘自: 毕业论文怎么做?一、标题 标题是文章的眉目。各类文章的标题,样式繁多,但无论是何种形式,总要以全部或不同的侧面体现作者的写作意图、文章的主旨。毕业论文的

    红豆呱呱 5人参与回答 2023-12-06