基因支持着生命的基本构造和性能。下面是我为大家精心推荐的关于基因的生物科技论文 范文 ,希望能够对您有所帮助。
基因研究
引起人们大惊小怪的,就是让父母能够有意识选择孩子遗传特性的技术。在可预见的未来,除了用基因方式医治少数遗传疾病,如囊肿性纤维化外,改变基因的成人还不可能出现。改变成人的基因还不是人们敢于轻易尝试的技术,要恢复或加强成人的功能,还有许多更简单、更安全、也更有效的 方法 。
胚胎选择技术是指父母在怀孕时影响孩子基因组合的一系列技术的总称。最简单的干预方法就是修改基因。这不是一种大刀阔斧的变更,因为它要获得的效果就像筛选各种胚胎、选择具有所需基因的胚胎的效果一样。事实上,这种胚胎筛选程序已经在胚胎植入前的基因诊断中 应用了。这种技术已经用了十几年,但还在试验,在未来5到10年将臻于成熟。随着这些技术的成熟,可供父母选择的方案会大大增多。
再进一步将出现对生殖系统的干预――即选择卵子、精子、或更可能的是选择胚胎的第一细胞。这些程序已经在动物身上应用,不过使用的方式对于人类还缺乏安全性和可靠性。
对人类比较可靠的一种方法也许是使用人造染色体。这项技术听起来像是不可置信的科幻电影,但已经用在动物身上了。人造染色体植入老鼠身上,连续几代被传了下去。人造染色体也用在人体细胞培养中,在数百次细胞分裂中都能保持稳定。因此,它们可以充当插入基因模块的稳定“平台”。这些被插入的基因模块包括在适当时候让基因兴奋或休息的必要控制机制,就像在我们46个染色体中的正常基因的激活或休息,取决于它们所处的生理 组织类型,或取决于它们遇到的 环境状况一样。
当然,为安全起见,需要早期介入才能使焦点集中。你不能去修改一个在胎儿发育过程中生理组织不断变化时被激活的基因,因为我们对这一过程所知甚少,有可能发生不想要的或灾难性的副作用。所以,在人体内使用人造染色体的首次尝试,多半要让被植入的基因处在“休息”状态,到成人阶段才在适当的生理组织中被“激活”。
执行这种控制的机制已经用在动物实验中,实验的目的是观察特定基因在发育成熟的有机体中的作用。当然,在体内存在着始终控制基因的机制。不同类的基因在不同的生理组织内的不同地点和时间被激活或休息,这对未来的基因工程师来说是幸运的,因为与我们现有的基因相 联系的已证实的调节结构可以复制下来,用以执行对植入基因的控制。胚胎选择的目标
预防疾病可能是胚胎选择的最初目标。这类可能性也许不久就会远远超出纠正异常基因的范围。例如,最近的研究显示,患有唐氏综合症的孩子,癌症的发病率降低了近90%。很可能是三体性21(即染色体21的第三个复制品,具有增强基因表达水平的作用,导致智力迟钝和其他唐氏综合症的症状)对癌症有预防作用。假如我们能鉴别出染色体上的哪些基因对癌症有预防作用,会怎么样呢?基因学家也许会把这类基因放在人造染色体上,然后植入胚胎,使癌症发病率降低到唐氏综合症患者的水平,又可以避免复制染色体21上其他基因所引起的所有问题。许多其他类似的可能性无疑都会出现,有些可能性几乎肯定是有好处的。
人造染色体的使用可能会进行得很顺利,尤其因为染色体本身在用于人体前可在实验室环境中进行试验。它们可以在动物身上试验,成功后在基本相同的条件下用于人体。如今,每一种基因疗法都是重新开始的,所以不可能获得绝对的可靠性。
如果有明确的基因修改案例显示这样做是有意义的,似乎是安全的,不可能更简便更安全了,那么人们就会对它们表示欢迎。尽管如此,目前还没有足够的证据说明值得这样做。未来基因治疗专家会产生各种各样的想法,他们会进行试验,观察这种疗法是否可行。如果可行的话,我们就不应该拒绝。例如,降低癌症和心脏病的发病率,延缓衰老,是每个人都非常需要的增进健康的手段。
用基因延长寿命
防止衰老是个非常有意义的科研领域,因为这件事似乎很有可能做到,而且是绝大多数人所强烈需要的。如果能通过揭开衰老过程的基本程序,发现某种手段能使我们开发药物或其他对成人有效的干预手段,那么人人都会需要。
胚胎工程可能比对成人的基因疗法更简单,更有成效。因为胚胎中的基因会被复制进身体的每一个细胞,能获得具体组织的控制机制。所以很可能对胚胎的干预 措施 对成人是行不通的。这样一来,父母很可能把怀孕看作赋予孩子健康条件的机会――一次不可错失的机会。
如对衰老生物学的研究投入资金,会极大地加速“衰老治疗”。如今,这个领域资金非常缺乏。许多资金都用于研究治疗老年病的方法上,没有用来搞清楚衰老的基本过程,而许多老年性疾病(如癌症、心脏病、早老性痴呆症、关节炎和糖尿病)都是由这一过程引起的。能加速衰老防止研究进程的另一件事,就是提高这个领域的形象。这个 工作已经开始了,但非常缓慢。吸引年轻的科研人员和严肃的科学家进入这个领域是至关重要的。抗衰老(即延长孩子的寿命)可能将是生殖干预的重要目标,但不是唯一的目标。为孩子谋最大福利是人类的天职。事实上,全球民意测验已经显示,在被测的每一个
国家都有可观的人数对增强孩子的身体和脑力健康感兴趣。他们考虑的不是如何避免某些疾病,而是用干预手段改善孩子的容貌、智力、力量、助人为乐精神和其他品质的状况。一旦技术达到可靠程度,许多人都需要这类干预手段。甚至那些没有这方面压力的人也会这么做,目的是不让孩子处于劣势。当然,人们会很小心,因为他们并不想伤害孩子。总之,如果干预手段失败,他们就得忍受其结果,承受犯罪的感觉。是一个不受欢迎的选择吗?
社会也许并不欢迎某些父母的选择。在美国性别选择是合法的,但在英国和其他许多国家就是非法的。不少人认为,尽管西方国家并没有出现严重的性别失衡,很难说父母的选择伤害了谁,但这个程序在美国也应该是非法的。另一个即将来临的决定是父母是否因为大量基因疾病而进行筛选。父母们不久就能够选择孩子的身高和智商,或选择性情气质的其他特点――容易患病的机制也许不久就会在基因解读中表现得清清楚楚。
胚胎选择技术的第一批希望所在是基因测试和筛选,即选择某种胚胎而不是另一种。一开始,让许多人接受这个技术是困难的,但要控制它几乎是不可能的,因为这种胚胎本来就可能是完全自然形成的。这样选择也许是令人苦恼的,但不会发生危险,我猜想它们给我们带来的好处比问题多。有些人担心这样一来会失去多样性,但我认为更大的问题在于父母所选择的胚胎可能会产生一个有严重健康问题的婴儿。那么是否应该允许父母做这样的选择呢?例如,失聪群体掀起了一个极力反对耳蜗移植的运动,因为耳蜗移植伤害了聋哑 文化 ,把聋哑视作残疾。大多数非聋哑人正是这样看待他们的。有的聋哑父母表示,他们要使用胚胎选择技术来确保他们的孩子继续聋哑。这并不是说他们拿出一个胚胎来毁坏它,而是选择一个能造成一个聋哑婴儿的胚胎。
这造成了真正的社会问题,因为社会必须承担这类健康问题所需的医疗费用。如果认为父母的确有权作这样的选择,我们根本没有理由去重视健康儿的出生而轻视有严重疾患的婴儿,那么我们将无法控制这类选择。但如果我们认为存在问题,并极力想与之进行斗争的话,我们会发现这种斗争是很有前途的。
放开手脚,取消禁令
关于由人体克隆产生的第一例怀孕事件见报后不久,美国总统乔治?W?布什就表示支持参议院的一份提案,该提案宣布所有形式的人体克隆皆为非法,包括旨在创造移植时不会被排斥的胚胎干细胞,即治疗性克隆。我认为这种禁令下得为时过早,也不会有效果,而且会产生严重的误导。就是说,这个禁令无疑是错误的。它根本无法实质性推延再生性克隆的问世,我认为这种类型的克隆将在10年内出现。这个禁令把 政治、宗教和 哲学因素注入了基础研究,这将是个危险的案例。这个禁令的立法理念把更多的关注赋予了微乎其微的小小细胞,而对那些身患疾病、惨遭折磨的人却视而不顾。这个禁令用严厉的刑事惩罚(10年监禁)来威胁胚胎科研人员,这在一个妇女在妊娠头三个月不管什么理由都有权堕胎的国家里,简直是不可思议的。
美国对胚胎研究的限制,已经对旨在创建再生 医学的生物技术的 发展产生了影响。这些限制延缓了美国在这个领域的前进步伐,而美国在生物医学的科研力量是全球首屈一指的。如今这类科研已转移到英国和其他国家去了,例如新加坡,正在为一项研究胚胎干细胞的庞大 计划提供资金。这种延误之所以非常不幸,是因为本应发生的好事如今却没有发生。对多数人来说,10年或20年的延误不是个大问题,但对于演员迈克尔?J?福克斯(Michael J.Fox)以及其他帕金森氏病和早老性痴呆症患者来说,却是生与死的问题。
对各种再生可能性的无知,往往会引起人们的恐惧。但这种无知却不能成为公众政策的基础,因为公众的态度会迅速改变。25年前,体外受精着实让人们猛吃一惊,体外受精的孩子被称作试管婴儿。现在我们看到这些孩子与他小孩没什么区别,这个方法也已成为许多没有孩子的父母的明确选择。
不管是出于意识形态还是宗教原因,把新技术加以神秘化,把它当作某种象征来加以反对,都不会有效推迟即使是最有争议的 应用。这种反对态度只会扼杀本可以转化为人人支持的生物医学新成果的主流科研。
人类克隆会在某个国家实现:很可能是以暧昧隐秘的方式实现,而且甚至在确认安全之前就实现。抗议和禁止也许会稍稍推迟第一个克隆人的诞生,但这是否值得花费严肃的人类立法成本呢?
不管我们多么为之担心,人类胚胎选择是无法避免的。胚胎选择已经存在,克隆也正在进行,甚至直接的人类生殖工程也将出现。这样的技术是阻挡不了的,因为许多人认为它能造福于人类,因为它将在全球数以千计的实验室里切实进行,最重要的是,因为它只是解除生物学的主流生物医学科研的一个副产品。
对于迅速发展的技术,我们要做的重要的事,不是预先为它设立条条框框。务必要牢记,同原子武器相比,这样的技术是没有危险性的。在原子武器中,稍有不慎,众多的无辜旁观者即刻就会灰心烟灭。这些技术仅对那些决定挺身而出使用
他们的人才具有危险性。如果我们把关于这些技术的现在的希望和恐惧带进将来,并以此为基础进行预先控制,从而扼杀它们的潜力的话,我们就只能制定出非常拙劣的法律。今天,我们并没有足够的知识来预测这些技术未来会出现什么问题。
比较明智的方法是让这项技术进入早期 应用,并从中学些东西。性别选择就是现实世界的 经验 能告诉我们一些事情的极好例子。许多人想要控制性别选择,但与不发达国家不同,在发达国家,自由选择性别并没有导致性别的巨大不平衡。在美国,父母的选择基本上男女平衡的,女孩占微弱优势。以前有人认为,如果给了父母这种选择权,会出现严重问题,因为男孩会过剩。但事实并非如此。这种危险是我们想象出来的。有些人认为,父母不应该对孩子拥有这种权力,但他们究竟担心什么,往往非常模糊。在我看来,如果父母由于某种原因的的确确需要一个女孩或男孩,让他们了却心愿怎么会伤害孩子呢?相反的情况倒的确值得担心的:如果父母极想要一个男孩,结果却生了个女孩,这个“性别错误”的孩子可能就不会过上好日子。我相信,让父母拥有这种选择权,只有好处没有坏处。
我们还可以想象出有关性别选择的各种麻烦事件,编出一系列可能发生的危险 故事 。但如果将来事情发生了变化,性别不平衡现象真的出现了,我们再制定政策处理这类特殊问题也不迟。这要比现在就对模糊的恐惧感和认为是在戏弄上帝的思想观念作出反应,无疑要明智得多。这是民主化的技术吗?
阻止再生技术的行为使这些技术造成 社会的极端分裂,因为阻止行为仅仅使这些技术为那些富裕的人所用,他们可以非常容易地绕过种种限制,或者到国外去,或者花大钱寻求黑市服务。
其核心是胚胎选择技术,如果处理恰当,它可以成为非常民主化的技术,因为早期采取的各项治疗措施可以面向各种残缺者。把智商在70到100(群体平均数值)的人向上提高,要比把智商从150(群体百分比最高值)提高到160容易得多。要让本已才智卓绝的人再上一层楼,那非常困难,因为这必须改善无数微小因素的复杂的混合配备状况,正是这些因素合在一起,才能创造出一个超人来。而改善退化的功能则要容易得多。我们并无超人的案例,但我们却有无数普通人为佐证,他们可以充当范例,引导我们如何去修改一个系统,使之至少达到正常的功能。
我觉得,人们以为我们是平等的创造物,在法律面前人人平等,于是就认为我们大家都是一样的。其实不然。基因抽奖可能是非常非常残酷的。你去问问行动迟钝的人,或问问有这样那样基因疾病的人,他们是不会相信什么基因抽奖是多么美妙公平这种抽象言论的。他们就希望自己能更健康些,或者获得某些方面的能力。这些技术的广泛应用,就在许多方面创造了一个平等的竞技场,因为那些本来由于基因原因处于劣势的人也有了竞争的机会。
另一个问题是,这些技术就像其他技术一样, 发展很快。在同代人之间,富人和穷人的应用差距不会很大,而在两代人之间的应用差距却会很大。如今,甚至比尔?盖茨也无法为他的孩子获得某种在25年后中产阶级也认为是很原始的基因增强技术。
所谓明智的一个重要因素,就是要懂得什么我们有权控制,什么无权控制。我们务必不要自欺欺人,以为我们有权对是否让这些技术进入我们的生活进行选择。它肯定会进入我们的生活。形势的发展必然要求我们去使用这些技术。
但在我们如何应用它们、它们会如何分裂我们的社会,以及它们对我们的价值观会产生什么影响等问题上,我们的确有某种选择余地。这些问题我们应该讨论。我本人对这些技术是满怀希望的。它们可能产生的好处会大大超过可能出现的问题,我想,未来的人类在回顾这些技术时,会觉得奇怪:我们在这么原始的时代是如何生活的,我们只活到75就死了,这么年轻,而且死得这么痛苦难过。
政府和决策者不应该对这些研究领域横加阻挠,因为由于误用或意外所造成的伤害,并不是仅有的风险。能够挽救许多人的技术因为延误而使他们继续遭受痛苦,也是一种风险。
当务之急是倾全力获得足够的安全性,防止意外的发生,而要做到这点,协调者看来要牺牲许多间受影响的人的安全。疫苗的例子就是这样。疫苗有许多年没有进展,因为引起诉讼的可能性很大。如果那个孩子受了伤害,会产生巨大的后果。然而很明显,对接受疫苗接种的全体人而言,是非常安全的。
我认为人们对于克隆也是同样的问题。它在近期可能会影响最多一小部份人。在我看来,拒绝会改变数以百万患者命运的非常有可能的 医学进步,振振有词地宣称这是对人类生命的尊重,这是一种奇怪的逻辑。
失去人性还是控制人性?
另一种祁人之忧,认为任意篡改生物机制有可能使我们失去人性。但是,“人性”究竟是与某些非常狭隘的生物结构有关,还是与我们接触世界的整个过程、与我们之间的相互作用有关呢?例如,假如我们的寿命增加一倍,会不会使我们在某种意义上“失去人性”呢?寿命延长必然会改变我们的生活轨迹,改变我们的互动方式,改变我们的 组织制度、家庭观和对 教育 的态度。但我们还是人类,我敢断言我们会迅速适应这些变化,并会对以往没有这些变化的生活觉得不解。
如果原始的狩猎者想象自己生活在纽约城,他们会说在那样的地方他们可能不再是人了,他们认为那不是人的生活方式。可是今天我们大多数人不仅把纽约的生活看作是人的生活,而且是大大优于狩猎生活。我想,我们改变生物机制所发生的变化也是如此。
目前人类还处在进化的早期阶段,至多是青少年期。几千年后,未来的人类来看我们这个时代,会认为是原始的、艰难的同时充满希望的时代。他们也会把我们这个时代看作是人类发展的特殊的光荣的时刻,因为我们为他们的生活打下了基础。我们很难想象即使一千年后的生活会是什么样子,但我猜想我们现在的生物重组会大大影响未来的人类。
点击下页还有更多>>>关于基因的生物科技论文范文
类器官 类器官(Organoids),是指利用成体干细胞(ESCs)或诱导式多能干细胞(iPSCs)进行体外三维(3D)培育的具有一定空间结构的组织类似物。类器官能高度模拟体内组织结构及功能并能够长期稳定传代培养。类器官模型是介于细胞系和动物模型之间的一种新型功能化体外模型,可用于解析遗传发育、建立疾病模型、筛选药物和检测毒性以及探索个性化医疗方案。迄今为止世界各国科学家陆续培养出脑、肝、胃、肺、肠、肾脏和胰腺等各种类器官。 2013年,类器官技术被《Science》评为十大科技突破之一,2017年,又被《Nature Methods》评为生命科学领域的年度技术(Method of the Year 2017)。 荷兰科学家Hans Clevers教授是类器官研究领域国际公认的先驱和鼻祖,早在2009年,Hans Clevers就发现Lgr5蛋白是肠道干细胞的标志物,并成功建立了首个肠道干细胞体外3D类器官培养体系,开创了类器官作为疾病模型的研究时代。 目前,类器官在生命科学研究中应用广泛,通过改变不同类器官的基因可以极大地帮助研究生物学过程和疾病建模。然而,由于缺乏简单的基因组工程方法,基因组编辑人类类器官的构建比较困难。 CRISPR/Cas9是进行基因编辑的强大工具,可以对基因进行定点的精确编辑。在向导RNA(guide RNA,gRNA)和Cas9蛋白的参与下,待编辑的细胞基因组DNA可被看作病毒或外源DNA,得到精确编辑。 在2020年3月份,HansClevers研究团队在《Nature Cell Biology》杂志上发表学术论文《Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing》。 其利用非同源依赖的CRISPR-Cas9技术,可快速高效地对人源类器官进行基因敲入,他们将该技术命名为CRISPR–HOT(CRISPR-Cas9-mediated homology-independent organoid transgenesis),为人源类器官的内源基因敲入提供了重要的工具平台。 研究人员利用这种新方法分析了肝细胞如何分裂以及DNA过多异常肝细胞是如何出现的,并发现敲除癌症基因TP53,异常肝细胞的非结构化分裂会更频繁。以上发现或有助于深入研究相关癌症的发展过程。 研究者们为了印证CRISPR–HOT技术在人源类器官中进行基因敲入的方法可行,首先在两种难以转染的人源类器官(肝脏导管类器官及肝细胞类器官)进行测试,并对两种不同介导方式的基因敲入技术产生的类器官进行对比分析。 图示: HDR与NHEJ的技术路线以及优劣比较 结果发现,虽然抑制TP53的活性之后,HDR介导的基因敲入方式的效率略有提高,但仍然比NHEJ介导的基因编辑效率要低。Hans Clevers研究组的工作用CRISPR-HOT方法,建立了不依赖于对TP53活性抑制的以NHEJ介导的基因编辑技术,简化了基因敲入的流程,对于肝细胞等成体干细胞来源的类器官可视化研究提供了可靠的基因编辑方式。 2020年11月,Hans Clevers研究团队又在《Nature Protocols》杂志发表学术论文《Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver》,阐述利用CRISPR/Cas9基因编辑技术探究人类胎儿肝细胞作为类器官长期扩增的培养条件。 在文章中,作者提出:针对人类胎儿肝细胞和人类肝导管类器官的基因组编辑需要两种不同的实验程序。对于人类胎儿肝细胞类器官,采用基于电转杯电转染的转染策略。为此,类器官必须分解成单细胞或小块细胞,建议从第5代及以后开始对肝细胞类器官进行基因组工程设计,肝细胞类器官电穿孔的能力通常不会随时间而降低,作者已经成功地对人胎儿肝细胞类器官进行了基因组工程,可以做到至少第50代为止。 图示:人类胎儿肝细胞类器官的基因组 工程技术概略图 (采用电转杯电转染) 相反,对于人肝导管类器官,转染步骤是对完整的类器官进行的,是一种离体组织电转染的方式。 图示:人类肝脏导管类器官的基因组工程技术概略图 (采用离体组织电转染) 另外针对不同的基因编辑方式(Knock in和Knock out),作者也分享了非常详细的应对策略(见下图)。 俗话说,工欲善其事,必先利其器。那么在Hans Clevers研究团队深耕的类器官领域中,属于他们的一把利器是什么呢?我们发现,在大牛们的研究过程当中,对细胞的转染操作贯穿其中。而NEPA GENE的 NEPA21基因高效转染系统 正是他们所选用的高效电转仪。 NEPA21 基本介绍 【1】采用全新设计的电转程序,电压衰减(Voltage Decay)模式;基因导入+反向导入模式。 【2】不需要特殊转染试剂辅助,节省实验成本;电转程序中的各项参数实时可见、可调,特别适用于优化原代细胞、非常见细胞的电转参数。 NEPA21高效基因转染系统独有的电压衰减(Voltage Decay)设计,可在获得高转染效率的同时,提高细胞存活率。专门针对难转染的原代免疫细胞、干细胞、神经细胞、活体动物、受精卵以及宫内胚胎等转染。 得益于NEPA21良好的应用体验,Hans Clevers利用其已在类器官领域取得了丰硕的研究成果。目前已有多篇应用文献,是Crispr/Cas9基因编辑的第一品牌电转系统。NEPE21——让细胞转染更简单、更Free。
基因编辑又称基因组编辑或基因组工程是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。
两位女科学家获诺贝尔学奖化学奖,基因编辑其实是一种非常高超的技术了。对于我们现在随着时代的发展,这样的技术虽然是正在研发,但是目前已经算是一种新的研究技术。
什么是基因编辑
顾名思义,“基因编辑”就是指对基因进行修改,实现对特定DNA片段的敲除、插入的基因重组技术。
基因编辑可以追溯到上世纪70年代,CRISPR/Cas9是继“锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代“基因组定点编辑技术”。
与前两代技术相比,其成本低、制作简便、快捷高效的优点,让它迅速风靡于世界各地的实验室,成为科研、医疗等领域的有效工具。
CRISPR实际上就是一种基因编辑器,是细菌用以保护自身对抗病毒的一个系统,也是一种对付攻击者的基因武器。后来研究者发现,CRISPR可以用来删除、添加、激活或抑制其他生物体的目标基因,这些目标基因包括人、老鼠、斑马鱼、细菌、果蝇、酵母、线虫和农作物细胞内的基因,这也意味着基因编辑器是一种可以广泛使用的生物技术。
基因编辑的应用:
1. 在医学上用于治疗基因遗传病 CRISPR介导的“基因组编辑”技术为在细胞中实现更多的遗传应用打开了一扇大门,可促使科学家及医疗人员更好地了解人类疾病及其潜在疗法。基因编辑可治疗遗传病,尤其是单基因遗传病。
据估计,大概有上百个疾病由单基因突变引起,其中多数属于遗传病。要从根本上解决问题,有时只能通过基因编辑彻底求证治病基因。
目前,CRISPR技术已被应用于治疗血友病、地中海贫血等多种遗传性疾病的细胞研究或动物研究。
2在农业上培育出品质优良的动物植物品种 美国和日本相关机构目前的倾向是CRISPR改造的特定农产品不作为转基因食品进行监管。
3建立不同基因型的动物模型这从第一代基因编辑技术就开始做了。建立不同基因型的动物模型的意义在于,对遗传性疾病,这些基因和疾病之间的关系,这些模型可以给出一个比较确切的答案。
现在基因编辑距离应用于临床还有很长一段距离,比如基因编辑的准确定位,如何避免脱靶;会不会有免疫反应;系统毒性等多方面的问题。
所谓基因编辑技术,是指一种新兴的、能对生物体基因组特定的目标基因进行修饰的基因工程技术。它可以高效率地进行定点基因组编辑拼接,有效应用于生命科学的很多领域。
文中表示发布出了基于CS6的RNA荧光追踪技术,韩春雨他本人的科研能力是非常强的只要他的想法是正确的方向,通过不断的研究努力,一定能够得到真正可以借鉴的实验成果。
他在论文中主要是围绕着发明的一种新的基因编辑技术这个技术非常的强大,也非常的吸引人心,开发出了荧光追踪技术,而且与RNA有关是人体基因的一部分,可以看出他本人的科研能力还是比较强的。
[](javascript:void(0);)
|
CRISPR/Cas系统是细菌和古菌特有的一种天然防御系统,用于抵抗病毒或外源性质粒的侵害。当外源基因入侵时,该防御系统的 CRISPR 序列会表达与入侵基因组序列相识别的 RNA,然后 CRISPR 相关酶(Cas)在序列识别处切割外源基因组DNA,从而达到防御目的。
根据Cas蛋白的特点,可将CRISPR/Cas系统分为Ⅰ、Ⅱ、Ⅲ型。Ⅰ型和Ⅲ型系统需要借助复杂的蛋白复合体发挥作用,Ⅱ型系统仅借助 Cas9蛋白和sgRNA即可对靶目标进行编辑,结构简单,操作容易,因此目前主要使用Ⅱ型CRISPR/Cas9 系统。
CRISPR/Cas自诞生以来,迅速发展,已经成为生命科学领域最耀眼、最有前景的技术。尤其是近两年,在全世界科学家的共同努力下,CRISPR/Cas相关新进展新突破不断涌现。
一、基因编辑技术的发展史
基因编辑可以分为三代,第一代:ZFN;第二代:TELEN;第三代:CRISPR/Cas。这三个基因编辑技术都利用了DNA修复机制,所以我们先来了解一下DNA修复机制( 图1 )。[图片上传失败...(image-8dab49-1625385468208)]
图1-NHEJ修复(左),HDR修复(右)
NHEJ(Non-homologous end joining)
非同源性末端接合
NHEJ修复机制不需要任何模版,修复蛋白直接将双股裂断的DNA末端彼此拉近,在DNA连接酶的帮助下重新接合( 图1 )。
HDR(Homology directed repair)
同源重组修复
当细胞核内存在与损伤DNA同源的DNA片段时,HDR才能发生。
NHEJ的机制简单又不依靠模版,因而NHEJ的活性相对于HDR高出许多。但NHEJ修复出错的概率较高,容易造成移码突变等,基因编辑正是利用了这一点( 图1 )。
1.ZFN的识别切割机制
融合锌指模块和FokI切割结构域形成ZFN ;以二聚体的形式靶向切割每个锌指结构;特异识别3个碱基 ;组装多个锌指结构(识别12-18bp)形成的ZFN对可特异切割基因组靶点 ( 图2 )。
[图片上传失败...(image-3f1d8d-1625385468209)]
图2-ZFN基因编辑原理图
2.TALEN的识别切割机制
两个TALE靶向识别靶点两侧的序列;每个TALE融合一个FokI内切酶结构域;FokI通过TALE靶向形成二聚体切割靶点;设计灵活识别特异性强( 图3 )。
[图片上传失败...(image-6dcfc-1625385468209)]
图3-TELEN基因编辑原理图
3.CRISPR/Cas9的识别切割机制
crRNA通过碱基配对与 tracrRNA结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA( 图4 )。
[图片上传失败...(image-c85235-1625385468209)]
图4-CRISPR/Cas9基因编辑原理图
ZFN、TELEN、CRISPR/Cas9比较
[图片上传失败...(image-dd6344-1625385468209)]
图5-三种基因编辑的比较
二、CRISPR/Cas技术的介绍
CRISPR/Cas9 系统的发现
1987年,在大肠杆菌的基因组中首次发现了一个特殊的重复间隔序列——CRISPR序列,随后,在其他细菌和古菌中也发现了这一特殊序列。
2005年,发现这些CRISPR序列和噬菌体的基因序列匹配度很高,说明CRISPR 可能参与了微生物的免疫防御。
2011年,CRISPR/Cas系统的分子机制被揭示:当病毒首次入侵时,细菌会将外源基因的一段序列整合到自身的CRISPR的间隔区;病毒二次入侵时,CRISPR 转录生成 前体crRNA (pre-crRNA), pre-crRNA 经过加工形成含有与外源基因匹配序列的crRNA,该crRNA与病毒基因组的同源序列识别后,介导 Cas 蛋白结合并切割,从而保护自身免受入侵。
2013年,发现CRISPR/Cas9系统可高效地编辑基因组。随后张锋等使用CRISPR系统成功的在人类细胞和小鼠细胞中实现了基因编辑。
从此开始,CRISPR/Cas9技术给生命科学领域带来了巨大冲击,CRISPR/Cas9相关研究成果频频登上CNS等顶级期刊,近两年更是成为诺贝尔奖热门候选。
CRISPR/Cas技术的原理
CRISPR/Cas9系统的工作原理是 crRNA( CRISPR-derived RNA )通过碱基配对与 tracrRNA(trans-activating RNA )结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA。而通过人工设计 crRNA 和 tracrRNA 这两种 RNA,改造成具有引导作用的sgRNA (single guide RNA ),从而引导 Cas9 对 DNA 的定点切割(图4)。
CRISPR/Cas技术的优势
设计简单,简明的碱基互补设计原则,识别不受基因组甲基化影响,能靶向几乎任意细胞任意序列,方便同时靶向多个靶点,切割效率高。
三、CRISPR/Cas的脱靶效应
PAM**** (Protospacer adjacent motif )
前间区序列邻近基序
PAM序列区是CRISPR/Cas9系统行使切割功能的基本条件。如果靶序列 3′端没有PAM序列,即使靶序列与sgRNA序列完全匹配,Cas9蛋白也不会切割该序列位点。 PAM序列主要影响CRISPR/Cas9的DNA切割效率。在细胞水平上,NGG介导的切割效率是最高的。
sgR****NA ****(Single guide RNA )
向导 RNA
sgRNA与目标基因组相结合的 20nt 序列区决定着 CRISPR/Cas 系统的靶向特异性。CRISPR/Cas9与靶位点识别的特异性其实主要依赖于sgRNA与靠近PAM区的10~12 bp的碱基配对,而其余远离PAM序列 8~10 bp 碱基的错配对靶位点识别的影响并不明显。目前研究结果均提示,可能靠近 PAM 的 8~14 bp 序列是决定特异性的关键,其他序列也均在不同程度上影响脱靶效应。
CRISPR/Cas9的脱靶效应给研究带来了一定程度上的不确定性,也是限制其发挥更大潜力的主要原因之一。
2017年5月30日, Nature 杂志子刊 Nature Methods 刊登了美国哥伦比亚大学研究人员的一篇文章,研究人员通过CRISPR/Cas9成功修复了导致小鼠失明的基因后,对小鼠进行全基因测序,发现修复后的小鼠基因组有超过1500个单核苷酸突变,以及超过100个位点发生大片段插入或缺失( 图6 )。文章的结论无疑引发了巨大震动,也给正在进行中的CRISPR/Cas9带来了不确定性。
[图片上传失败...(image-f21b76-1625385468208)]
图6--动物体内实验中CRISPR/Cas9编辑后发生意想不到的突变
仔细分析后,发现该文章并不十分严谨,文章仅有两只小鼠作为实验组,一只作为对照组,数量不足以证明结论是否只是个例。而且单碱基突变是生物体内自然现象,不能全归于CRISPR/Cas9。整个实验只基于一个sgRNA数据,且该sgRNA特异性评分很低,造成脱靶效应也应该在预料之中( 图7 )。
[图片上传失败...(image-751d94-1625385468208)]
图7--针对 Nature Methods 文章的回应
经过一系列的研究和改进,目前CRISPR系统的脱靶性已经很低,当然,要想达到理想的状态,还有很长的路要走。
四、CRISPR/Cas技术的进展
2016年6月,张锋在 Science 发表文章,发现CRISPR/Cas13a能有切割细菌的特定RNA序列。
2016年9月,Jennifer Doudna在 Nature 发表文章,证实CRISPR/Cas13a可以用于RNA检测。
2017年2月22日,美国纪念斯隆.凯特林癌症中心(MSK)研究人员在 Nature 杂志发文,使用腺相关病毒(AAV)介导,将CRISPR/Cas9基因编辑技术应用于CAR-T疗法。该研究既解决了传统CAR-T疗法的随机整合可能存在的潜在危害,又大大降低了CAR-T细胞发生分化或癌化的风险,赋予了CAR-T技术全新的高效性、稳定性、安全性。
2017年8月2日,Shoukhrat Mitalipov在 Nature 发表长文,使用CRISPR/Cas9技术修正了植入子宫前的人类胚胎中一种和遗传性心脏病有关的变异。该研究证实了通过编辑人类胚胎进行治疗遗传病是安全可行的。值得一提的是,该成果受到了基因编辑领域大牛George Church等人的质疑。
2017年8月11日,杨璐菡等在 Science 发表文章,通过CRISPR/Cas9技术敲除猪基因组中的内源逆转录病毒(PERV)序列,并克隆出多只PERV失活小猪。向最终实现使用猪器官进行人体器官移植的终极目标迈进了一大步。
2017年9月,杂交水稻之父”袁隆平院士宣布使用CRISPR/Cas9技术敲除与镉吸收和积累相关基因的水稻育种成功。该研究从根本上解决了水稻镉污染的问题,将扭转我国部分农作物重金属超标的问题,进而改善部分人群重金属慢性中毒的问题。
2017年10月4日,张锋在 Nature 发表论文证实CRISPR/Cas13a能够在哺乳动物细胞中编辑特定的RNA。CRISPR/Cas13a能够达到RNAi相似的降低基因表达的效率,而且有更强的特异性,且对细胞内天然的转录后调控网络的影响更小。
2017年10月19日,Jennifer Doudna在 Nature 发表文章,设计了高精确性的Cas9变体—HypaCas9。该研究极大地降低了Cas9的脱靶效应,且不降低靶向切割效率。
2017年10月25日,张锋在 Science 发表文章介绍CRISPR新系统--REPAIR,可以高效的进行RNA的单碱基修复。因为不改变DNA序列,所以为通过基因编辑治疗遗传病而又不永久影响基因组提供了新可能。
2017年10月25日,哈佛大学Broad研究所的David Liu实验室在 Nature 发表长文,报道了新型腺嘌呤基因编辑器——ecTadA-dCas9,可以将A·T碱基对转换成G·C碱基对,该技术首次实现了不依赖DNA断裂即可进行基因编辑的技术,即单碱基基因编辑技术。该技术高于其它基因组编辑方法的效率,且几乎没有随机插入、删除或其它突变等不良副作用,因此为今后大范围治疗点突变遗传疾病提供了极大的便利。
五****、展望
近几年CRISPR/Cas基因编辑技术飞速发展,推广应用到了生物、医学、农业以及环境等多个领域,造就了一批批科研奇迹,尤其是在遗传病的治疗、疾病相关基因的筛查与检测、肿瘤治疗以及动植物的改造、病原微生物防治等领域有着巨大的潜力,也将深远地影响整个世界。
特别感谢:BioArt主编给予的帮助和意见以及吉满生物吴晨提供图1-图5的图片。
|
| |
时隔6年,韩春雨再次发表新论文,论文中有很多的信息都是值得关注的。比如说开发出了基于CAS6的RNA荧光追踪技术,这样的一个技术也让该论文可以在顶级的杂志上进行发表,并且也让人们更加关注韩春雨所作的生物科学相关的实验。
韩春雨是河北科技大学的副教授,同时也是硕士研究生导师.韩春雨在2016年的时候就发表过一个顶级的文章研究成果,是指发明的一种新的基因编辑技术,所以引发了强烈的关注,而且很多人都存在这一个技术是非常强的,而且也是非常吸引的。但是论文发表不代表就有相关的成果,一定要具有可重复性,所以有人就提出韩春雨的实验室无法重复的,有人也说是可以重复的,总而言之就是之前的实验成果备受争议。不过韩春雨并没有放弃,而是进行新技术的研发,开发出了基于CAS6的RNA荧光追踪技术,这样的一个系统其实还是属于基因上的编辑和追踪,而且是跟RNA有关的,也是人体中的基因部分,所以还是说明了韩春雨本人的科研能力是比较强的。
韩春雨本人可以说是处于舆论漩涡中,但是韩春雨自己的科研实力还是非常不错的,并且也能够体现出韩春雨的团队是能够继续的去进行相关的研发。只要韩春雨能够按照正确的方向,或者说自己想要研究的方向不断的努力,那么也是能够获得让更多人认可的实验成果,最终也能获得很多荣誉的。而且相关的知识科研性比较高,也只有同行来进行评判,才能够知道究竟是学术造假还是真正可以借鉴的实验成果。
科学研发的过程中必然会出现一些争议性的事情,这是很正常的。只要是有一定的科学证据是可以支撑的,那么都应该值得肯定。
即便当前不能,以后会能的。基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。在过去几年中, 以ZFN (zinc-finger nucleases)和TALEN (transcription activator-like effector nucleases)为代表的序列特异性核酸酶技术以其能够高效率地进行定点基因组编辑, 在基础研究、基因治疗和遗传改良等方面展示出了巨大的潜力。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。
基因工程技术有哪些 核酸提取和纯化凝胶电泳 分子杂交 序列分析技术 RNA干扰技术等。。。。 高中生物基因工程一共有哪些技术 基因工程又叫DNA重组技术 PCR技术 2.将目的基因导入受体细胞的技术 3.目的基因检测与鉴定的技术 其实每个操作过程都会用到一些技术,这块主要掌握基因工程的详细操作步骤,及操作注意问题 基因工程的主要应用在哪些方面 农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 1.转基因鱼 生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.转基因牛 乳汁中含有人生长激素的转基因牛(阿根廷)。 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄 5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物 导入贮藏蛋白基因的超级羊和超级小鼠 8.特殊动物 导入人基因具特殊用途的猪和小鼠 9.抗虫棉 苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。 环境保护 基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。 利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。 基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质(通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。) 医学 基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。 用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。 我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。 无论哪一种基因治疗,处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。 可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。 医药卫生 1.基因工程药品的生产: 许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。 微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。 ⑴基因工程胰岛素 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。 将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量...... 请问基因工程的核心技术有哪些 所谓基因工程是在分子水平上对基因进行操作的复杂技术。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。它克服了远缘杂交的不亲和障碍。 比如: 核酸凝胶电泳技术 核酸分子杂交技术 细菌转化转染技术 DNA序列分析技术 寡核苷酸合成技术 基因定点突变技术 聚合酶链反应技术 基因工程包括哪些 是,基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 基因工程包括哪些主要内容? 5分 基因工激分为上游技术和下游技术 上游技术:基因重组、克隆和表达的设计与构建(即重组DNA技术) 下游技术:涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。 基因工程技术包括哪些基本步骤 目的基因的提取、基因表达载体的构建、把目的基因导入受体细胞、目的基因的鉴定与检测 基因工程技术包括哪些基本步骤 基因工程的主要操作步骤包括:⑴目的基因的制备,所谓目的基因就是按照设计所需要转移的具有遗传效应的DNA片段.目的基因可以人工合成,也可以用限制性核酸内切酶从基因组中直接切割得到.⑵目的基因与克隆载体的重组,所谓克隆载体就是承载和保护目的基因带入受体细胞的运载者,如质粒,λ噬菌体,病毒等.⑶重组体转入受体细胞,所谓受体细胞就是接受外源目的基因的细胞,大肠杆菌是用得最多的原核细胞受体,另外,动物细胞、植物细胞都可作为受体细胞,把带有目的基因的重组体转入受体细胞要用到各种物理的、化学的和生物的方法.⑷克隆子的筛选和鉴定,带有目的基因的克隆子有没有组合到受体细胞的基因组中去,目的基因有没有在宿主细胞中通过转录、翻译表达出预先设计中想要得到的产物和表达产物如何分离、纯化等技术内容.
基因编辑又称基因组编辑或基因组工程是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。
1、针对不同
转基因技术是指利用DNA重组、转化等技术将特定的外源目的基因转移到受体生物中,并使之产生可预期的、定向的遗传改变。
基因编辑是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。
2、作用不同
基因编辑技术指能够让人类对目标基因进行定点“编辑”,实现对特定DNA片段的修饰。
人们通常将植物基因工程称之为“转基因技术”,所获得的产品被称为转基因植物或转基因作物,有时也使用“遗传修饰生物”或“工程作物”等名称。
3、技术不同
转基因即将人工分离、修饰后的D N A、基因导人生物细胞基因组,在导入基因表达的影响下,原有生物体的性状也会发生变化。
基因编辑依赖于经过基因工程改造的核酸酶,也称“分子剪刀”,在基因组中特定位置产生位点特异性双链断裂(DSB),诱导生物体通过非同源末端连接(NHEJ)或同源重组(HR)来修复DSB,因为这个修复过程容易出错,从而导致靶向突变。这种靶向突变就是基因编辑。
参考资料来源:百度百科-转基因技术
参考资料来源:百度百科-基因编辑
最近,有报道称科学家通过基因编辑技术成功让两只雄性老鼠产下了后代。这一成果被认为是突破性的,引起了广泛的关注和热议。但是,这一成果并不意味着男人生娃已经成为现实,还需要更多的科学研究和技术突破。下面是我对于这个问题的深入探讨和具体分析:一、基因编辑技术的突破这项成果的突破在于科学家利用基因编辑技术,将一些基因从雌性老鼠的卵子中删除并移植到雄性老鼠的精子中,使得雄性老鼠能够产生出具备母性特征的后代。这项技术的突破对于生殖医学和基因治疗等领域有着重要的意义,可以为人类疾病的治疗和人类生殖医学提供更多的选择和可能性。二、男人生娃还需要更多的科学突破虽然这项成果非常引人注目,但是男人生娃的实现还需要更多的科学突破。目前,科学家尚未找到一种可行的技术和方法,能够完全替代女性生殖系统中所具备的独特功能。而且,男性生育也需要充分考虑到生育的风险和安全问题。因此,男人生娃仍然需要更多的科学研究和技术突破,才能够成为现实。三、伦理和道德问题的考量除了科学技术的突破,男人生娃还涉及到伦理和道德问题的考量。生育是人类最为基本的生命活动之一,因此在进行相关研究和应用时需要充分考虑到人类社会的价值观和道德标准。需要充分考虑到生命和人权等伦理原则,以及对于科学研究和技术应用的监管和管理等问题。最后,虽然这项成果非常令人瞩目,但是我们也需要客观看待其实际意义和应用前景,以及涉及到的科学、伦理和道德问题。我们期待未来科学家能够通过不断的努力和突破,为人类的健康和福利做出更多的贡献。
今天我们要讲的是 生命科学发展的能工巧匠—基因编辑技术 ,该技术通过人为的对目的基因进行修饰,实现其编辑功能,从而达到改变目的细胞基因型的目的。 2020年的诺贝尔化学奖授予了詹妮弗·杜德纳(Jennifer Doudna)和艾曼纽·卡彭蒂耶(Emmanuelle Charpentier),以表彰他们对基因编辑技术CRISPR的研究成果。在CRISPER-Cas9技术开发之前,第一代锌指核酸酶(ZFNs)技术以及第二代转录激活因子效应物核酸酶(TALENs)已被广泛应用。三者的原理都是通过在基因组序列上诱导双链断裂(DSB),并随后通过内源性修复机制进行纠正,达到基因片段缺失、插入、突变等基因编辑的目的。 通过同源重组(HR)将内源性基因组序列与外源供体DNA分子进行交换是一个几十年前就已为人所知的过程。已故的奥利弗·史密斯(Oliver Smithies)首次阐明了同源DNA分子如何重组并正确插入哺乳动物染色体的特定位置。为此,史密斯与马里奥·卡佩基(Mario Capecchi)以及马丁·埃文斯(Martin Evans)共同获得了2007年的诺贝尔生理学或医学奖。 2009科学家首次使用ZFNs技术制造了世界上第一个基因敲除大鼠,1996年ZFNs技术被大力发展,该技术通过改造ZFN的结构域,可以人为设计识别特定DNA的ZFN并促使其与目的DNA序列进行结合,随后,核酸内切酶FOKI可对DNA双链进行切割形成DSB,最后完成DNA的自我修复。该技术在发展过程中有设计简单,效率较高的特点,但是随着科学的发展,人们发现其具有周期长、易脱靶 、细胞毒性大的缺点。 第二代基因编辑技术TALEN作为ZFNs的替代产品,在2021年进入快速开发期,2012年,科学杂志将TALEN技术列入了年度十大科学突破列表,TALE的全称是Transcription Activator-Like Effector,即转录激活因子样效应蛋白,来源于植物病原菌, TALEN技术的主要原理是通过两个TALE靶向识别靶点两侧的序列;每个TALE融合一个FokI内切酶结构域;FokI通过TALE靶向形成二聚体切割靶点,诱导双链断裂,促使DNA进行自我修复过程并最终达到基因编辑的目的,TALEN具有技术设计灵活识别特异性强的优点。 ZFNs用30个氨基酸组成一个对应三碱基的DNA识别结构域,而TALE蛋白用34个氨基酸组成一个仅精准对应一个碱基的DNA识别结构域。此外,相比于ZFNs技术,TALE有一个决定性的优点,就是可模块化,通过删减、添加、自由组合不同的TALE蛋白,就可以轻易地定位DNA片段,将基因编辑周期缩短。但是,用脂质体转染法还是电穿孔法转染细胞构建细胞系,病毒所能运送的DNA序列也是有限的,而使用病毒侵染法递送外援DNA进行基因治疗,转染效率也不可避免地与蛋白质大小成反比,所以太大的TALE无疑会导致DNA的切割效率降低。此外,该项技术也存在与ZFNs一样的脱靶率高,细胞毒性大的缺点。 不过,科学家们很快开发出了新一代基因编辑技术,相比于前两代技术更为高校、快捷。准确且价位低,那就是我们熟知的CRISPR/Cas9技术,主要组成部分是成簇的规律性间隔的短回文重复序列CRISPR以及核算内切酶Cas9组成, 2011年,CRISPR/Cas9系统的分子机制被揭示, 2014年,一位美国的生物化学家Jennifer首先阐明了CRISPR/Cas9系统的工作原理,证明它可以根据一段向导RNA(gRNA)的指引,找到对应的DNA序列,并将其切开。CRISPR/Cas9系统的工作原理是 crRNA通过碱基配对与 tracrRNA结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA。而通过人工设计 crRNA 和 tracrRNA 这两种 RNA,改造成具有引导作用的sgRNA ,从而引导 Cas9 对 DNA 的定点切割。随后不久,MIT的华人生物学家张锋证明了这一系统同样可以在哺乳动物细胞中使用。CRISPR/Cas9系统是细菌和古菌特有的一种天然防御系统,用于抵抗病毒或外源性质粒的侵害。当外源基因入侵时,该防御系统的 CRISPR 序列会表达与入侵基因组序列相识别的 RNA,然后 CRISPR 相关酶在序列识别处切割外源基因组DNA,从而达到防御目的。 CRISPR/Cas9技术原理 1.sgRNA与Cas9蛋白结合,形成RNP复合物 2.RNP复合物在sgRNA的引导下,定位到基因组上的靶位点 3.Cas9蛋白对靶位点的DNA双链进行切割,产生双链断裂(DSB) 4.DSB引起细胞的紧急修复机制:非同源末端连接(NHEJ)修复或者同源重组修复(HDR) 5.绝大多数情况下(>80%),细胞采用NHEJ修复路径,使得靶位点位置随机产生个别碱基的删除或插入(Indel),得到基因敲除模型 6.极少数情况下(<20%),且细胞内存在同源片段时,细胞采用HDR修复路径,使得靶位点产生精确修复 7.在同源片段中引入外源基因片段或者突变碱基,可得到基因定点插入模型或者基因定点突变模型 近几年,CRISPR/Cas基因编辑技术飞速发展,涉及在生物、医学、农业以及环境等多个领域的应用, 2017年CRISPR/Cas9基因编辑技术应用于CAR-T疗法;杨璐菡等在Science发表文章,通过CRISPR/Cas9技术完成了对猪基因组中的内源逆转录病毒(PERV)序列的敲除。同年,杂交水稻之父”袁隆平院士宣布使用CRISPR/Cas9技术完成了对水稻中与镉吸收和积累相关的基因的敲除。 目前为止,关于CRISPR/Cas9技术的新突破不断涌现,相比于前两代基因编辑技术,CRISPR/Cas9技术切割效率极高,便利性强,ZFNs与TALENs需要用成百上千个碱基的长度来完成定位系统的组装,而CRISPR则只需要与目的基因一一对应的一段gRNA即可完成这个任务,且Cas9蛋白自己本身就具有核酸内切酶的活性,不需额外的核酸内切酶。为今后大范围治疗点突变遗传疾病提供了极大的便利。此外,该技术还有设计简单,能靶向几乎任意细胞任意序列的优点。 海星生物通过不断探索,开发的VIRUS-Free技术通过构建转座系统质粒,将质粒转染细胞,在转座酶的作用下,高拷贝的Cas9蛋白与sgRNA表达元件被整合到基因组上,比传统的病毒法节省了3-4周,价格节省了约40%。随着基因编辑技术的发展,海星生物将紧随科技发展的步伐,为您的科学研究保驾护航。 参考文献 Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018 Aug 31;361(6405):866-869. doi: 10.1126/science.aat5011. Bak RO, Gomez-Ospina N, Porteus MH. Gene Editing on Center Stage. Trends Genet. 2018 Aug;34(8):600-611. doi: 10.1016/j.tig.2018.05.004. Fernández A, Josa S, Montoliu L. A history of genome editing in mammals. Mamm Genome. 2017 Aug;28(7-8):237-246. doi: 10.1007/s00335-017-9699-2.
这主要是通过基因编辑技术进行基因处理,同时对于基因其中的碱基进行改变实现的。