1、优点,水系锌离子电池具有安全、成本低、环保、资源丰富且电化学特性优异等优点,被认为是有前景的储能器件。2、缺点,电池常用的液体电解液具有析氢析氧等副反应,同时还有较差的高低温性能和泄露的危险。
▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学
论文DOI:10.1038/s41467-020-15712-z
针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。
锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。
单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。
▲图一 单原子催化剂的合成过程。
单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。
▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。
▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。
N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。
▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。
受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。
▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。
为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。
▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。
单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。
▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。
N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。
单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。
参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.
徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。
据外媒报道,布里斯托尔复合材料研究所(Bristol Composites Institute)的科学家利用可持续性纤维素,制造高性能钠和钾离子电池。研究人员开发了一种创新可控单向冰模板策略,以定制新一代后锂离子电池的电化学性能,使其具有可持续性和规模化应用。 目前,对可持续、低成本储能的需求迅速增长。这要部分归因于电动交通运输系统的发展,主要是用电动 汽车 取代汽油和柴油发动机。目前,这些技术很大程度上依赖于锂离子电池。此类电池中包含两个电极和一个隔板,并通过其间的电解液来携带电荷。在此类电池中使用锂存在几个问题,如金属积聚可能导致短路和过热。 作为锂电池的替代品,钠电池和钾电池在速率性能和循环次数方面表现欠佳。这是由于钠离子和钾离子的尺寸较大,其通过电池中多孔碳电极的能力有限。另一问题是,这些电池在使用寿命结束时不易处理,因其使用的是不可持续材料。此外,锂开采具有很大的破坏性,而且材料成本较高。 作为布里斯托尔大学的专业研究机构之一,布里斯托尔复合材料研究所与帝国理工学院(Imperial College)合作,开发了基于冰模板系统的新型碳电极材料。在这些气凝胶材料中,纤维素纳米晶体(一种纳米大小的纤维素)通过冰晶生长和升华形成多孔结构,从而在结构中留下了巨大的通道,可以携带大量的钠离子和钾离子。 这些新型钠离子和钾离子电池的性能,已被证明优于其他众多类似系统。而且,使用了一种可持续性来源性料——纤维素。研究人员Steve Eichhorn表示:“这些新电池的性能令人震惊。该技术在进一步开发和生产更大规模的设备方面具有巨大潜力。” 研究人员Jing Wang表示:“我们提出了一种新型可控冰模板策略,以制造由低成本纤维素纳米晶体/聚乙烯氧化物衍生的碳气凝胶,其电极材料具有分层定制和垂直对齐的通道,可用于调节钠离子和钾离子电池的速率性能和循环稳定性。由于前体具有可再生能力,以及环保型合成过程的成本相对较低,而且具有可扩展性,不久的将来,这项工作或将提供有吸引力的途径,促进可持续电动 汽车 的大规模应用,以及储能电网的规模化发展。” 研究人员希望与行业合作,在工业规模上发展这一策略,并探讨该技术是否能用于其他储能系统,如锌离子电池、钙离子电池、铝离子电池和镁离子电池,以证明其在下一代能源存储系统中的潜力。
近一段时间新能源受到国家的重视和扶持,一度把作为新能源汽车的必需材料锂离子电池和钠离子电池炒得火热。此时,一家原本生产鼓风机企业也将生产钠离子电磁的上市公司股价一度被推高,也就是学姐在下面带来的机械行业公司---山东章鼓的详细解说。
在认识山东章鼓前,机械行业龙头股名单已经整理好了,点击链接自行领取:宝藏资料:机械行业龙头股一览表
一、从公司角度来看
公司介绍:山东章鼓被认为是具有50多年设计、生产、制造经验和技术的风机公司,而且也有另外的一家控股子公司和两家中日合资企业,并在美国设立分公司,它的生产面积在工业园占有43万平方米。
公司主营业务为罗茨鼓风机、离心鼓风机、气力输送成套系统、磨机、渣浆泵等机械产品的设计、加工制造、销售、服务。
山东章鼓的公司跟大家简单讲解了后,下面就跟大伙讨论的是山东章鼓公司有什么亮点,推荐大伙投资吗?
亮点一:参股公司艾诺冈获得锌离子电池研发技术突破
山东章鼓是山东艾诺冈新能源技术有限公司的股东,股权是40%,并且这个参股公司在锌离子电池的技术研发上取得突破性的进展,锌离子电池从安全方面比较,确实比锂电池更安全,反而成本更低,有成为储能电池重要电池材料的可能性,对锌离子电池的需求,也有希望让公司得到满足。
亮点二:罗茨鼓风机领域的领军企业
山东章鼓在罗茨鼓风机领域沉淀了40多年的设计和制作经验,自2000年起,公司销售的罗茨鼓风机在国内的排名稳居榜首。该产品被广泛应用于化工、水泥、污水处理、钢铁、电力、冶金、煤炭、粮油等行业。
与此同时,公司拥有的16项新技术就是国内正好缺少的,占据了维尼纶、煤化工行业的90%以上市场,污水处理和空分,以及精细化工的市场上,占据了50%的市场份额。
亮点三:产品品种齐全,公司客户优质
山东章鼓目前能够生产包括L系列、RR系列、3H系列、ZR系列大型罗茨鼓风机(罗茨真空泵)等8大系列和140多个规格的产品,能够满足多行业多领域的用户对罗茨鼓风机的不同要求。公司产品质量杰出,而且产品的性能和功效均超过了国外进口产品,目前已拥有山东石横发电厂、广东珠江电厂、江苏徐州发电厂、中国石化等优质客户。
由于篇幅有限制,还想了解更多关于山东章鼓的深度报告和风险提示的话,我已经整理在以下研报当中了,点一点就可以看了:【深度研报】山东章鼓点评,建议收藏!
二、从行业角度来看
即使现在我国的鼓风机主要是面向中低端市场,尤其是在最近几年里,我国的鼓风机高端产品已经慢慢的替代了国外高端产品,随着下游市场消费者的需求不断进行释放,国产高端鼓风机将会一点点的占据这个市场,所以我认为,在未来我国的鼓风机行业可以更深入发展。
概括来说,国产鼓风机有着国内绝大多数市场份额,与此同时外国鼓风机正在不断被国产高端鼓风机替代,成为市场上大众最喜爱的产品。而作为拥有50多年鼓风机研发生产历史的山东章鼓将会在高端市场站稳脚跟,将会成为我国高端鼓风机主要生产商。
但是文章还是有些滞后性的,若是想更加准确地知道山东章鼓未来行情如何,可以把下面的文章打开阅读,有专业的投顾会给你提供一些诊股意见,看下山东章鼓现在行情是否到买入或卖出的好时机:【免费】测一测山东章鼓还有机会吗?
应答时间:2021-12-07,最新业务变化以文中链接内展示的数据为准,请点击查看
近期新能源得到了国家的重视和扶持,作为新能源汽车的所必需的锂离子电池和钠离子电池材料一段被炒得狂热。此时,一家原本生产鼓风机企业也将生产钠离子电磁的上市公司股价一度被推高,在下面提及的山东章鼓--一家机械行业的公司。
在为大家分析山东章鼓以前,我分享了已经整理好的机械行业龙头股名单,点击就可以领取:宝藏资料:机械行业龙头股一览表
一、从公司角度来看
公司介绍:山东章鼓被认为是具有50多年设计、生产、制造经验和技术的风机公司,并且还是一家控股子公司和两家中日合资企业的拥有人,并且美国那边还设立了分公司,工业园内的生产面积就达到了43万平方米。
公司主营业务为罗茨鼓风机、离心鼓风机、气力输送成套系统、磨机、渣浆泵等机械产品的设计、加工制造、销售、服务。
简单介绍了山东章鼓的公司情况后,接下来就要来分析一下山东章鼓公司有什么亮点,大家去投资值不值得呢?
亮点一:参股公司艾诺冈获得锌离子电池研发技术突破
山东章鼓有山东艾诺冈新能源技术有限公司的股份,比例为40%,这个参股公司在锌离子电池的技术研发上有突破性的成就,锌离子电池比锂电池成本更低,然而更安全,构成储能电池有很多重要的电池材料,其中之一就有它,公司对于锌离子电池产品的需求,有希望得到满足的。
亮点二:罗茨鼓风机领域的领军企业
山东章鼓在罗茨鼓风机领域拥有40多年的设计和制造经验,从2000年以来,公司销售的罗茨鼓风机在国内一直都是第一。该产品被广泛应用于化工、水泥、污水处理、钢铁、电力、冶金、煤炭、粮油等行业。
同时,公司的16项新技术研发可谓正是国内的空白之处,在维尼纶、煤化工行业上占据了90%以上的市场,在污水处理、空分、精细化工领域中,占据了的市场份额有50%。
亮点三:产品品种齐全,公司客户优质
山东章鼓目前能够生产包括L系列、RR系列、3H系列、ZR系列大型罗茨鼓风机(罗茨真空泵)等8大系列和140多个规格的产品,对于多行业领域的客户而言,可以满足其对于罗茨鼓风机不同需求。公司产品质量良好,而且产品的性能以及功效都要比国外进口产品好,目前已拥有山东石横发电厂、广东珠江电厂、江苏徐州发电厂、中国石化等优质客户。
由于篇幅受限,关于山东章鼓的深度报告和风险提示太多了,我已经整理在以下研报当中了,点一下就可以看到:【深度研报】山东章鼓点评,建议收藏!
二、从行业角度来看
鼓风机在国内主要集中在中低端市场,在最近几年的发展中,我国的鼓风机高端产品已经开始替代国外高端产品了,随着需求在下游市场持续释放,国产高端鼓风机将会一点点的占据这个市场,因此我认为,在未来我国的鼓风机行业仍然存在比较大的上升空间。
概括来说,国产鼓风机有着国内绝大多数市场份额,同时在高端鼓风机市场,外国鼓风机正在不断被国产鼓风机替代,成为市场主流。而作为拥有50多年鼓风机研发生产历史的山东章鼓将会在高端市场站稳脚跟,成为我国高端鼓风机主要生产商,真的非常优秀。
但是文章多多少少会有些滞后性,假设想更准确地对山东章鼓未来行情有一个认识的话,可以把下面的文章打开阅读,有专业的投顾帮你诊股,看下山东章鼓现在行情是否到买入或卖出的好时机:【免费】测一测山东章鼓还有机会吗?
应答时间:2021-12-06,最新业务变化以文中链接内展示的数据为准,请点击查看
锌镍电池之前锌变形及枝晶全部问题己克服,目前最大问题主要有五点,1、电池负极表面的钝化带来的容量衰减使得寿命在800-1300次之间; 2、电池没有形成大批量生产因此原材料稍贵电池成本1-1.2元/WH; 3、没有专门的电路管理系统PACK成组后寿命无法保证(但12V以下电池组寿命可以大于600次)4、生产自动化设备缺乏电池一致性差;5、针对负极大比表面积基材缺乏研究,他直接决定了电池寿命及快速充放电能力特性在减小面积电流条件下电池寿命一定可以大幅提升同时大电流充电能力可能达到30秒100%充电能力。
废旧电池的危害性 一粒纽扣电池可污染60万升水,等于一个人一生的饮水量。一节电池烂在地里,能够使一平方米的土地失去利用价值,所以把一节节的废旧电池说成是“污染小炸弹”一点也不过分。 我们日常所用的普通干电池,主要有酸性锌锰电池和碱性锌锰电池两类,它们都含有汞、锰、镉、铅、锌等各种金属物质,废旧电池被遗弃后,电池的外壳会慢慢腐蚀,其中的重金属物质会逐渐渗入水体和土壤,造成污染。重金属污染的最大特点是它在自然界是不能降解,只能通过净化作用,将污染消除。 汞它在这些重金属污染物中是最值得一提的,这种重金属,对人类的危害,确实不浅,长期以来,我国在生产干电池时,要加入一种有毒的物质——汞或汞的化合物,我国的碱性干电池中的汞的含量达到1-5%,中性干电池为0.025%,全国每年用于生产干电池的汞具有明显的神经毒性,此外对内分泌系统、免疫系统等也有不良影响,1953年,发生在日本九州岛的震惊世界的水俣病事件,给人类敲响了汞污染的警钟。 重金属污染,威胁着人类的健康,人类如果忽视对重金属污染的控制,最终将吞下自酿的苦果,因此,加强废旧电池的回收就日显重要了。
钠离子电池优缺点如下:
优点是钠离子资源丰富,地球上拥有钠资源储量丰富、分布广泛,相比锂电池材料,获取资源方便,有利于将产业最大。成本低廉,随着纳离子电池批量生产后,价格会越来越便宜,这正是钠离子资源丰富、开采成本低。安全性高,钠离子电池安全性高不易起火和爆炸。
缺点是钠离子电池能量密度较低,供应链需要完善目前,锂离子电池非常完善,而钠离子电池算是新产业,还是落后于锂离子电池,整个供应链上缺少强有力的企业做保障,供应链还有待完善。
钠离子电池
钠离子电池(Sodium-ion battery)是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。2018年12月,南京理工大学夏晖教授与中外团队合作,首创结构设计和调控方法,在锰基正极材料研究方面取得重要进展。
2021年8月,工信部发布公告有关部门将支持钠离子电池加速创新成果转化,支持先进产品量产能力建设。同时根据产业发展进程适时完善有关产品目录,促进性能优异、符合条件的钠离子电池在新能源电站、交通工具、通信基站等领域加快应用。
成果简介
有机化合物材料环保,资源丰富,结构通用性强,组装成本低,被公认为阴极材料用于锂离子和钠离子电池。然而,有机化合物固有的较高溶解度和较低电导率材料严重影响其工业应用。 本文,青岛大学Cunguo Wang(第一作者)与中科院苏州纳米所等研究人员在《ACS Appl. Energy Mater.》期刊 发表名为“High-Performance PDB Organic Cathodes Reinforced by 3D Flower-like Carbon for Lithium-/Sodium-Ion Batteries”的论文, 研究报告了一种具有三维花状多孔碳结构(PDB/3D-FC) 的聚(2,3-二硫-1,4-苯醌)复合材料。
原位聚合方法使得PDB的分布更均匀,并且三维花状多孔碳结构防止 PDB 的积累。此外,PDB/3D-FC 的分级多孔结构为电子/离子提供了有效的传输路径。受益于理想的制造策略和精心挑选的材料中,DB/3D-FC电极在锂离子电池中显示出203 mAh g–1的优良倍率容量,在钠离子电池中显示出183 mAh g–1的优良倍率容量。本文报道的制备策略是通用的,适用于增强其他有机电极的电化学特性材料.
图文导读
图1. 由导电碳和有机材料组装PDB/3D-FC电极的方案
图2. 形态和成分分析
方案1. 制备聚合物PDB的合成路线
图3. (a) 3D-FC 和 PDB/3D-FC 的 XPS 光谱。(b) 3D-FC 的高分辨率 N1s 光谱。(c) S 2p 和 (d) C 1s 的 PDB/3D-FC 的 XPS 光谱。
图4. 用于 LIB 的 PDB/3D-FC 阴极的电化学性能。
图5. SIBs的PDB/3D-FC阴极的电化学性能。
文献:
现在新型的磷酸铁锂电池,安全性更好,而且成本更低。
1990年以来发表的论文(Eng.):新世纪1. Surface-modified Graphite as an improved intercalating Anode for Lithium ion Batteries,Y.Cao, L.Xiao, e t.a l,Electrochem. & Solid State Lett. , 6 (2003).A30-A332. Possible use of ferrocyanide as a redox additive for prevention of electrolyte decomposition in overcharged nickel batteries, Electrochem. Acta, (2003)3. Temperature Effects on the Electrodeposition of Zinc,J.X.Y u, L.Wang e t.a l ,J. Electrochem. Soc., 150 (2003) 1.4. Hydrogen production from catalyzed hydrolysis of sodium borohydride solution using nickel boride catalyst,H.Dong, H.Yang e t.a l,Int. J. Hydrogen Energy 28 (2003)10955. A Mechanistic Study of Electrocatalytic Reduction of Oxygen on Manganese Dioxides in Alkaline Aqueous Solution, Y. L. Cao, H. X. Yang*, X. P. Ai, and L .F .Xiao, J. Electroanal. Chem.,(2003) ,6. Structural and electrochemical characterization of calcium zincate mechanochemically synthesized as rechargeable anodic materials,X.Zhu, H. Yang, X. Ai, J. Yu and Y. Cao, J. Appl. Electrochem., 33(2003)6077. A study of calcium zincate as negative electrode materials for secondary batteries, J.Y u, H.Yang et.a l, J. Power Sources, 103 (2001) 938. Effects of Anions on the Zinc Electrodeposition onto Glassy-Carbon Electrode, J.Y u, H.Yang e t.a l,, Russ. J. Electrochemistry, 38 (2002) 321.9. Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms, H.Cao, J. Yu et al., Computer and Chem., 25(2001)251上世纪10. The influences of organic additives on Zinc electrocrystallization from KCl solution, J.X.Y u, Y.Y.Chen, H.X.Yang, et.a l, J. Electrochem. Soc., 146 (1999)178911. A new approach to the estimation of electrocrystallization parameters, J. Electroanal. Chem., 474 (1999)6912. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and LiOH.H2O, H.X.Yang, Q.F.Dong, X.H.H u, X.P.A i, J. Power Souces, 79(1999)25613. A study of LiMn2O4 synthesized from LiCO3 and MnCO3, X.H.H u, X.P.A i, H.X.Yang, S.X.L i, J. Power Sources, 74(1998)24014. The kinetic study on the electrolytic hydrogenation of nitrobenzene on the hydrogen-storage alloy electrode, S. Lu, Q.L i, C.L u, Q.L iu, H.Yang, J. Electroanal. Chem., 457(1998)14915. Initial activation of hydrogen storage alloy electrode by chemical modification, J. Rare earth metals, S. Lu, Q.L i, C.L u, Q.L iu, R.H u, H.Yang,J. Rare Earths,16( 4), 307(1998)16. Effects of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode, J. L. Zhou, Y. H. Zhou , H. X. Yang , J. Power sources, 69,(1997)16917. Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. C. S. Cha , X. P. Ai, and H. X. Yang , J. Power Sources , 54, (1995)25518. In-situ ESR study on electrochemical lithium intercalation into petrulum coke , L. Zhuang, J. Lu, X. Ai, H. Yang , J. Electroanal. Chem. , 397, (1995)31519. Powder Microelectrodes, C. S. Cha, C. M. Li , H. X. Yang , P. F. Liu , J. Electroanal. Chem. , 368, (1994)4720. Electrochemical and structural studies of the composite MnO2 cathode doped with metal oxides , H. X. Yang, X. P. Ai , M .Lei ,S. X. Li , J. Power sources , 43-44, (1993)53321. Recent advances in experimental methods applied to lithium battery researches , J. Power Sources , C. S. Cha , H. X. Yang, J. Power sources , 43-44, (1993)145.22. Fractal structure structure of colloidal silver and its effects on SERS intensities of crystal violet , Chinese Chem. Letters, 3, (1992)91923. The observation of enhanced RAMAN scattering of gaseous molecules by Hg microdroplets, Chinese Chem. Letters, 2, (1991)54924. A novel optically transparent thin layer electrode for in situ IR spectroelectrochemistry , Chinese Chem. Letters, 2, (1991)25. Fiber optic thin-layer electrode cell for in situ transmission spectro- electrochemistry , Chinese Chem. Letters, 2, (1991)329 1990年以来发表的论文(中文):21世纪1. 联苯用作锂离子电池过充保护剂的研究, 肖利芬, 艾新平, 曹余良, 杨汉西, 电化学, 9(1), 23(2003)2. 塑料化聚合物电解质的导电性质, 艾新平,董全峰,杨汉西, 电池,32(S1), 48(2002)3. 尖晶石型ZnMn_2O_4的合成及其电化学行为, 李升宪,李保旗,杨汉西,艾新平, 电池,32, 3( 2002)4. 锌酸钙的制备与电化学性能研究, 喻敬贤,杨汉西,朱晓明,艾新平, 电池, 31(2) 65(2001)5. 圆柱型锌空气电池研究, 李升宪,周贵茂,艾新平,杨汉西, 电化学,6(3), 341(2000).6. 塑料化薄膜锂离子电池的制造技术, 艾新平,洪昕林,董全峰,李升宪,杨汉西, 电化学, 6(2), 193(2000)上世纪90年代7. LiMn2O4正极在高温下性能衰退现象的研究, 胡晓宏,杨汉西,艾新平,李升宪,洪昕林, 电化学, 5(2), 224(1999)8. 纳米光亮镀锌层的结构研究, 喻敬贤,陈永言,黄清安,杨汉西, 高等学校化学学报,20(1),107 (1999)9. 添加剂对锌结晶行为的影响及参数的演化优化, 化学学报, 57,953(1999)10. 锡基非晶态材料的化学合成及其嵌锂性能的初步研究, 刘立,杨汉西,孙聚堂,艾新平, 电化学,4(4), 362 (1998)11. 石墨负极锂嵌碳机理的研究, 周震涛,黄静,汪国杰,艾新平,杨汉西,, 华南理工大学学报(自然科学版) 1998年07期12. 贮氢合金用作有机加氢反应新型催化剂研究进展, 卢世刚,杨汉西,杨聪智, 化学通报 12, 1(1998)13. 电阻应变法用于密封电池内压变化的动态检测, 杨汉西, 胡容辉,艾新平,杨聪智,李升宪, 电化学, 4(3), 318(1998)14. 薄膜塑料锂离子电池的初步研究, 董全峰, 杨汉西, 艾新平, 胡晓宏,李升宪, 电化学, 4(1), 9(1998)15. 电化学制备Ni-Cu/Cu超晶格多层膜, 喻敬贤,陈永言,黄清安,杨汉西, 武汉大学学报(自然科学版) 1998年06期16. 氢气在贮氢合金电极上析出反应机理的研究, 卢世刚,李群,刘庆国,路春,党兵,杨汉西, 电化学,4(3),265 (1998)17. 非水介质中Zn-MnO_2的可充性研究, 李保旗,杨汉西,李升宪,杜米芳,艾新平, 电化学,3(3), 277 (1997)18. 泡沫镍的电沉积制备技术, 何细华,胡蓉晖,杨汉西,左正忠, 电化学,2(1), 66 (1996)19. 微电极定量方法评价贮氢合金的电化学性质, 胡蓉晖,杨汉西,刘金成,李升宪,查全性, 电化学,2(4), 391(1996)20. 贮氢合金电极的活化方法和作用机理研究, 胡蓉晖,杨汉西,卢世刚,李升宪,刘金城,杨聪智, 电化学,2(2), 170 (1996)21. 电沉积泡沫铜, 何细华,左正忠,杨汉西, 材料保护 1996年11期22. 无氟微酸性体系镀铅研究, 何细华,左正忠,杨汉西, 电镀与环保 1995年05期23. 贮氢合金用作硝基苯电解加氢的催化电极研究, 卢世刚,杨汉西,王长发, 电化学, 1(1), 15(1995)24. 金属氢化物-镍电池充电过程消气反应研究, 刘金城, 杨汉西, 胡蓉辉, 吴锋, 电源技术, 19(4), 1(1995)25. 超薄层红外光透电解池的设计和应用, 肖以金,杨汉西,查全性,, 分析化学 1994年02期26. 电化学石英晶体微天平对银电极氧化还原过程的研究, 陈胜利, 吴秉亮, 杨汉西, 高等学校化学学报, 15(1), 103(1994)27. 炭材料作为储锂负极的研究, 杨汉西, 雷鸣,李升宪,艾新平, 应用化学, 10(1), 113(1993)28. Li/SOCl2 电池的拉曼光谱电化学研究, 钟发平, 杨汉西, 查全性等, 高等化学学报, 14, 265(1993)29. 简易多功能光谱电化学池的设计, 肖以金, 杨汉西, 冯之刚, 伏亚萍, 光谱学与光谱分析, 13(6), 103(1993)30. 激光拉曼光谱的光纤采样技术, 钟发平, 吴国帧, 杨汉西等, 光谱学与光谱分析, 13(6), 29(1993)31. 甲基吡啶电氧化过程的表面增强RAMAN光谱研究, 钟发平, 杨汉西, 查全性, 化学学报, 51, 273(1993)32. 阴极限制型Li/SOCl2电池过放电产物的热分析, 肖以金, 杨汉西, 查全性, 应用化学, 10(3), 54(1993)33. C60 电化学还原的稳态性质研究,杨汉西, 肖以金, 朱凌等, 物理化学学报, 8, 580(1992)34. 微型拉曼电解池现场研究硫酰氯的电化学还原, 钟发平, 杨汉西, 徐知三, 查全性, 物理化学学报, 8, 266(1992)35. 锌离子在λ-MnO2中的电化学嵌入, 吴智远, 杜米芳, 杨汉西等, 应用化学, 9(2), 99(1992)36. 锂电化学嵌入尖晶石二氧化锰研究, 吴智远, 杨汉西, 石中等, 电池, 22(1), 13(1992)37. 锂离子电池炭负极研究, 杨汉西, 艾新平, 雷鸣, 李升宪, 电源技术, 5, 2(1992)38. MnO2作为二次锂电池阴极材料研究, 李升宪, 杨汉西, 吴智远, 汪振道, 电源技术, 4, 7(1991)39. AA-型Li/λ-MnO2 二次电池研究, 李升宪, 杨汉西, 吴智远等, 电池,21(5), 10(1991)40. 锂/硫酰氯电池体系的初步研究, 杨汉西,钟发平, 汪振道等, 电源技术, 2, 5(1990)41. 大功率锂/亚硫酰氯电池高效炭阴极研究, 汪振道, 杨汉西, 范玉章, 雷鸣, 电源技术, 1, 3(1990)
没分,你在说什么呀,笨蛋
一.锂金属电池:锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。二.锂离子电池:锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。